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ABSTRACT: Single atom alloys (SAAs) show great promise as catalysts for a wide variety of reactions due to their tunable
properties, which can enhance the catalytic activity and selectivity. To design SAAs, it is imperative for the heterometal dopant to be
stable on the surface as an active catalytic site. One main approach to probe SAA stability is to calculate surface segregation energy.
Density functional theory (DFT) can be applied to investigate the surface segregation energy in SAAs. However, DFT is
computationally expensive and time-consuming; hence, there is a need for accelerated frameworks to screen metal segregation for
new SAA catalysts across combinations of metal hosts and dopants. To this end, we developed a model that predicts surface
segregation energy using machine learning for a series of SAA periodic slabs. The model leverages elemental descriptors and features
inspired by the previously developed bond-centric model. The initial model accurately captures surface segregation energy across a
diverse series of FCC-based SAAs with various surface facets and metal−host pairs. Following our machine learning methodology,
we expanded our analysis to develop a new model for SAAs formed from FCC hosts with FCC, BCC, and HCP dopants. Our final,
five-feature model utilizes second-order polynomial kernel ridge regression. The model is able to predict segregation energies with a
high degree of accuracy, which is due to its physically motivated features. We then expanded our data set to test the accuracy of the
five features used. We find that the retrained model can accurately capture Eseg trends across different metal hosts and facets,
confirming the significance of the features used in our final model. Finally, we apply our pretrained model to a series of Ir- and Pd-
based SAA cuboctahedron nanoparticles (NPs), ranging in size and FCC dopants. Remarkably, our model (trained on periodic
slabs) accurately predicts the DFT segregation energies of the SAA NPs. The results provide further evidence supporting the use of
our model as a general tool for the rapid prediction of SAA segregation energies. By creating a framework to predict the metal
segregation from bulk surfaces to NPs, we can accelerate the SAA catalyst design while simultaneously unraveling key
physicochemical properties driving thermodynamic stabilization of SAAs.

■ INTRODUCTION

Over the years, metal alloys have received great attention due
to their broad range of applications; these include among
others, drug delivery,1 catalysis,2,3 and optics.4 These systems
exhibit electronic and chemical properties that differ from their
monometallic counterparts, which can yield enhanced catalytic
activity, selectivity, and overall stability.2 Moreover, metal
alloys have tunable properties (by controlling size, shape, and
metal composition) that can be tailored for a wide range of
catalytic reactions, including oxygen reduction (ORR),5 CO
oxidation,6 and alkane dehydrogenation reactions.7

Single atom alloys (SAAs) makeup a class of bimetallic

materials that are experiencing rapid growth in interest,

especially for catalysis due to their efficiency8 and high

selectivity.9 Many SAA catalysts are synthesized by doping a
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single highly reactive precious metal into a less reactive (and
typically cheaper) host metal, resulting in structurally uniform
surface active sites.10 These active sites provide a unique and
well-defined electronic structure that can be tuned precisely to
achieve high catalytic activity8,11 and selectivity12 for a range of
reactions. For instance, Liu et al. demonstrated that doping a
single Pt on a Cu(111) surface resulted in reduced CO binding
strength (compared to pure Pt systems), which can prevent
CO poisoning during catalysis.13 In other cases, the host metal
can provide a second type of active site that contributes to the
enhanced performance. Kyriakou et al. doped Pd into the less
active Cu(111) to examine the catalytic activity for hydro-
genation reactions. It was found that the addition of Pd led to a
bifunctional surface that could selectively hydrogenate styrene
and acetylene with high activity.9 Under such catalytic
environments, surface reconstruction and metal diffusion may
occur depending on the mixing behavior of the two metals,
facet, and the morphology (i.e., size and shape).14,15 Moreover,
sintering can lead to decreased catalytic activity.16 Previously,
Tan et al. developed a statistical model to predict the
adsorption energy of different SAAs supported on metal
oxides to test for sintering.17 Therefore, understanding the
thermal stability of SAAs, which is dictated by the interactions
between the host and dopant metals,10 is critical to the design
of stable catalysts that maintain active surface sites.
A critical measurement of SAA stability is surface

segregation energy (Eseg),
10 which can be defined as how

thermodynamically favorable it is for a heterometal dopant to
occupy a surface site compared to a bulk site in a metal host.18

Since the surface environment is crucial to processes like
adsorption19 and thus catalysisEseg plays a key role in the
SAA catalyst design as it defines whether a dopant will
preferentially reside on the surface of the catalyst. Under-
standing dopant segregation tendencies enables the proper
selection of host−dopant pairs for targeted catalytic reactions.
For example, it was previously found that Pd atoms segregate
to the surface of inert coinage metals (i.e., Au and Ag),
preventing CO poisoning and enhancing the CO oxidation
catalytic activity.20 Conversely, in ORR, the segregation of X
(X = Cu, Ni, and Co) to the Pt surface may destabilize the
alloy in an acidic setting.21 Therefore, understanding metal
surface segregation tendencies of the catalyst without any
adsorbates, is the first, but crucial step for effective catalyst
design.
Various methods have been implemented such as the tight-

binding theory22,23 and density functional theory (DFT)24,25

to gain insights into the stability of the SAA. Back in 1999,
Ruban et al. applied Friedel’s rectangular state density
model26,27 to predict Eseg in FCC(111), BCC(110), and
HCP(0001) surfaces.28 Although the model predicts Eseg
trends well, it is unable to correctly predict all SAA cases
due to its lack of ability in capturing structural effects. Despite
being effective, utilizing ab initio methods like DFT can be
computationally expensive and time consuming. Thus, new
approaches are needed to accurately predict the metal
segregation and reveal the physicochemical reasons driving
segregation across different metals. Previous work leveraged
machine learning techniques with DFT calculations to develop
models that capture Eseg for the constrained subsets of SAAs.
In 2019, Farsi and Deskins developed a statistical model, based
on atomic properties and surface energies, that predicts DFT
Eseg on FCC (100), (110), (111), and (210) surfaces in Pt, Ir,
Pd, and Rh systems.18 Ologunagba and Kattel developed a

non-linear model using gradient boosting regression that
predicts DFT Eseg across different FCC, BCC, and HCP
surfaces.29 Rao et al. developed a model (based on bond-
counting theory) to predict formation energies on FCC (111),
BCC (110), and HCP (0001) of different SAAs with surface,
subsurface, dimer, and adatom dopants.30 Although these
models can capture Eseg trends in certain systems, there is still a
need for a general framework capable of predicting Eseg across
the complete metal material space, spanning from bulk SAA
systems to nanoparticles (NPs). Such a model requires
descriptors that capture the underlying physics dictating
segregation in SAAs and consider different coordination
environments on the catalyst surface. In 2018, Yan et al.
developed the bond-centric model (BCM), a coordination
number (CN)-based model that captures the stability of
bimetallic NPs of any chemical ordering, morphology, and
metal composition.31 Since the BCM captures explicit bond
energies, it can be used to probe Eseg in NPs. In its original
development, the authors employed the BCM to investigate
the metal segregation in Cu54Au NP and found qualitative
agreement with DFT, suggesting its potential to capture the
physics of metal segregation.
We herein develop a framework to predict DFT Eseg on a

range of FCC surfaces in Pt-, Ir-, Pd-, and Rh-based SAAs
(tabulated from the extensive work of Farsi and Deskins18) by
leveraging the BCM,31 elemental properties, and machine
learning techniques. After exploring the limitations of
predicting Eseg on bulk surfaces with the BCM (which was
originally developed on metal NPs31), we introduce additional
elemental properties and machine learning to develop a model
with improved accuracy. By dissecting physical relationships
found in the BCM, we enrich our feature set and train a model
that accurately predicts Eseg,DFT for SAAs with FCC dopants.
We then extend our approach to build a single model that
captures Eseg of SAAs made from FCC, BCC, and HCP
dopants with little loss in performance. Finally, we employ our
model (trained on SAA bulk surfaces) on a sample of SAA
NPs, ranging in size and dopant coordination to explore the
model’s extrapolation capabilities beyond bulk systems. Our
model achieves similar accuracy on the SAA NPs, revealing its
ability to capture size effects on Eseg.

■ RESULTS AND DISCUSSION
The surface segregation energy on FCC (100), (110), (111),
and (210) surfaces in Ir-, Pt-, Rh-, and Pd-based SAAs doped
with FCC metals was calculated using the BCM and eq 3 (see
the methodology section for additional details on these
calculations). To test the accuracy of the Eseg,BCM, it is
compared against the Farsi and Deskins data set,18 as shown in
Figure 1. It is important to note again that the FCC metal
combinations reported in the data set were not all used in the
comparison due to BCM’s metal pair limitations.31 The results
reveal that the BCM cannot predict Eseg,DFT across the data set,
resulting in a mean absolute error (MAE) of 0.513 eV.
Although the BCM captures Eseg,DFT trends accurately for Pd
metal host and somewhat for Pt and Ir, it fails completely for
Rh-based systems. Moreover, there is a clear systematic error
arising in Pt-based systems (purple points in Figure 1). This
could potentially be due to the fact that the BCM does not
account for any strain effects between the dopant and host
metals. In an effort to reduce errors from our Eseg,BCM
predictions, we can implement machine learning techniques
to train a model that captures the missing physics.
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Machine learning provides a powerful means to unravel
complex patterns within a high-dimensional feature space. To
leverage machine learning with our problem, we first generated
a data set of physically relevant features. Our initial list of
features includes elemental properties of hosts and dopant
metals. Importantly, these properties do not require expensive
first principles calculations to determine. They cover physical
(e.g., atomic radii), electronic (e.g., atomic electronegativity),
and bulk [e.g., bulk cohesive energy (CE)] properties. Since
Eseg is dependent on host−dopant interactions,10 we also
incorporate features based on the difference in properties (e.g.,
Δradius = radiushost − radiusdopant). We take into consideration
the different contributions of each metal to ensure a systematic
and unbiased approach in the feature selection process.
Additionally, expanding each term allows us to understand
which representation of these descriptors has a more dominant
effect on the Eseg. Combining these descriptors with Eseg,BCM,
we achieve an initial set of 29 tabulated features (see Table S1)
for each host−dopant pair.

After tabulating our initial set of elemental features, we
conducted feature selection through recursive feature elimi-
nation with cross-validation (RFECV) analysis. The RFECV
results, as shown in Figure 2a, reveal that five features provide a
reasonable tradeoff between low MAE and model complexity
(i.e., degrees of freedom). For example, shifting down to four
features leads to a significant decrease in accuracy, while
moving up to six features yields minimal gains. Therefore, the
top five features were selected for further analysis, which are
(in order of importance), the difference in the bulk CE of the
host and dopant (ΔCEbulk), Gordy electronegativity of the host
(χgordy,host), the bulk CE of the host (CEbulk,host), the difference
in the lattice constant (Δa), and Eseg,BCM. Next, we constructed
Pearson’s correlation table to determine whether selected
features strongly correlate and thus convey the same
information. The results in Figure 2b show that there is a
strong correlation between ΔCEbulk, CEbulk,host, and Eseg,BCM,
which can be expected since the BCM is a function of host and
dopant CEbulk values.
Our overall findings suggest that the initial feature set is

insufficient for predicting Eseg,DFT of FCC metal pairs. Even
with five features, we still only achieve a leave one out cross-
validation (LOOCV)-MAE of ∼0.23 eV (Figure 2a).
Furthermore, based on RFECV rankings, there are four
features found to be more important than Eseg,BCM. Not only
does ΔCEbulk contribute the most but also CEbulk appears in
multiple top features, indicating its significance in predicting
Eseg,DFT. Therefore, before attempting to train additional
machine learning models, we sought to expand our potential
feature set. Rather than constrain our solution to improving the
predictions from Eseg,BCM, we instead chose to remove Eseg,BCM
and replace it with three additional descriptors inspired directly
from the physics that BCM is based upon. The switch results
in a new extended feature set that contains nine new features
(as highlighted in Table S1). By removing Eseg,BCM, we
completely avoid the need for any DFT calculations to
generate the features. However, we note that the DFT
calculations for parameterizing the BCM are minimal (i.e.,
require a single dimer calculation between each metal pair).
Nevertheless, a Pearson correlation table, as shown in Figure
S2, reveals strong correlations between Eseg,BCM and some of

Figure 1. Parity plot of Eseg,BCM vs Eseg,DFT of SAAs (FCC host metals
and FCC dopants). Different host metals are indicated in different
colors.

Figure 2. Applying (a) LASSO-based RFECV to the initial feature set (Table S1). Dark blue points indicate LOOCV-MAEs of the best-performing
model at the given number of features. Shaded blue represents the standard deviation of MAEs found during LOOCV of each top-performing
model. (b) Pearson’s correlation table of the five most significant features (based on RFECV).
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the new features, indicating that we still capture most of the
information within the BCM-calculated value. Thus, by
dissecting the BCM, we achieve new, physically motivated
features to improve our Eseg,DFT predictions.
Leveraging our extended feature set, we again employed

RFECV to explore feature importance (Figure S3a). By
incorporating these new features into our data set, we can
now achieve comparable MAEs to the previously studied five-
feature model with only three features (∼0.23 eV). Once again,
we find that five features give the best tradeoff between
accuracy (low MAE) and complexity (fewer terms). These
include, in order of importance, ΔCEbulk/CNdopant, χgordy,host,
atomic radius of the dopant (rdopant

atomic), difference in the
electron affinity (ΔEA), and CEbulk,host/√CNdopant. Impor-
tantly, the results verify that Eseg,BCM is not required to predict
Eseg,DFT, and it is instead better to include terms inspired by the
BCM. Further analysis of the five features using Pearson’s
correlation table (Figure S3b) reveals that the first and last
terms are highly correlated (Pearson’s correlation = 0.75);
hence, CEbulk,host/√CNdopant is dropped from our selected
features. Previously, it was found that the CE, atomic radius,
and electronegativity influence the segregation energy of metal
alloys.2,23 Of note, these are the same termswith the
addition of the difference in the electron affinityselected by
the RFECV analysis. Using the selected features, different
regression models were trained and compared (see the
methodology section for additional training details). We note
that model training was carried out with three and four features
to compare the performance of less complex models and
investigate any potential overfitting. The results for three-
feature and four-feature models are shown as parity plots in
Figures S4 and S7, respectively. Kernel ridge regression (KRR)
was found to produce the lowest MAE for both three- and
four-feature models (Figures S4 and S7). The results show that
there is no significant difference between the MAEs when the
models are simplified to three features (∼0.05 eV for a second-
order polynomial KRR and ∼0.02 eV for a third-order
polynomial KRR). Additionally, we checked for overfitting in
the different models using bootstrapping analysis32 (Figures S5
and S8). We note that the larger the difference between the
bootstrapped training and test errors, the more likely the

model is overfitting. Although both KRR models showed
similar differences in the MAE between the test and training
set, a better MAE distribution is observed using three features
(Figures S6 and S9). In other words, there is a greater overlap
between training and testing error distributions for the three-
feature KRR model compared to the four-feature case. Based
on our overall analysis, we selected the second-order
polynomial KRR (α = 0.0015 and γ = 0.03), which uses
three features (ΔCEbulk/CNdopant, χgordy,host, and rdopant

atomic) to
predict Eseg,DFT of SAAs formed from FCC metal pairs.
The trained KRR model exhibits a LOOCV-MAE of 0.18

eV, a root-mean-squared error (RMSE) of 0.24 eV, and an R2

of 0.94. Compared to the initial analysis performed (Figure 2),
the model uses fewer features without having to comprise
accuracy, which reiterates the importance of extending our
feature set. As shown in Figure 3a, the KRR model captures the
Eseg,DFT trends across all four FCC hosts. However, the model
systematically underpredicts Eseg of Pt-based SAAs. We found a
similar result with the Eseg,BCM data plotted in Figure 1, though
the new model has much smaller deviation. Further separating
the results reveals a relatively small range of accuracies (0.077−
0.23 eV) between host metals, as shown in Figure 3b. The
order of host-based MAE follows: Pd < Ir ≈ Rh < Pt. In
addition, Figure 3b colors the data by dopant type, revealing
no systematic errors arising from dopants. This is good
indication that the selected features accurately describe the
interactions between the host and dopant metals. Overall,
employing our extended feature set and machine learning
techniques enabled the development of a robust model to
predict Eseg,DFT of FCC-based SAAs.
Based on our model’s predictions, we find that when Pd is

doped with FCC metal, segregation of the dopant rarely
occurs. Similarly, when Pt is doped with FCC metal, there is
either no segregation or weak segregation of the dopant, as
opposed to Ir and Rh metal hosts. Additionally, Au dopants
almost always segregate, regardless of the facet and metal host.
On the other hand, Ir dopants are less likely to segregate, as
shown in Figure 3. The Ir-host has a wider Eseg distribution
(i.e., range of values) followed by Rh and Pt and Pd. If we
further compare the host metals to each other, Ir host has a
wider distribution compared to Rh, and Pt host has a wider

Figure 3. Parity plots of Eseg,model (second-order polynomial KRR using three features) vs Eseg,DFT of FCC metal hosts doped with FCC metal
dopants. Data are presented as (a) a single plot of all the results (where color represents host metal) and (b) multiple subplots (where color
indicates the dopant) separated by the individual host metal: (i) Ir, (ii) Pt, (iii) Rh, and (iv) Pd. MAE for the model (a) is calculated from
LOOCV, whereas the subplot MAEs (b) are determined post-training from the segmented data.
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distribution than Pd. Based on this observation, we can
conclude that the Eseg distribution increases as we go from
period 5 to 6. These distributions are crucial in determining
the most stable SAAs.
In previous analyses, our focus was on predicting Eseg of

FCC SAAs. The question now becomes: can we extend our
methodology to capture SAAs formed from FCC host metals
with FCC, BCC, and HCP dopants? To answer this question,
we used the extended feature set with the complete Farsi and
Deskins SAA data set18 and employed RFECV analysis. As
shown in Figure S10a, the lowest MAE is observed with just
five features. Based on the correlation table in Figure S10b,
there are no repetitive features used; thus, we select five
features for subsequent model training. The five selected
features for the final model are, in order of importance,
ΔCEbulk/CN, χgordy,host, ΔEA, rdopantatomic, and first ionization
potential of the dopant (IPdopant). We note that the top four
features obtained from RFECV analysis on predicting FCC
SAAs (Figure S3a) are the same top four features found in this
generalized analysis. With our top features selected, we trained
a series of different regression models. Compared to the other
models investigated, KRR again produced the lowest MAE
(Figure S11). Although the MAE resulting from the third-
order polynomial KRR is lower compared to the second-order
polynomial KRR, it is observed that the third-order polynomial
KRR model is overfitting, which is confirmed through
bootstrapping analysis. As shown in Figure S13, the difference
between the bootstrapped training and test errors for third-
order and second-order polynomial KRR is ∼0.1 and ∼0.03
eV, respectively. Hence, we selected the second-order
polynomial KRR (α = 0.002 and γ = 0.02) as our final
model to predict Eseg,DFT. Importantly, we have provided all
data and Python code to generate the model on our GitHub.
The DFT data set along with our descriptors and model can be
found here https://github.com/mpourmpakis/BCSeg.
Model performance on the Farsi and Deskins data set18 is

illustrated in Figure 4. The model captures the Eseg trends of
the bulk systems with a high degree of accuracy, producing a
LOOCV-MAE of 0.22 eV, a RMSE of 0.28 eV, and an R2 of
0.91. The Farsi and Deskins model (which also uses five

features) exhibits a RMSE of 0.43 eV and an R2 of 0.77.
Furthermore, although the Farsi and Deskins model also
captures FCC, BCC, and HCP Eseg,DFT trends, our model
eliminates the need to use DFT.18

We note that our model predicts a reversed segregation
behavior for a subset of SAAs that exhibit weak segregation
preference (i.e., all fall within the range of |Eseg,DFT| ≤ 0.38 eV).
Importantly, the opposite segregation trend accounts for only
3.75% of the entire data set present in Figure 4. Moreover,
despite the opposite predictions, the model predicts the Eseg of
these cases to be within 0.5 eV from thermoneutral, thus
capturing their weak segregation behavior relative to the wide
Eseg range of the data set. Thus, despite the few incorrect
predictions of segregation preference, our final model still
correctly predicts the weak segregation tendencies of these
systems.
To gain more insights on the accuracy of our model, we

compared it to another model reported in the literature trained
on the same data set. Farsi and Deskins refitted their data set to
Yu et al.’s model25 and found that it produced an R2 of 0.61
and a RMSE of 0.60 eV.18 Based on these metrics, we can
conclude that our model shows enhanced performance.
Additionally, Yu et al.’s model does not differentiate between
the different facets due to its use of metal-dependent surface
energy, which is blind to facet type. Our model, on the other
hand, can capture Eseg trends across (111), (100), (110), and
(210) surfaces because it importantly incorporates CN of the
dopant. Indeed, extending the features set to incorporate
BCM-inspired descriptors enabled us to generate a powerful
model for rapid Eseg,DFT prediction. To break down the
accuracy of the model further, we divided the data into three
plots based on the dopant metal type (Figure 4b). The model
captures the trends across each dopant metal type with about
the same accuracy (∼0.22 eV). The subplots also demonstrate
that there are no systematic errors arising from different
surface facets. For FCC and HCP dopants, there is a wider Eseg
distribution compared to BCC dopants, as illustrated in
Figures 4b and S12. Additionally, BCC dopants have fewer
cases where the dopant is promoted to the surface and
opposed to FCC and HCP dopants, regardless of the different

Figure 4. Parity plots of Eseg,model (second-order polynomial KRR using five features) vs Eseg,DFT of FCC metal hosts doped with FCC, BCC, and
HCP metal dopants. Data are presented as (a) single plot of all the results (where color represents host metal) and (b) multiple subplots (where
color indicates the surface facet) separated by (i) FCC, (ii) BCC, and (iii) HCP dopants. The MAE for the model (a) is calculated from LOOCV,
while the subplot MAEs (b) are determined post-training from the segmented data.
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facets. This could be due to the difference in the bulk CN of
BCC dopants (CB = 8), as compared to FCC and HCP
dopants (CB = 12). From the BCM, we can verify that the CB
is an important descriptor in determining the stability of the
NPs. Moreover, compared to the other dopants, the
segregation of BCC dopants in FCC metal hosts is
thermodynamically unfavorable; hence, the segregation of
BCC dopants is less likely to be observed in SAA synthesis.
Along with Figure S12, this indicates the great influences on
the Eseg behavior. These trends can aid in determining which of
the SAA combinations are experimentally feasible. From our
previous observations, it was found that the metal dopant type
significantly affects not only the Eseg distribution but also the
promotion of the dopant itself. We also show that the model
captures Eseg trends across the surface facets with similar
accuracy (i.e., the variation of MAEs across different facets is
within 0.05 eV). These trends are particularly critical as the
position of the dopant plays a key role in determining the
stability of the SAA alloys, which in turn will affect its
application.
The results highlight the ability of our model to capture the

underlying physics that govern Eseg,DFT across a wide range of
SAAs. This stems from the features present in the final model,
which reflect the physics behind segregation energy. For
instance, prior work has revealed that CEbulk of metals
contributes to alloy mixing behavior (e.g., core−shell
tendencies).23 Furthermore, it was previously proven that
CEbulk and CN are key features in capturing the stability of a
local site on a metal surface because they directly contribute to
the bond energies of the metals.33 Since the stability of the
metal alloy depends on the segregation tendencies of the metal
core, the first (and most significant) feature in the model is
essential in describing the stability of the SAA. Of note, it is
also the only feature that differentiates between surface facets.
In the work by Ruban et al., charge-transfer effects were taken
into consideration to compute surface segregation energy.28

Importantly, our developed model captures charge-transfer
effects between the host and the dopant by incorporating
electron affinity, first ionization potential, and the electro-
negativity of the metals. Finally, the atomic radius of the
dopant accounts for strain effects present in the system, which

is an important structural property that can influence metal
segregation.34

To further test the accuracy of KRR and the descriptors used
in capturing different facets and metal hosts, we expanded our
Eseg search to incorporate more DFT data from the literature.
Our expanded data set includes Farsi and Deskins’ data set plus
the Eseg of Ni(111)

25 and d9 host metals doped with platinum
group metals on (211),20 (100),20 and (111)35 surfaces. We
next retrained our KRR model using the expanded data set.
The results are shown in Figure S15 of the Supporting
Information. Comparing Figures 4a to S15, the difference in
the overall accuracy is ∼0.04 eV, revealing the ability of our
model to capture a broader range of SAA systems. To further
understand the performance of our model, we compared
MAEs based on the different host metals. We observe from
Figure S16a that the model captures the trends of the different
metal hosts with similar accuracy (∼0.23 eV) with an
exception of Ni-host cases, which exhibits significantly worse
accuracy (∼0.45 eV). The poor accuracy can be qualitatively
observed in Figure S15, though we note that the overall Eseg
trend between Ni-host samples is largely captured. We next
analyzed the results of our outlier cases (i.e., Ni host) to
understand where the discrepancy between DFT and the
model is arising. By splitting the Ni-host cases based on dopant
packing type (FCC, BCC, HCP; Figure S16b), we found that
the model captures the Eseg trends of most Ni-host cases but
fails to predict the Eseg when Ni is doped with HCP metals.
This trend is not observed across the dopant packing in other
host metals, making it difficult to explain why the model fails to
predict Ni-host HCP-dopant SAAs. Overall, the results suggest
that our model does not reliably predict Eseg for Ni-host HCP-
dopant SAAs, which is an important limitation to specify.
Moreover, future work should focus on overcoming this
limitation toward a complete, generalized model.
To analyze the model’s predictions further of the entire data

set, we investigated the model’s accuracy in capturing the
different dopant types. Similar to our previous analysis, we find
that there are no systematic errors arising from the dopant type
as we observe a similar model performance on FCC, BCC, and
HCP dopants (Figure S15b). It is not a coincidence that the
retrained model performs well in predicting Eseg trends across

Figure 5. (a) Parity plot between Eseg,model and Eseg,DFT for a set of Pd- and Ir-based SAA NPs. Marker type indicates NP size (147-, 309-, or 561-
atom NPs), and color indicates host−dopant pair (e.g., yellow represents Ir-based NPs with the Ni dopant). (b) Example NPs of different sizes and
CNs (i) 147-atom NP doped on CN = 7 (blue), (ii) 309-atom NP doped on CN = 8 (purple), and (iii) 561-atom NP doped on CN = 9 (green).
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different metal hosts and facets as the descriptors utilized in
our final model capture the driving forces that govern surface
segregation. Additionally, this finding is crucial as we confirm
that the ability of our model in capturing the Eseg trends is not
just due to the complexity of the model but importantly the
descriptors used in our final model.
Up until this point, the focus has been to predict Eseg,DFT in

bulk systems (periodic surfaces). In catalysis, NPs are widely
investigated and used due to their high surface-to-volume ratio
and tunable catalytic behavior.3 NP properties can be tuned by
adjusting morphology (size and shape), which can in-turn be
controlled through different synthesis methods.36,37 Similar to
bulk systems, Eseg is a critical property to synthesize SAA
NPs.10 Previous work has revealed size-dependent behavior of
Eseg in SAA NPs.34 Thus, by developing a model that can
capture Eseg in NPs, we can provide crucial insight into the
SAA NP catalyst design. Toward this goal, we performed DFT
calculations to determine Eseg,DFT for a series of Pd-, Ir-based,
and CuIr SAA cuboctahedron NPs. NP sizes of 147, 309, and
561 are investigated due to their unique coordination sites. We
focus on cuboctahedra since it is a highly stable shape within
this size regime.38 Instead of reapplying our machine learning
methodology, we directly use our model trained on the Farsi
and Deskins data to test its efficacy in capturing Eseg for SAA
NPs. Since the model was previously trained on periodic
surfaces, we were able to use tabulated CEbulk values for our
first feature. To extend it to SAA NPs and avoid DFT, the
BCM is used to calculate CE of the systems. The ΔCEbulk term
is replaced by ΔCENP since this term can be considered CE of
the monometallic reference systems (CEbulk is representative of
periodic systems, while CENP represents NPs). We note that
this does not change the form of our model since the BCM
scales to CEbulk for infinitely large systems (i.e., periodic slabs).
The results are presented in Figure 5 as a parity plot.
Remarkably, the pretrained model gave an MAE of 0.24 eV,
which indicates that it is capturing the underlying physics
behind Eseg at the NP size regime. Furthermore, the model
captures the Eseg,DFT of Pd-based NPs more accurately as
compared to Ir-based NPs, which is the same behavior
observed within the periodic slab predictions (Figure 4a).
Importantly, we note that the CuIr case utilizes a different host
metal (Cu) that was not included in the original slab training
data. It should also be noted that this metal host (Cu) is at a
different period and group from the ones studied in this work.
This could explain why we find the other metal combinations,
which were used in model training, closer to the parity line, as
compared to CuIr. Nevertheless, the model is still able to
capture the size effects across all the systems, revealing its
ability to generalize to new sizes (NPs) and metal hosts. From
Figure 5, we also observe that the model appears to perform
better for 147-NP size, as compared to 309 and 561. It is
crucial to understand because the ΔCEbulk term is replaced by
ΔCENP, we cannot conclude that the model will perform better
for larger NP sizes. Still, the results are extremely accurate,
considering that the model has never seen SAA NP data during
its training. In this way, we can conclude that the second-order
polynomial KRR model exhibits promise as a general
predictive tool for capturing Eseg,DFT across all size regimes
from NP to bulk SAAs.
We note that our final results reinforce the importance of

using the BCM in our analysis. Although using the original
BCM expression failed to accurately capture segregation
behavior, by dissecting the BCM, we formulated new terms

to extend our feature set, which caused significant improve-
ment in the performance of our final model. Additionally, as
we shifted from bulk systems to NPs (Figure 5), we leveraged
the BCM again to calculate the CENP in our final model. Doing
so enabled us to capture Eseg in NPs while still avoiding DFT
calculationsproving the significance of the BCM in
developing the final model.
Despite the model’s ability in predicting Eseg in periodic slabs

and NPs, we do acknowledge that the model could have
limitations. Since machine learning models are known to
struggle with extrapolation,39 we must be critical when
predicting how our model will perform on new systems. For
example, we would expect our final model to struggle to
predict metal combinations and facets not included in its
original training set. Although we note the remarkable
agreement with SAA NP results, the model could still have
difficulties predicting Eseg of CN sites that it has not previously
seen (e.g., CN = 5). For future work, we plan to improve upon
the final model by investigating Eseg across a broader range of
metal types and surfaces, including more complex surfaces and
NP shapes. Nevertheless, our model is an important step
toward a universal predictor that captures segregation behavior
across the spectrum of the SAA configuration space.

■ CONCLUSIONS
In this work, we utilized the fundamental principles behind the
BCM, elemental properties, and machine learning to capture
DFT surface segregation energy in FCC metal SAAs, ranging
in host metal type (Ir, Pd, Pt, and Rh), surface facets [(100),
(110), (111), and (210)], and metal dopants (FCC, BCC, and
HCP). Initially focusing on FCC-based SAAs (FCC hosts and
dopants), we first employed the BCM, which was previously
shown to capture bimetallic NP stability, to investigate the Eseg
in bulk metal systems. The results illustrated that Eseg,BCM failed
to accurately capture Eseg,DFT of FCC-based SAAs. After
exploring machine learning approaches to improve the Eseg,BCM
predictions, we found that replacing Eseg,BCM with new
descriptors inspired by the BCM allowed us to generate a
rich set of features that completely avoid the need for DFT
parameterization. With our extended feature set, we
redeployed our machine learning methodology to develop a
model capable of predicting Eseg,DFT of FCC-based SAAs with a
high degree of accuracy (LOOCV-MAE = 0.18 eV). The
model, a second-order polynomial KRR that uses three features
showed a significant improvement in the performance relative
to our analyses with Eseg,BCM. Next, we repeated our machine
learning approach to develop a model that captures Eseg,DFT of
SAAs formed from FCC, BCC, and HCP metal dopants.
Again, our results yielded a second-order polynomial KRR but
this time with five features. Importantly, the same three
features used in the first model (FCC dopants) were found in
the final model (FCC + BCC + HCP dopants). The overall
model exhibited robust performance across all host, dopant,
and surface types, suggesting that the selected features capture
the underlying physics that govern SAA Eseg. Indeed, the five
features describe critical host−dopant interactions, including
thermodynamic stability (metal CEbulk), structural effects
(atomic radius and CN), and electronic effects (responsible
for charge transfer) such as the electron affinity, first ionization
potential, and electronegativity. We then incorporated more
data from the literature into our data set to further test the
accuracy of these descriptors. We found that the retrained
model accurately predicted the Eseg across different metal hosts
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and facets, confirming the importance of the features utilized in
our final model. To increase the applicability and impact of our
model, we conducted an extrapolation test and applied it to a
series of SAA NPs. The periodic slab-trained model was able to
capture Eseg,DFT of the NPs with remarkable accuracy (MAE =
0.24 eV). The results highlight the physical nature of the
features that parameterize our model, suggesting its potential
use as a generalized tool to predict Eseg,DFT. Overall, our
accurate model enables the rapid screening of the broad
materials space toward the improved SAA catalyst design.

■ METHODOLOGY
Density Functional Theory. DFT Eseg of bulk FCC

surfaces was obtained from a previously published work, which
we refer to as the Farsi and Deskins data set.18 The data were
used to probe the performance of BCM for predicting Eseg as
well as train and validate all machine learning models reported
herein.
The BCM differentiates bond types (homo- vs heteroatom-

ic) through a γ term, which captures relative contributions of
different metal types to a bond.31 These γ values present in the
BCM are computed from DFT dimer bond dissociation
energies (BDEs). Therefore, we performed DFT calculations
to compute BDEs (and thus γ) for a sample of FCC metal
pairs in the Farsi and Deskins data set.18 We note that since
the BCM is limited to specific metal pairs (∼85% of potential
transition metal alloys),31 some metal combinations were
excluded from the γ calculations. The calculations were
performed using PBE exchange−correlation functional40 with
def2-SV(P)41 basis set, accelerated with the resolution of
identities approximation,42 as implemented in the Turbomole
package.43 PBE was used to maintain consistency with the
functional used on the Farsi and Deskins data set. All
geometries were relaxed utilizing a self-consistent field (SCF)
energy optimization of each step (with an SCF convergence
criterion of 10−6 Ha) until the interatomic forces were no
greater than 10−3 Ha/Bohr.
Eseg,DFT of 147-, 309-, and 561-atom SAA cuboctahedron

NPs was calculated in the CP2K package44 using the PBE
exchange−correlation functional.40 A computational box size
of 34 × 34 × 34 Å was used for all calculations. Double-zeta
valence-polarized basis set with a cut-off of 500 Ry in
combination with Goedecker−Teter−Hutter pseudopotentials
was used.45 All geometries were relaxed until the interatomic
forces converged to 0.025 eV/Å with an SCF convergence
criterion of 10−7 Ha for each step. All NP structures were
constructed from the Atomic Simulation Environment Python
package.46 These DFT calculations were performed to address
the applicability of our developed models on NPs (i.e., beyond
periodic surfaces).
We note that both our dimer and NP calculations used the

same functional and similar basis sets to ensure that our results
are at the same level of theory. Our package choice varied due
to the sizes of our systems. Turbomole is more commonly used
to calculate the energetics of small, molecular systems. On the
other hand, CP2K is often used to compute the energetics of
larger systems, such as periodic surfaces and NPs, due to its
scaling capabilities. Hence, we used Turbomole for our metal
dimer calculations (i.e., computing BDE to parameterize the
BCM) and CP2K to calculate Eseg in SAA NPs.
Machine Learning. We employed a supervised machine

learning approach to develop a generalized segregation energy
model (i.e., predict Eseg,DFT) for SAAs. Along with BCM-

calculated segregation energy (Eseg,BCM), we first tabulated
several elemental properties of the host and the dopant. These
include the lattice constant, electronegativity, electron affinity,
and first ionization potential, which were obtained from the
Mendeleev Python package.47 Other elemental features include
atomic radius48 and bulk CE.49 Before feature selection and
model training, all features were standardized by transforming
the data such that each feature distribution has a mean of 0 and
a standard deviation of 1. This allows for equal contribution of
the different features used in analyses. A full list of the
elemental properties can be found in Table S1 in the
Supporting Information.
RFECV50 was employed with the Scikit-Learn Python

package51 as a means of feature selection, or to determine
which of the tabulated features contribute most to predicting
Eseg,DFT. The method begins by training a LASSO model using
all given features. Next, it eliminates the least important feature
(based on model coefficients) and retrains a new LASSO
model. The process continues by recursively eliminating the
least important feature until a one-feature model is generated,
containing the most important feature. Model accuracy is
measured using MAE from LOOCV where the MAEs are
calculated using

∑= | − ̂|
=x

y yMAE
1

i

x

1 (1)

where y is the actual output value, ŷ is the predicted output
value, and x is the total number of data points. In order to
ensure an optimal model performance during the process, the
regularization parameter (hyperparameter, α) in LASSO varied
from 0.001 to 1 (by factors of 10) to minimize MAE. Once
completed, RFECV provided a range of top-performing
models for all possible number of features. By comparing the
model performance versus number of features, we can rank
feature importance (e.g., most important feature is selected for
the one-feature model) while simultaneously determine an
optimal number of features to select (based on error vs
complexity) for predicting Eseg,DFT.
After feature selection based on RFECV analysis, we trained

a series of regression models to compare their performance for
predicting Eseg,DFT. These include LASSO,52 linear regression
(OLS),53 support vector regression (SVR),54 and KRR.55

Hyperparameters found in KRR, LASSO, and SVR were tuned
using GridSearchCV56 by minimizing MAE calculated using
the LOOCV method. All optimized hyperparameters are
reported in Tables S2−S4 in the Supporting Information. In
addition to the MAE, the RMSE is also computed (eq 2), using
LOOCV, to directly compare the model performance to other
studies.
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All model implementations, including training and vali-
dation, were performed using the Scikit-Learn Python
package.51 To aid in the final model selection and further
ensure that there is no overfitting, we carried out bootstrap
analysis32 (also implemented in Scikit-Learn). Bootstrapping is
a sampling technique to estimate population errors from a
sample of data. Since our Eseg,DFT data set only covers a sample
of the potential SAA material space, bootstrapping provides a
more robust measure of the model performance and degree of
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overfitting. Upon further analysis of the model performance,
we complete our process by selecting our final, top-performing
model to predict Eseg,DFT.
Calculating Eseg with the BCM. The use of the BCM has

been shown to be effective for predicting the stability of metal
NP sites. For instance, Dean et al. utilized the BCM to derive a
descriptor (CElocal) that captures the local stability of a metal
site. The descriptor was included with other descriptors and
machine learning to accurately predict adsorption energy in
periodic systems and NPs.33 Following a similar idea of
extending to periodic systems, we leverage the BCM to
calculate the Eseg of SAAs in metal slabs. Eseg of SAAs can be
calculated by taking the difference in energy of the system
when the dopant is on the surface and when the dopant is in
the bulk. However, by reframing Eseg as a function of CE, we
can employ the BCM to calculate CEs and thus determine
Eseg,BCM, as shown in eq 3,

= −E n(CE CE )seg,BCM dopant,surface dopant,bulk (3)

where n is the total number of atoms in a system and CEi is the
CE of the SAA when the dopant is on the surface (CN = 9, 8,
7, and 6) or bulk (CN = 12). Under this formulation, a positive
Eseg value would indicate that the dopant would prefer to stay
in the bulk, while a negative Eseg value indicates that the dopant
would segregate to the host metal surface. Additional details on
the derivation of eq 3 and the DFT-based CEi equations are
provided in Section S1 of the Supporting Information. We note
that computing CEi terms within eq 3 is carried out using the
BCM, which computes CE of a metal NP (equation provided
in prior work31). It is important to note that the BCM was
developed to calculate CE of monometallic and alloy NPs and
not periodic surfaces.31 However, the BCM is a coordination-
based model that computes explicit bond energies based on
local coordination environments (i.e., metal types and CNs).
For large NP SAAs, the local coordination of a dopant on the
surface (i.e., CN of first and second neighbors) becomes
constant. Since Eseg is calculated from a difference in CEs, the
consistent coordination environment causes Eseg,BCM to
converge at large NP sizes, as shown in Figure S1. Thus, by
leveraging large enough SAA NP models with the correct
surface facets, we can use the BCM to determine Eseg,BCM for
bulk systems (periodic surfaces). Details regarding the
morphology effects on Eseg,BCM can be found in Section S2 of
the Supporting Information.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.1c06337.

Derivation of Eseg as a function of CE; NP Morphology
effects on Eseg,BCM; Descriptors used in the RFECV
analyses; Pearson’s correlation between Eseg,BCM and
BCM-inspired features for FCC metal SAAs; LASSO-
based RFECV and Pearson’s correlation based on the
five features used to predict Eseg,DFT of FCC dopants
using BCM descriptors; hyperparameters used in the
three-, four-, and five-feature models based on the
GridSearchCV results; parity plot between different
regression models; summary of the three-, four-, and
five-feature models; bootstrapping analysis on different
regression models used to predict Eseg,DFT of FCC
dopants using three features, four features, and five

features; MAE distribution arising from the second-
order polynomial KRR test and training set using three
features, four features, and five features; parity plots of
Eseg, model (second-order polynomial KRR using five
features) versus Eseg,DFT of FCC metal hosts doped
with FCC, BCC, and HCP metal dopants; MAE of the
predicted Eseg on our extended data set results; and
electronic energies of the homoatomic and heteroatomic
metals and single metal atoms used for the γ calculations
utilized in the BCM (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Giannis Mpourmpakis − Department of Chemical
Engineering, University of Pittsburgh, Pittsburgh,
Pennsylvania 15261, United States; orcid.org/0000-
0002-3063-0607; Email: gmpourmp@pitt.edu

Authors
Maya Salem − Department of Chemical Engineering,
University of Pittsburgh, Pittsburgh, Pennsylvania 15261,
United States

Michael J. Cowan − Department of Chemical Engineering,
University of Pittsburgh, Pittsburgh, Pennsylvania 15261,
United States; orcid.org/0000-0001-8706-782X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.1c06337

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
M.S. has been supported by the U.S. Department of Education,
Graduate Assistance in Areas of National Need (GAANN)
Program, award number P200A180097. M.J.C. and G.M.
acknowledge support by the National Science Foundation
(NSF, CBET-CAREER program) under grant no. 1652694.
Computational support was provided by the University of
Pittsburgh Center for Research Computing (CRC).

■ REFERENCES
(1) Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M. Therapeutic
Nanoparticles for Drug Delivery in Cancer. Clin. Cancer Res. 2008, 14,
1310.
(2) Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: from
Theory to Applications of Alloy Clusters and Nanoparticles. Chem.
Rev. 2008, 108, 845−910.
(3) Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis:
From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev.
2018, 118, 4981−5079.
(4) Han, J.; Freyman, M. C.; Feigenbaum, E.; Yong-Jin Han, T.
Electro-Optical Device with Tunable Transparency Using Colloidal
Core/Shell Nanoparticles. ACS Photonics 2018, 5, 1343−1350.
(5) Yang, H.; Wang, K.; Tang, Z.; Liu, Z.; Chen, S. Bimetallic PdZn
nanoparticles for oxygen reduction reaction in alkaline medium: The
effects of surface structure. J. Catal. 2020, 382, 181−191.
(6) An, H.; Ha, H.; Yoo, M.; Kim, H. Y. Understanding the atomic-
level process of CO-adsorption-driven surface segregation of Pd in
(AuPd)147 bimetallic nanoparticles. Nanoscale 2017, 9, 12077−
12086.
(7) Escorcia, N. J.; LiBretto, N. J.; Miller, J. T.; Li, C. W. Colloidal
Synthesis of Well-Defined Bimetallic Nanoparticles for Nonoxidative
Alkane Dehydrogenation. ACS Catal. 2020, 10, 9813−9823.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06337
ACS Omega 2022, 7, 4471−4481

4479

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06337/suppl_file/ao1c06337_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06337/suppl_file/ao1c06337_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06337/suppl_file/ao1c06337_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06337?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06337/suppl_file/ao1c06337_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giannis+Mpourmpakis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3063-0607
https://orcid.org/0000-0002-3063-0607
mailto:gmpourmp@pitt.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maya+Salem"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+J.+Cowan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8706-782X
https://pubs.acs.org/doi/10.1021/acsomega.1c06337?ref=pdf
https://doi.org/10.1158/1078-0432.ccr-07-1441
https://doi.org/10.1158/1078-0432.ccr-07-1441
https://doi.org/10.1021/cr040090g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr040090g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.7b00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.7b00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.7b01337?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.7b01337?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jcat.2019.12.018
https://doi.org/10.1016/j.jcat.2019.12.018
https://doi.org/10.1016/j.jcat.2019.12.018
https://doi.org/10.1039/c7nr04435f
https://doi.org/10.1039/c7nr04435f
https://doi.org/10.1039/c7nr04435f
https://doi.org/10.1021/acscatal.0c01554?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.0c01554?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.0c01554?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06337?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(8) Mao, J.; Yin, J.; Pei, J.; Wang, D.; Li, Y. Single atom alloy: An
emerging atomic site material for catalytic applications. Nano Today
2020, 34, 100917.
(9) Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.;
Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos,
M.; Sykes, E. C. H. Isolated Metal Atom Geometries as a Strategy for
Selective Heterogeneous Hydrogenations. Science 2012, 335, 1209.
(10) Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos,
M.; Sykes, E. C. H. Single-Atom Alloy Catalysis. Chem. Rev. 2020,
120, 12044−12088.
(11) Liu, X.; Ao, C.; Shen, X.; Wang, L.; Wang, S.; Cao, L.; Zhang,
W.; Dong, J.; Bao, J.; Ding, T.; Zhang, L.; Yao, T. Dynamic Surface
Reconstruction of Single-Atom Bimetallic Alloy under Operando
Electrochemical Conditions. Nano Lett. 2020, 20, 8319−8325.
(12) Luneau, M.; Guan, E.; Chen, W.; Foucher, A. C.; Marcella, N.;
Shirman, T.; Verbart, D. M. A.; Aizenberg, J.; Aizenberg, M.; Stach, E.
A.; Madix, R. J.; Frenkel, A. I.; Friend, C. M. Enhancing catalytic
performance of dilute metal alloy nanomaterials. Commun. Chem.
2020, 3, 46.
(13) Liu, J.; Lucci, F. R.; Yang, M.; Lee, S.; Marcinkowski, M. D.;
Therrien, A. J.; Williams, C. T.; Sykes, E. C. H.; Flytzani-
Stephanopoulos, M. Tackling CO Poisoning with Single-Atom Alloy
Catalysts. J. Am. Chem. Soc. 2016, 138, 6396−6399.
(14) Ma, Y.; Balbuena, P. B. Pt surface segregation in bimetallic
Pt3M alloys: A density functional theory study. Surf. Sci. 2008, 602,
107−113.
(15) Papanikolaou, K. G.; Darby, M. T.; Stamatakis, M. Engineering
the Surface Architecture of Highly Dilute Alloys: An ab Initio Monte
Carlo Approach. ACS Catal. 2020, 10, 1224−1236.
(16) Campbell, C. T. The Energetics of Supported Metal
Nanoparticles: Relationships to Sintering Rates and Catalytic Activity.
Acc. Chem. Res. 2013, 46, 1712−1719.
(17) Tan, K.; Dixit, M.; Dean, J.; Mpourmpakis, G. Predicting
Metal-Support Interactions in Oxide-Supported Single-Atom Cata-
lysts. Ind. Eng. Chem. Res. 2019, 58, 20236−20246.
(18) Farsi, L.; Deskins, N. A. First principles analysis of surface
dependent segregation in bimetallic alloys. Phys. Chem. Chem. Phys.
2019, 21, 23626−23637.
(19) Andersson, K. J.; Calle-Vallejo, F.; Rossmeisl, J.; Chorkendorff,
I. Adsorption-Driven Surface Segregation of the Less Reactive Alloy
Component. J. Am. Chem. Soc. 2009, 131, 2404−2407.
(20) Papanikolaou, K. G.; Darby, M. T.; Stamatakis, M. CO-Induced
Aggregation and Segregation of Highly Dilute Alloys: A Density
Functional Theory Study. J. Phys. Chem. C 2019, 123, 9128−9138.
(21) Ramírez-Caballero, G. E.; Ma, Y.; Callejas-Tovar, R.; Balbuena,
P. B. Surface segregation and stability of core-shell alloy catalysts for
oxygen reduction in acid medium. Phys. Chem. Chem. Phys. 2010, 12,
2209−2218.
(22) Tréglia, G.; Legrand, B.; Ducastelle, F. Segregation and
Ordering at Surfaces of Transition Metal Alloys: The Tight-Binding
Ising Model. Europhys. Lett. 2007, 7, 575.
(23) Wang, L.-L.; Johnson, D. D. Predicted Trends of Core−Shell
Preferences for 132 Late Transition-Metal Binary-Alloy Nano-
particles. J. Am. Chem. Soc. 2009, 131, 14023−14029.
(24) Piccolo, L.; Li, Z. Y.; Demiroglu, I.; Moyon, F.; Konuspayeva,
Z.; Berhault, G.; Afanasiev, P.; Lefebvre, W.; Yuan, J.; Johnston, R. L.
Understanding and controlling the structure and segregation
behaviour of AuRh nanocatalysts. Sci. Rep. 2016, 6, 35226.
(25) Yu, Y.; Xiao, W.; Wang, J.; Wang, L. Understanding the surface
segregation behavior of transition metals on Ni(111): a first-principles
study. Phys. Chem. Chem. Phys. 2016, 18, 26616−26622.
(26) Friedel, J. The physics of clean metal surfaces. Ann. Phys. 1976,
1, 257−307.
(27) Cyrot-Lackmann, F. On the electronic structure of liquid
transitional metals. Adv. Phys. 1967, 16, 393−400.
(28) Ruban, A. V.; Skriver, H. L.; Nørskov, J. K. Surface segregation
energies in transition-metal alloys. Phys. Rev. B: Condens. Matter
Mater. Phys. 1999, 59, 15990−16000.

(29) Ologunagba, D.; Kattel, S. Machine Learning Prediction of
Surface Segregation Energies on Low Index Bimetallic Surfaces.
Energies 2020, 13, 2182.
(30) Rao, K. K.; Do, Q. K.; Pham, K.; Maiti, D.; Grabow, L. C.
Extendable Machine Learning Model for the Stability of Single Atom
Alloys. Top. Catal. 2020, 63, 728−741.
(31) Yan, Z.; Taylor, M. G.; Mascareno, A.; Mpourmpakis, G. Size-,
Shape-, and Composition-Dependent Model for Metal Nanoparticle
Stability Prediction. Nano Lett. 2018, 18, 2696−2704.
(32) Efron, B. Bootstrap Methods: Another Look at the Jackknife.
Ann. Statist. 1979, 7, 1−26.
(33) Dean, J.; Taylor, M. G.; Mpourmpakis, G. Unfolding
adsorption on metal nanoparticles: Connecting stability with catalysis.
Sci. Adv. 2019, 5, No. eaax5101.
(34) Yin, Q.; Ma, F.; Zhou, Y.; Sui, Z.-J.; Zhou, X.-G.; Chen, D.;
Zhu, Y.-A. Size-Dependent Segregation Preference in Single-Atom
Alloys of Late Transition Metals: Effects of Magnetism, Electron
Correlation, and Geometrical Strain. J. Phys. Chem. C 2019, 123,
18417−18424.
(35) Darby, M. T.; Sykes, E. C. H.; Michaelides, A.; Stamatakis, M.
Carbon Monoxide Poisoning Resistance and Structural Stability of
Single Atom Alloys. Top. Catal. 2018, 61, 428−438.
(36) Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari,
B. Synthesis of silver nanoparticles: chemical, physical and biological
methods. Res. Pharm. Sci. 2014, 9, 385−406.
(37) Loza, K.; Heggen, M.; Epple, M. Synthesis, Structure,
Properties, and Applications of Bimetallic Nanoparticles of Noble
Metals. Adv. Funct. Mater. 2020, 30, 1909260.
(38) Yacamán, M. J.; Ascencio, J. A.; Liu, H. B.; Gardea-Torresdey, J.
Structure shape and stability of nanometric sized particles. J. Vac. Sci.
Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom.
2001, 19, 1091−1103.
(39) Holzinger, A.; Goebel, R.; Palade, V.; Ferri, M., Towards
Integrative Machine Learning and Knowledge Extraction; Springer,
2017; pp 1−12.
(40) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)].
Phys. Rev. Lett. 1997, 78, 1396.
(41) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2:
optimized auxiliary basis sets and demonstration of efficiency. Chem.
Phys. Lett. 1998, 294, 143−152.
(42) Sierka, M.; Hogekamp, A.; Ahlrichs, R. Fast evaluation of the
Coulomb potential for electron densities using multipole accelerated
resolution of identity approximation. J. Chem. Phys. 2003, 118, 9136−
9148.
(43) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C.
Electronic structure calculations on workstation computers: The
program system turbomole. Chem. Phys. Lett. 1989, 162, 165−169.
(44) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.;
Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density
functional calculations using a mixed Gaussian and plane waves
approach. Comput. Phys. Commun. 2005, 167, 103−128.
(45) VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate
calculations on molecular systems in gas and condensed phases. J.
Chem. Phys. 2007, 127, 114105.
(46) Hjorth Larsen, A.; Jørgen Mortensen, J.; Blomqvist, J.; Castelli,
I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.;
Hargus, C.; Hermes, E. D.; Jennings, P. C.; Bjerre Jensen, P.;
Kermode, J.; Kitchin, J. R.; Leonhard Kolsbjerg, E.; Kubal, J.;
Kaasbjerg, K.; Lysgaard, S.; Bergmann Maronsson, J.; Maxson, T.;
Olsen, T.; Pastewka, L.; Peterson, A.; Rostgaard, C.; Schiøtz, J.;
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