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Abstract

Obtaining a comprehensive understanding of the gene regulatory networks, or gene cas-

cades, involved in cell fate determination and cell lineage segregation in Caenorhabditis ele-

gans is a long-standing challenge. Although RNA-sequencing (RNA-Seq) is a promising

technique to resolve these questions, the bioinformatics tools to identify associated gene

cascades from RNA-Seq data remain inadequate. To overcome these limitations, we devel-

oped Gene Cascade Finder (GCF) as a novel tool for building gene cascades by compari-

son of mutant and wild-type RNA-Seq data along with integrated information of protein-

protein interactions, expression timing, and domains. Application of GCF to RNA-Seq data

confirmed that SPN-4 and MEX-3 regulate the canonical Wnt pathway during embryonic

development. Moreover, lin-35, hsp-3, and gpa-12 were found to be involved in MEX-1-

dependent neurogenesis, and MEX-3 was found to control the gene cascade promoting

neurogenesis through lin-35 and apl-1. Thus, GCF could be a useful tool for building gene

cascades from RNA-Seq data.

Introduction

Spatially and temporally regulated gene expression is essential to precisely modulate cellular

behaviors during development in multicellular organisms. Elucidating gene cascades during

early embryonic development may improve our understanding of mechanisms of cell fate

determination and lineage segregation [1–3]. The nematode Caenorhabditis elegans, a model

organism of development research, comprises 959 cells in adult hermaphrodites with robust-

ness and reproducibility of the cell lineage [3]. Additionally, over 80% of the C. elegans prote-

ome shows homology with human proteins [4], providing a particularly valuable model

organism for studies of the developmental system.

PAR proteins, which are expressed immediately after fertilization, are associated with for-

mation of the anterior-posterior polarity of P0 cells and control the localization of polarity

mediators such as SPN-4, MEX-1, and MEX-3 in C. elegans [5]. Aberrant expression of the
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genes encoding these proteins affects cellular and developmental regulation, leading to embry-

onic lethality in early embryogenesis [6–9]. Specifically, SPN-4 is localized in all blastomeres at

the four-cell stage and plays essential roles in axial rotation [8, 10–12]; MEX-1 is expressed in

the P1 blastomere, and loss of its function leads to excessive muscle formation [7, 13]; and

MEX-3 is expressed in the AB blastomere, and causes excessive muscle formation and hatch-

ing failure in mutants [14–16]. Although polarity mediators regulate protein synthesis by bind-

ing to the 30-untranslated region of the target mRNA, it is difficult to directly identify their

associated gene cascades.

Conventional genetic and molecular biological approaches have focused on the target gene

to be identified and have clarified functions and identified related genes, representing a bot-

tom-up approach. Both functional analysis of individual genes and comprehensive analysis of

the genome are indispensable for identification of gene cascades. After determination of the

whole genome sequence of C. elegans in 1998, genome-wide analysis via a top-down approach

was made possible [17], representing the beginning of the post-genome sequencing era. Tran-

scriptomics via DNA microarray analysis [18], proteomics via mass spectrometry analysis

[19], and phenomenon analysis by RNA interference [20] have been extensively reported. Fur-

thermore, several methods for comprehensive analyses have been developed, including pro-

tein-protein interaction analysis using a yeast two-hybrid system and phage display [21, 22]

and multiple mutation analysis using knockdown mutants. At the same time, the WormBase

database was constructed to integrate the vast quantities of data obtained from these genome-

wide analyses [23]. Accordingly, the development of new technologies and methodologies has

enabled the accumulation of detailed genome-wide data.

Next-generation sequencing (NGS) has now replaced conventional Sanger sequencing [24].

Conventional Sanger sequencing can simultaneously analyze 8–96 sequencing reactions,

whereas NGS can simultaneously run millions to billions of sequencing reactions in parallel.

This technique can dramatically and quickly determine the gene sequences in organisms

whose whole-genome sequences have already been determined. Even at the laboratory level,

genomic sequencing results can be produced in only a few days, enabling researchers to obtain

genome-wide information rapidly. Furthermore, RNA sequencing (RNA-Seq) has recently

been developed to measure gene expression levels by counting the number of sequence reads

obtained from converting RNA into cDNA [25]. Existing RNA-Seq data analysis tools include

RSeQC [26], which measures the quality control of the obtained data; Cufflinks [27], which

involves genome mapping; and IsoEM [28], which identifies isoforms within a dataset. These

tools can be used to identify gene expression variations from RNA-Seq data. TopGO [29] is an

analytical tool used to identify gene function based on RNA-Seq data and can confirm the

functions of genes with varying expression levels. In addition, Cascade R was established to

identify the gene cascade of a query gene [30]. Cascade R constructs an intergenic network of

knockout genes from the results of DNA microarray analysis. However, it requires multiple

timeline datasets from microarray analyses.

Genes, especially those expressed in early embryogenesis, function in chronological order

rather than having only a single function, and genes responsible for functional expression

often exert their effects at the bottom of gene cascades. STRING [31], BIOGRID [32], and

WormBase [23] are databases of protein-protein interactions and the gene-dependent regula-

tion of transcription and translation. In order to predict genetic cascades from these databases,

researchers currently must perform separate analyses. Moreover, although RNA-Seq can be

used to easily acquire large amounts of data via a semi-automatic process, the subsequent anal-

ysis must be performed manually and is therefore quite time-consuming. Therefore, the data

acquisition capacity currently exceeds the data analysis capacity. Accordingly, automation of

the analysis using bioinformatics tools is an important research subject.

GCF for gene cascade identification
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In this study, we performed RNA-Seq analysis of the polarity mediator mutants spn-4, mex-
1, and mex-3 in C. elegans. Next, we developed a novel tool, Gene Cascade Finder (GCF), to

extract genes with a high probability of being directly or indirectly regulated by these polarity

mediators. Finally, the gene cascade and its validity were examined.

Materials and methods

Strains

C. elegans wild type (N2), mex-1(or286), and mex-3(eu149) strains, and Escherichia coli OP50

strain were provided by the Caenorhabditis Genetics Center (https://cgc.umn.edu/), and the

C. elegans sin-3(tm1276) and spn-4(tm291) strains were provided by National BioResource

Project [33].

Culture of C. elegans and synchronization at the early embryo stage

All strains except for mex-1(or286) were cultured on nematode growth medium agar coated

with E. coli OP50 at 20˚C. Because mex-1(or286) strain is a temperature-sensitive mutant

strain, it was cultured at 15˚C to strengthen its phenotype [13]. Furthermore, all strains were

transferred to S-Basal solution inoculated with E. coli OP50 at 20˚C for large culture. To obtain

early embryos from the culture medium, when C. elegans adults had only 3–5 eggs, they were

synchronized using an alkaline bleaching method, and the early embryos were recovered [34].

These C. elegans early embryos were used as the samples for RNA-Seq analysis.

Guideline for RNA-Seq analysis and comparative gene expression analysis

The guideline for RNA-seq data analysis for gene cascade prediction is indicated in the supple-

mentary material (S1 Fig). RNA-seq analysis of wild type (N2) and sin-3(tm1476) mutant early

embryos (N = 3) was performed by following the Illumina protocols (available on the Illumina,

Inc. website). Library preparation for RNA-Seq was performed using the TruSeq Stranded

Total RNA LT Sample Prep Kit (Illumina, Inc.). Next, using a MiSeq Reagent Kit v3 (Illumina,

Inc.), the DNA samples were denatured, diluted, and paired-end sequencing (75 bp length)

was performed in MiSeq sequencer (Illumina). The quality of raw sequence data obtained by

RNA-Seq was checked using FastQC. Trimmomatic [35] was employed to trim low quality

reads and the sequence data were mapped to a C. elegans reference genome (WormBase Ver-

sion 261) using HISAT2. The count data of wild type and sin-3 mutant were compared with

DESeq2 [36] and differentially expressed genes (DEGs) (p-value < 0.05, log2 Fold changes

between sin-3 mutant/wild type (log2 count data of sin-3 mutant/count data of wild type))

were identified (S1 Table).

RNA-Seq analysis of mex-1, mex-3, and spn-4
The mRNAs of the synchronized C. elegans early embryos were purified using RNeasy Minikit

(Qiagen NV, Venlo, the Netherlands). Purified mRNAs were reverse-transcribed into cDNAs,

amplified by polymerase chain reaction, and fragmented using a TruSeq RNA Sample Prep Kit

(Illumina, Inc.). The amplified cDNAs were sequenced using Hi-Seq2000 (Illumina, Inc.) and

the sequenced cDNAs were mapped to the C. elegans genome sequence and counted according

to WormBase (WS190) [23] using DNAnexus. Using this procedure, the mRNA expression

levels were obtained as reads per kilobase of exon per million mapped reads (RPKM) [37]. The

gene name and RPKM values of wild-type and mutant genes were filed for input data in GCF

(S2 Table). Although we used the RPKM method to perform static evaluation, it is better to

use DESeq2 or edgeR to define and normalize the fluctuations or differential expression

GCF for gene cascade identification
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patterns. However, since RPKM is still utilized by many researchers up until now [38, 39], we

initially develop the tool for this classical method and will incorporate other more sophisti-

cated normalization methods to GCF (see Guideline for RNA-Seq analysis and comparative

gene expression analysis).

Comparative quantitative gene expression analysis of mex-1, mex-3, and

spn-4
Expression levels of gene i in the wild-type and mutant were defined as xi and yi, respectively,

and the change rates in these gene expression levels (Ri) were determined as shown in Eq 1.

Ri ¼ yi=xi ði ¼ 1; :: . . . ;NÞ ð1Þ

Ri < Mi � Qi; Miþ Qi < Ri ð2Þ

Mi � Qi < Ri < Miþ Qi ð3Þ

Further, genes that satisfied the condition of Eq 2 were assumed to show expression level

fluctuations, and genes satisfying the condition of Eq 3 were assumed to not show expression

level fluctuations. N is the number of genes, and Mi and Qi are the median and quartile devia-

tion, respectively. The expression level of each gene was spatially and temporally regulated in

the early embryonic development of C. elegans. To analyze the effect of the expression of each

gene in mutant for the polarity mediator genes, we compared the relative expression level of

each gene between the wild type and deletion mutants for the polarity mediator gene (S2

Table).

Dataset for the software

Information on the expression timing and interactions of all genes in C. elegans was extracted

from WormBase (Version 256) [23] using the application programming interface. The total

transcription factors of C. elegans were acquired from the gene ontology database Amigo 2

(http://amigo.geneontology.org/amigo) [40] using the keyword search “GO: 0006351”. Fur-

thermore, all gene IDs, protein IDs, and domain information from Pfam (https://pfam.xfam.

org/) [41] in C. elegans required for functional analysis were extracted from UniProt [42]. We

used the embryonic gene expression and gene interaction information from WormBase, and

about 20,000 domain information of the gene product from UniProt.

Development of Gene Cascade Finder

The programming language Ruby was used to construct Gene Cascade Finder (GCF). The web

interface of GCF was written in Python. The input data for GCF were data from the wild-type

and mutant strains, as shown in S2 Table. The output data from GCF included discovered

gene cascades (S3–S5 Tables), the data input for Cytoscape (S6 Table), and gene cascade-spe-

cific domains and their gene cascades (S7 Table). GCF is available at http://www.gcf.sk.

ritsumei.ac.jp.

Direct target prediction by GCF

GCF was developed by the algorithm shown in Fig 1. To identify and verify the candidate for

the direct target genes of a query gene, we performed the following tasks:

(1) evaluate expression level fluctuation between wild-type and a mutant of the query gene,

(2) confirm that the candidate gene is transcription factor, (3) confirm that the candidate gene

GCF for gene cascade identification
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and query gene are simultaneously expressed, (4) confirm phenotypic similarity between a

mutant of the candidate gene and that of the query gene. For identification of the downstream

target of the polarity mediator-mediated gene cascade, we performed the following. First, the

candidate genes of the target of the query gene were found from transcription factors and

genes with no gene expression level fluctuations, as calculated by Eq 3, with the same cellular

localization and phenotype. Query genes bind to target mRNAs to regulate their translation.

Thus, the mRNA expression levels of the target genes showed no changes. In addition, the tar-

get genes needed to be expressed with the same timing as the query gene because the query

gene is directly bound to the target mRNA. Furthermore, the gene cascade of the target genes

was mostly consistent with the query gene cascade, suggesting that the target gene may have

the same phenotype as the query gene. Therefore, to expand the gene cascade, the target gene

should be a transcription factor with downstream genes.

Fig 1. Schematic for prediction of the gene cascade. Application protocol for GCF. Genes in the predicted cascade

are indicated by red frames. To identify the entire gene network, we repeatedly identified the downstream genes. The

genes surrounded by black frames were required to identify the genes surrounded by red fames. The information of

the labels with asterisks was extracted from WormBase.

https://doi.org/10.1371/journal.pone.0215187.g001
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Downstream gene identification by GCF

For identification of genes downstream to the gene cascade, we continuously performed the

following. First, the genes from transcription or protein-protein interactions were extracted as

downstream gene candidates of the target gene. Second, the expression timing of the candidate

genes was checked. Only candidate genes noted as being expressed in early embryos or in

embryos in WormBase were defined as downstream genes of the query’s target genes. These

two steps were repeated to obtain the next downstream genes. Finally, the procedure was

repeated until there were no genes left to be extracted to obtain the final gene. Lastly, GCF out-

put the cascade data (S3–S5 Tables). An example showing input obtained from output data

from GCF to Cytoscape [43] is provided in S2 Fig.

Specific domain search from the constructed gene cascade

Each direct target gene was rooted, and the functions of their bottom genes were investigated

using Pfam [41] in UniProt [42]. The P-values of the domains from the bottom gene products

were evaluated using the same formula for Gene Ontology in Panther [44]. If the transcrip-

tion-related domain was extracted from a cascade, the cascade was no longer considered since

it would be functioning only after the early embryo stage.

Results and discussion

In this work, we developed a novel software that is useful to predict the gene cascade during

C. elegans development. To evaluate the accuracy of the gene cascades that were predicted

by GCF, we performed the following. First, we isolated candidate direct target genes of the

polarity mediators using RNA-seq data by comparing the data for wild type and each

mutant of the polarity mediators, SPN-4, MEX-1 and MEX-3. Next, GCF predicted the

gene cascades from the candidate direct target genes localized at the top of the gene cas-

cade. In this step, information that is stored in WormBase was used to predict the gene cas-

cade. Finally, we assumed that the GCF gene cascade prediction might be accurate when

the predicted gene cascade may have an essential role in early embryogenesis and may reg-

ulate any signaling pathway. Our purpose was assumed to be achieved when the predicted

gene cascade was obtained previously or was considered to be useful for further detailed

analysis of the cascades involved in C. elegans embryonic development. Although we used

GCF to predict the polarity mediator gene cascade, it is applicable to analyze any other

query gene.

Analysis of mRNA expression by comparative RNA-Seq

To explore polarity mediator-dependent mechanisms, the effects of deficiencies in polarity

mediators were analyzed by performing RNA-Seq analysis in early embryos. From the results

of comparative RNA-Seq of the wild-type strain and the spn-4, mex-1, and mex-3 mutant

strains, 15,288, 15,265, and 15,005 genes were identified, respectively (S8 Table). In these gene

groups, expression level fluctuations were calculated by examining the median ± quartile

deviations. From this analysis, 6,417 genes distributed at −0.65 < log2 (RNA expression level

ratio) < 0.69 in the spn-4 gene, 6,456 genes distributed at −0.74< log2 (RNA expression level

ratio) < 0.82 in the mex-3 gene, and 6,491 genes distributed at −0.82< log2 (RNA expression

level ratio) < 1.10 in the mex-1 gene were defined as genes showing no expression level varia-

tions (S9 Table).

GCF for gene cascade identification
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Gene cascade prediction using Gene Cascade Finder

As shown in S1 Table, gene cascade prediction was performed by inputting data obtained by

comparative RNA-Seq into GCF. GCF can predict gene cascades by continuously integrating

the results from RNA-Seq along with data on gene expression and intermolecular interactions

from WormBase. In total, 127, 180, and 226 gene cascades were predicted from 6,418, 6,457,

and 8,513 genes from the comparative analysis of the spn-4, mex-1, and mex-3 mutant strains,

respectively (Fig 2, S3 Fig and S7–S9 Tables).

Extraction of gene cascade-specific domains using Gene Cascade Finder

The genes and domains located at the bottom of the gene cascade were extracted for functional

analysis of the predicted gene cascade (S10 Table). Overall, 53, 146, and 143 genes with 32, 34,

and 54 specific domains as the bottom gene were extracted from the gene cascades in the spn-
4, mex-1, and mex-3 mutants, respectively.

Domain analysis of spn-4, mex-1, and mex-3 cascades

To predict the functions of the gene cascades, we focused on the functions of genes localized at

the bottom of the gene cascade by analyzing the domains of the gene products using the Pfam

protein family database. The functions of the 53 SPN-4-mediated genes were obtained as bot-

tom genes to calculate the functional trends in the spn-4 cascade. Within the 53 bottom genes,

32 domains were classified based on information from the Pfam database (Table 1) [41].

When we calculated the numbers of these genes, transcription and signal transduction were

obtained at high frequency.

Similarly, in the gene cascade of 146 mex-1-mediated genes, 27 domains were classified and

obtained from the domain analyses to have functions in early embryonic development, cell

division, transcription, DNA replication, and signal transduction (Table 1). In contrast, in the

gene cascades of the 143 mex-3-mediated genes, 54 domains were classified and obtained from

the domain analyses to have functions in development, cell cycle, transcription, and signal

transduction (Table 1).

Distinct availability between Gene Cascade Finder and a gene cascade

prediction package, Cascade R

Among the previously established software packages, Cascade R was established to find out the

gene cascade of a query gene [30]. Cascade R [30] constructs an intergenic network of knock-

out genes from the results of DNA microarray. The difference in the datasets between Cascade

R and GCF lies in that Cascade R constructs gene cascade from the series of microarray data,

and GCF needs RNA-seq data and existing database information. Thus, Cascade R needs mul-

tiple timeline datasets of microarray. In contrast, using GCF, we can easily visualize the exist-

ing information and predict the direct target when a translational regulator is selected as a

query gene. Although researchers need to refer to the function of the domain from Pfam, GCF

can predict gene cascade by continuously integrating the results from RNA-Seq data and gene

expression and intermolecular interaction data from WormBase. Thus, GCF offers inexpen-

sive prediction of gene cascade.

Evaluation of GCF by assessment of gene cascades in the canonical Wnt

signaling pathway

Next, we focused on genes involved in SPN-4-mediated signal transduction (Fig 3A). First, we

found that MOM-2, a nematode homolog of the Wnt ligand, is involved in the signal

GCF for gene cascade identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0215187 September 10, 2019 7 / 16

https://doi.org/10.1371/journal.pone.0215187


GCF for gene cascade identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0215187 September 10, 2019 8 / 16

https://doi.org/10.1371/journal.pone.0215187


transduction cascade (Table 1). Since both SPN-4 and MOM-2 were previously reported to

regulate EMS cell lineage formation and spindle orientation [11, 45], we hypothesized that the

SPN-4/MOM-2 gene cascade may have an essential role in early embryogenesis and may regu-

late the Wnt signaling pathway. Moreover, because OMA-1, MEX-1, and PIE-1, which are

known to be essential for MOM-2 expression in embryonic development [45], were also iden-

tified in this pathway, the GCF-mediated gene cascade prediction was assumed to be accurate.

Similarly, unc-37, which encodes a Groucho/TLE homolog that suppresses Wnt signaling,

was found as the “bottom gene” in the spn-4 and mex-3 cascades (Fig 3A and 3B). Thus, we

propose that GCF-mediated gene cascade prediction may be useful for identification of gene

cascades involved in C. elegans embryonic development.

Examples of the application of GCF for prediction of new biological

functions involved in a gene cascade

Endoplasmic reticulum (ER) stress response pathway in a MEX-1-mediated gene cas-

cade. Because cell division and DNA replication are regulated by a MEX-1-dependent cas-

cade, we further focused on this signal transduction cascade. In the gene cascade related to

signal transduction, paqr-2, which encodes an adiponectin receptor, was isolated (Fig 3C).

Interestingly, a stress response pathway is known to regulate stress responses in both mouse

and C. elegans embryogenesis [45, 46]. Thus, an evolutionarily conserved gene cascade against

environmental stress may be identified using GCF. Moreover, because adiponectin receptor

regulates insulin signaling [47], it is likely that MEX-1/PAQR-2-mediated gene cascades may

be involved in ER stress tolerance signaling within or parallel to the insulin signaling pathway

during embryogenesis.

lin-35, hsp-3, and gpa-12 in a MEX-1/DPY-23-mediated gene cascade in neuronal devel-

opment. In a MEX-1/DPY-23-mediated gene cascade, the mex-1, lin-14, let-60, ces-2, unc-13,

and dpy-23 mutants were shown to exhibit specific phenotypes in neuronal development (Fig

Fig 2. Schematic illustrations of polarity mediator-dependent gene cascades during C. elegans embryogenesis. Rendering of each gene

cascade was performed using Cytoscape. Nodes indicate each gene in the cascade. Edges indicate the interactions between two genes. Large

and intermediate nodes indicate the query genes and the direct target of the query genes, respectively. Other nodes indicate downstream

genes. Green nodes indicate genes that are expressed during the early embryonic stage. Purple nodes indicate presumptive early embryonic

genes. Red, blue, and black edges indicate positive regulation, negative regulation, and genetic interactions, respectively. Dotted lines indicate

protein-protein interactions. (A) spn-4-mediated gene cascade. (B) mex-1-mediated gene cascade. (C) mex-3-mediated gene cascade.

https://doi.org/10.1371/journal.pone.0215187.g002

Table 1. Scores of the functional characterization of spn-1-, mex-1-, and mex-3-mediated gene cascades by domain

analysis.

spn-4 mex-1 mex-3
Transcription 25 6 4

Signal transduction 5 3 12

Development - 2 7

Cell cycle - 3 5

Cell division - - -

DNA replication - 2 3

Transport - 3 -

Others 2 12 18

Unknown - 3 4

Properties of the gene product of the bottom genes were calculated by domain analysis. The sum of the characteristic

features of each cascade (P < 0.05) was then calculated. Domains with a score less than 1 were classified as “Others”.

https://doi.org/10.1371/journal.pone.0215187.t001
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3D) [12, 48–50]. Thus, six of the nine genes of this gene cascade were shown to have essential

roles in neuronal development, indicating that MEX-1/DPY-23-mediated gene cascades may

regulate neuronal function. Although their roles in neuronal development have not yet been

investigated, locomotion defects have been reported in hsp-3 and gpa-12 mutants [51, 52].

Similarly, the lin-35(n745) mutation has been shown to enhance the neuronal phenotype of

the neuronal regulator genes dpy-13 and unc-104 [53]. Thus, lin-35, hsp-3, and gpa-12 may be

involved in a DPY-23-mediated gene cascade in neuronal development in embryos [50]. How-

ever, further studies are required to examine this possibility.

MEX-3/APL-1-mediated neuronal patterning and MEX-3/CDC-14-mediated cell fate

determination in the MEX-3-mediated gene cascade. Because MEX-3 is specifically

expressed in AB cells at the four-cell stage, spatiotemporal-regulated synaptic formation

defects in hbl-1 mutants and apl-1-dependent embryonic neuronal patterning may be eluci-

dated by identifying MEX-3/APL-1-mediated gene cascades (Fig 3E) [54–56]. In parallel,

when we focused on the MEX-3/CDC-14-mediated gene cascade (Fig 3E), CDC-14B, a zebra-

fish homolog of CDC-14, was shown to be involved in formation of the cilium in sensory neu-

rons [55]. Because sensory neurons have cilia in C. elegans [57], CDC-14 may be involved in

Fig 3. Typical examples of SPN-4, MEX-1, and MEX-3-dependent gene cascades. (A) SPN-4-mediated gene cascade regulates Wnt

signaling. (B) MEX-3-mediated gene cascade negatively regulates Wnt signaling. (C) MEX-1-mediated gene cascade regulates endoplasmic

reticulum-associated degradation (ERAD) of folding-deficient proteins. (D) MEX-1-mediated gene cascade regulates neuronal

development. (E) MEX-3-mediated gene cascade regulates neuronal development.

https://doi.org/10.1371/journal.pone.0215187.g003
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an evolutionarily conserved signaling pathway. Similarly, the lin-35(n745) mutation was

shown to enhance the neuronal phenotype of neuronal regulator genes [53]. Thus, lin-35 may

be involved in a MEX-3/CDC-14-mediated gene cascade in sensory neuron development.

Accordingly, our findings suggested that GCF may be useful for predicting the comprehensive

functions of query genes and for identification of new genes involved in known gene cascades.

Conclusion

In this study, we created a software program called GCF, which could comprehensively iden-

tify genes downstream of the query genes by integrating RNA-Seq data and previously charac-

terized data from WormBase. Using GCF, we analyzed gene cascades of the polarity mediator

proteins SPN-4, MEX-1, and MEX-3, and identified 127, 180, and 226 putative gene cascades,

respectively. By analyzing the functions of these gene cascades, we confirmed that SPN-4 and

MEX-3 regulate the canonical Wnt pathway during embryonic development. Furthermore, we

found that the ER stress response and motor neuron development are regulated by MEX-

1-dependent cascades, and that neural development is regulated by MEX-3-dependent cas-

cades. Although we used GCF only to evaluate SPN-4, MEX-1, and MEX-3 functions in this

study, the method is applicable for other translation or transcription factors involved in early

embryogenesis. In addition, GCF provides a general method for predicting the functions of

genes involved in a gene cascade during C. elegans embryonic development. Taken together,

we propose that our strategy using the GCF tool offers a reliable approach for comprehensively

identifying networks of embryo-specific gene cascades in C. elegans. Importantly, GCF can

also be applied to humans and other model organisms such as mice and Drosophila.

In the future, by adding threshold for quantitative gene expression analysis of RNA-

sequencing data and expanding the algorithm to fit the cell lineage-segregation of C. elegans
[3], we will be able to predict more reliable quantitative-data-oriented precise gene cascades

reflecting four-dimensional (spatial and temporal) regulation [58]. Combinational analysis of

improved GCF and molecular biology techniques such as RNA-pull down assays, fluorescent

in situ hybridization, and phenotypic characterization of the mutants may be required to build

a more reliable regulatory network for these gene cascades [59, 60].
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