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Influenza viruses have perplexed scientists for over a hundred years. Yearly vaccines

limit their spread, but they do not prevent all infections. Therapeutic treatments for

those experiencing severe infection are limited; further advances are held back by

insufficient understanding of the fundamental immune mechanisms responsible for

immunopathology. NK cells and T cells are essential in host responses to influenza

infection. They produce immunomodulatory cytokines and mediate the cytotoxic

response to infection. An imbalance in NK and T cell responses can lead to two

outcomes: excessive inflammation and tissue damage or insufficient anti-viral functions

and uncontrolled infection. The main cause of death in influenza patients is the former,

mediated by hyperinflammatory responses termed “cytokine storm.” NK cells and T

cells contribute to cytokine storm, but they are also required for viral clearance. Many

studies have attempted to distinguish protective and pathogenic components of the NK

cell and T cell influenza response, but it has become clear that they are dynamic and

integrated processes. This review will analyze how NK cell and T cell effector functions

during influenza infection affect the host response and correlate with morbidity and

mortality outcomes.
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INTRODUCTION

Influenza is a rapidly mutating RNA virus which causes yearly global epidemics characterized
by about 1 billion infections and 290,000–650,000 deaths (Iuliano et al., 2018). The current
circulating serotypes are influenza A H1N1, influenza A H3N2, and influenza B/Victoria. The host
developsmemory responses following natural infection, however antigenic shift—mutations within
a serotype—and antigenic drift—recombination of two different serotypes—create new variants to
which the host may be naïve. Influenza A, but not B, viruses undergo antigenic drift because they
infect a variety of animals. A pandemic may occur when this produces a novel transmissible strain
to which there is no pre-existing immunity. The most notable pandemic was in 1918 (Spanish Flu)
and the most recent in 2009 (Swine Flu) (Van de Sandt et al., 2012). Both viruses were of the H1N1
serotype and causedmore severe disease than seasonal infections. In addition to circulating and past
pandemic strains, avian influenza A strains H5N1 and H7N9 are occasionally introduced into the
human population. They cause severe disease in humans but are not efficiently spread from person
to person. However, there is concern that accumulation of mutations within an avian influenza
virus could increase its transmission efficiency and cause a serious outbreak or global pandemic
(WHO, 2005).
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Typically, a seasonal influenza infection in healthy individuals
is mild. However, complications often occur in the very young
or old and in those with chronic conditions such as asthma,
diabetes, or heart disease. Deaths attributed to influenza virus
infection are not usually due to the virus itself. Instead, severe
inflammation induces acute lung injury (ALI) and subsequent
development of acute respiratory distress syndrome (ARDS)
leads to death (Short et al., 2014). Avian influenza virus infections
cause ARDS at a relatively high frequency and have higher
morbidity and mortality rates than seasonal influenza virus
infections (WHO, 2005).

Many research efforts focus on the treatment and prevention
of influenza infection through B cell- mediated humoral immune
mechanisms: neutralizing antibodies or vaccines (Reviewed in
Krammer, 2019; Nachbagauer and Palese, 2020). NK cell and T
cell cellular immune responses are equally important. The role
of NK cells is poorly understood despite extensive contributions
to the anti-viral influenza response. T cells are the less-studied
arm of the adaptive immune system although they are arguably
more essential to viral clearance than B cells (Bender et al., 1992;
Graham and Braciale, 1997). Furthermore, both can mediate
heterosubtypic immunity and enhance host protection following
exposure to an influenza subtype to which the host does not have
neutralizing antibodies (Braciale, 1977; Jegaskanda et al., 2013a).
We will discuss NK cells and T cells and the two mechanisms
which characterize their response to influenza infection: cytokine
production and cytolysis of infected cells.

Many groups have attempted to dissect the relative
contributions of individual immune response components in
viral clearance and lung damage. Inconsistencies in experimental
design and analysis underlie a body of influenza-related literature
offering conflicting conclusions. We will discuss existing
literature on the multifaceted NK cell and T cell responses to
influenza A virus infection—mechanisms of activation, cytokine
production and cytolysis of infected cells—and analyze the
contributions of their effector functions to controlling viral
replication and mediating lung immunopathology. To conclude,
we will discuss therapeutic strategies which target aspects of the
T cell and NK cell response to influenza infection.

NK CELLS

Development
NK cells develop from the common lymphoid progenitor
(CLP) in the bone marrow (Lanier et al., 1986b; Kondo et al.,
1997). Transcription factors T-bet and Eomesodermin (Eomes)
regulate NK cell development: dysfunction in both results in
severe NK cell defects (Townsend et al., 2004; Intlekofer et al.,
2005). In normal development, NK cells undergo continuous
changes in receptor expression, commit to the NK lineage,
and enter circulation as immature NK cells (Reviewed in Yu
et al., 2013). Unlike T and B cells, NK cells do not express a
rearranged antigen receptor. Instead, they express a diverse array
of germline encoded activation and inhibition receptors. The
balance between signals from these receptors determines their
activation state and effector function (Lanier, 2008).

Functions
NK cells perform a variety of anti-viral functions in humans
and mice which can be characterized by direct killing of target
cells and production of immunomodulatory cytokines. NK cells
can kill target cells through natural and antibody-dependent
cytotoxicity (ADCC). Natural cytotoxicity refers to NK cell
killing of target cells in the absence of inhibitory signals from
self MHCI molecules (Kärre, 1985; Kärre et al., 1986). ADCC
is induced through binding of the NK stimulatory Fcγ receptor
CD16 to the Fc region of IgG bound to a target cell (Trinchieri
et al., 1975; Perussia et al., 1984). During natural and antibody-
dependent cytotoxic responses, activated NK cells mobilize and
release cytotoxic granules containing perforin and granzymes
which initiate apoptosis in the target cell (Kägi et al., 1994a;
Voskoboinik et al., 2006).

NK cell inhibitory receptors of the killer cell immunoglobulin-
like receptor (KIR) (human) and Ly49 receptor (mouse) families
bind self MHC I molecules and inhibit cytotoxicity toward
healthy self cells; malignant or infected cells which downregulate
MHC I are susceptible to NK cell killing (Karlhofer et al.,
1992; Wagtmann et al., 1995b). KIRs are immunoglobulin-like
receptors whereas Ly49 receptors are C-type lectin type II family
homodimer proteins linked by a disulfide bond (Yokoyama,
1993; Wagtmann et al., 1995a). Both human and murine NK
cells also express CD94/NKG2A, which recognizes non-classical
MHC molecules and closely resembles mouse Ly49 receptor
structure (Phillips et al., 1996). Murine NK cells express GP49
which is structurally and functionally homologous to human
KIRs (Wang et al., 1997).

NK cells express a variety of other MHC-independent
inhibitory and stimulatory receptors which contribute to the
cell’s activation state. As evidenced by KIRs and Ly49s, NK cell
receptor repertoires vary between mice and humans. Therefore,
the functions of various phenotypically distinct populations
identified in murine models of disease may not always be
physiologically relevant to humans. This is a challenge in
translating NK cell research findings in mice to humans and
should be considered in our discussion of NK cell function
in mice.

MHC-independent inhibitory receptors limit potential NK
cell-mediated immunopathology but can be the target of
immune evasion mechanisms by infected or malignant cells.
For example, programmed death pathway receptor PD-1
and its ligands PD-L1 and PD-L2 are expressed on NK
cells, protecting against hyperinflammatory responses during
infection (Quatrini et al., 2018). NK cells are increasingly
credited as important contributors to the improved outcomes
of patients receiving checkpoint blockade therapies targeting
these immunosuppressive mechanisms (Wiesmayr et al., 2012;
Beldi-Ferchiou et al., 2016; Hsu et al., 2018). Similarly,
surface receptors Tim3, TIGIT, and Siglec-7 and−9 inhibit
NK cell cytotoxic function when bound by their ligands
on potential target cells (Stanietsky et al., 2009; Ndhlovu
et al., 2012; Jandus et al., 2014). Therapeutic blockades of
Tim3 and TIGIT have also shown efficacy as anti-cancer
therapeutics in mice (Xu et al., 2015; Zhang et al., 2018). NK
cell inhibitory receptors regulate NK cell cytotoxic responses
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which are vital for control of infection; more thorough
characterizations of these receptors may be beneficial in the
development of targeted therapies to enhance NK cell anti-
viral functions.

To kill a target cell, NK cells also require activation signals
which differ depending on the responding cell, target cell, or
surrounding environment. NKG2D is an activating receptor
in murine and human NK cells which binds to MICA, a
stress ligand upregulated on malignant or infected cells (Bauer
et al., 1999). Activating natural cytotoxicity receptors (NCRs)
such as human NKp46 (murine NCR1), NKp30 and NKp44
also recognize a variety of pathogen-derived and stress-induced
ligands (Mandelboim et al., 2001; Vitenshtein et al., 2016). The
NKG2C/CD94 complex functions as an activating receptor which
recognizes the non-classical MHC molecule HLA-E (human)
or Qa-1b (mice) (Lanier et al., 1998; Vance et al., 1999). 2B4
also serves as a conserved NK activating receptor which binds
to CD48 (Mathew et al., 1993; Brown et al., 1998). These
receptors, among others, are fundamental in activating NK cell
cytotoxic functions.

NK cells also kill infected cells through perforin and
granzyme-independent mechanisms: Fas and TRAIL. Fas
receptor expression is altered in infected, malignant or otherwise
stressed cells, and NK cells express its ligand CD94 (FasL).
Binding to Fas by FasL induces apoptosis in the target cell
through a caspase-dependent pathway (Arase et al., 1995;
Hao and Mak, 2009). Tumor necrosis factor-related apoptosis
inducing ligand (TRAIL) is another ligand expressed on the
NK cell surface which induces apoptosis in sensitive target cells
expressing DR4 or DR5 (Zamai et al., 1998). These mechanisms
complement cytotoxic killing mechanisms and expand the
protective effects of NK cells.

In addition to direct killing of target cells, NK cells secrete a
variety of pro- and anti-inflammatory cytokines which directly
affect the nature of the immune response. IFN-γ is crucial in
their control of intracellular pathogens (Dunn and North, 1991;
Orange et al., 1995). NK cells are recruited to the lymph nodes
during infection where their secretion of IFN-γ has two functions
in T cell activation: promote Th1 differentiation and enhance DC
antigen presentation. In the absence of IFN-γ, protective T cell
responses are significantly impaired (Huang et al., 1993; Gerosa
et al., 2002; Martín-Fontecha et al., 2004). TNF-α secreted by
NK cells also contributes to activation of DCs and macrophages,
further enhancing antigen presentation (Bancroft et al., 1989;
Walzer et al., 2005).

Alternatively, NK cells secrete anti-inflammatory cytokine IL-
10 during systemic inflammation (Mehrotra et al., 1998; Perona-
Wright et al., 2009). NK cell derived IL-10 has been reported
to regulate CD8T cell responses and to be protective against
excessive tissue damage in chronic infections such as murine
cytomegalovirus (MCMV) and Hepatitis C Virus. However,
this could contribute to persistent infection and inability to
clear the virus (De Maria et al., 2007; Lee et al., 2009; Ali
et al., 2019). NK cell cytokine production is essential for
their control of viral infections, but the downstream effects of
each cytokine varies significantly depending on the nature of
the infection.

Phenotype Affects Function
NK cells are often referred to in terms of phenotypically distinct
subsets which exhibit different effector functions. NK cells in the
mouse belong to one of four populations in order of maturity:
CD11b−CD27−→CD11b−CD27+→CD11b+CD27+→
CD11b+CD27−. CD11b− NK cells are found in the bone
marrow, lymph nodes and liver, whereas CD11b+ NK cells are
dominant in the spleen, peripheral blood and lung. CD11b+

cells are defined by their efficient IFN-γ production and
cytotoxicity in response to stimulus compared to CD11b−

NK cells. CD11b+CD27+ NK cells are considered the most
functional subset. They show higher proliferative capacity, more
IFN-γ production potential, and stronger cytotoxic function
than the more mature CD11b+CD27− subset (Kim et al., 2002;
Chiossone et al., 2009).

In humans, CD56brightCD16− NK cells are similar but not
homologous to CD11b− murine NK cells. They are immature,
abundant in lymphoid tissues and efficient cytokine producers.
Alternatively, mature CD56dimCD16+ NK cells are more
abundant in the periphery and have higher cytotoxic activity
(Lanier et al., 1986a). CD56bright cells express high levels of
KIRs, whereas CD56dim cells lose KIR expression and gain CD94
expression. CD56dimCD16+CD57+ NK cells are considered
terminally differentiated. They have lower proliferative capacity
and are unresponsive to cytokine stimulation, however they
are sensitive to stimulation through CD16 (Lopez-Vergès et al.,
2010). CD57+ NK cells modulate inhibitory receptor expression:
as they differentiate they lose expression of NKG2A and gain
expression of KIRs, increasing their threshold for stimulation
(Björkström et al., 2010).

During infection, the phenotype of NK cells changes to reflect
their activation state and effector function. Besides cytokine
production and expression of cytotoxic granules, activated cells
can be identified by a variety of activation markers. For example,
CD69 is a marker of general NK cell activation (Borrego et al.,
1993). CD107a (LAMP1) is upregulated in actively degranulating
NK cells (Alter et al., 2004). CD38 is amarker of activation during
viral infection: it is expressed on NK cells when they encounter
influenza infected cells and is correlated with CD107a expression
and IFN-γ production (Le Gars et al., 2019). These markers are
commonly used to describe NK cell activation and function in
various infections or disease.

Phenotype in Peripheral Tissues
NK cells in mice and humans are found in a variety of secondary
lymphoid and non-lymphoid organs including lymph node,
spleen, liver, skin, uterus, peripheral blood, and lung (King
et al., 1991; Grégoire et al., 2007). The developmental stage,
phenotype and function of NK cells varies by tissue. NK cells
in the lymph nodes are mostly CD11b− or CD56brightCD16−

whereas in the peripheral blood they are predominantly CD11b+

or CD56dimCD16+ (Ferlazzo et al., 2004; Chiossone et al., 2009).
NK cell subsets can migrate from blood to tissues dependent
on chemokine receptor expression. For example up to 50% of
liver NK cells are tissue-resident and maintained in the liver by
their expression of CXCR6 (Paust et al., 2010; Hudspeth et al.,
2016). CXCR3+ and CCR5+ NK cells migrate to the lungs during

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 August 2020 | Volume 10 | Article 425

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Frank and Paust NK and T-cells in Influenza

influenza infection. This is correlated with increased expression
of their ligands on lung epithelial cells (Carlin et al., 2018).
Chemokine receptor expression is often used to determine tissue-
specific residency. Other surface receptors—CD69, CD103, and
CD49a—promote tissue retention and are used to describe tissue-
resident NK cells in general (Shiow et al., 2006; Walzer et al.,
2007; Björkström et al., 2016). Various circulating and tissue-
resident NK cell populations may have unique and critical
functions in host protection, but a variety of challenges have
limited the understanding of trafficking and tissue-specific roles
of NK cells (Reviewed in Ferlazzo and Carrega, 2012; Björkström
et al., 2016).

Role in the Lung
NK cells are a prominent lymphocyte population in human and
mouse lungs. In a healthy human lung, NK cells comprise 10–
20% of all lymphocytes, most of which are CD56dimCD16+. They
are a highly differentiated population with a CD57+NKG2A−

phenotype and high KIR expression (Marquardt et al., 2017).
Similarly, murine NK cells represent about 10% of lung
lymphocytes (Grégoire et al., 2007). NK cells in mouse lungs
are also dominated by a mature CD11b+CD27− phenotype and
show properties of terminally differentiated cells: higher levels
of inhibitory receptor CD94 and lower levels of stimulatory
receptors NKG2D and NKp46 compared to spleen and bone
marrow NK cells (Hayakawa and Smyth, 2006; Wang et al.,
2012). In the 1980s, human lung NK cells were described as
“functionally impotent” due to unresponsiveness to stimulation;
lung alveolar macrophages and epithelial cells had a suppressive
effect on NK cell function (Robinson et al., 1984). Expression
of inhibitory receptors on lung NK cells may contribute to
their minimal responses to stimulus and serve as an important
tolerance mechanism in the exposed lung microenvironment.

Recent analysis of human lung NK cells revealed
a small but distinct subset of CD69+ NK cells
characterized by a CD56brightCD16− phenotype and
higher functionality (Marquardt et al., 2017). Another
study characterized this population more specifically as
CD56brightCD49a+CD103+CD69+ lung-resident NK cells
which upregulate CD107a, granzyme B and IFN-γ upon
stimulation (Cooper et al., 2018). In mice there is evidence that
NK cells accumulate in the lung and show increased function
after infection, but it is unclear whether this is due to recruitment
of blood NK cells, response of lung-resident NK cells, or some
combination of the two (Stein-Streilein et al., 1988; Wang et al.,
2012). Despite previous thinking that lung NK cells are not
capable of significant cytotoxicity or cytokine production, more
studies must be done to identify potential in vivo stimulatory
factors which activate lung NK cells in respiratory infections.

T CELLS

Development
T cells also develop from the common lymphoid progenitor
(Kondo et al., 1997). Progenitor cells migrate from the bone
marrow to the thymus where they commit to the T cell
lineage (Miller, 1961; Ford et al., 1966). The T cell receptor
(TCR)—a rearranged antigen receptor through which T cells

recognize peptides presented on MHC of an infected cell—
develops in the thymus. VDJ recombination, mediated by
RAG1 and RAG2 enzymes, ensures a high diversity in TCR
specificity (Reviewed in Schatz and Ji, 2011). Developing
cells undergo positive selection ensuring functional TCR/MHC
interactions and negative selection deleting self-reactive TCRs
before committing to a single positive CD4 or CD8 lineage
(Kisielow et al., 1988; Bill and Palmer, 1989).

Function
During infection, viral antigens move through the lymphatic
system to the lymph nodes where they are presented on MHC
by antigen presenting cells (APCs). Naïve T cells also circulate
through the lymphatics and are activated by APCs in the lymph
nodes (Guermonprez et al., 2002; von Andrian and Mempel,
2003). CD4+ and CD8+ T cells recognize antigens presented on
MHC II and I, respectively. Following initial proliferation and
differentiation in the lymph node, effector T cells travel through
the blood to the site of infection where they are activated to exert
their effector function (Marelli-Berg et al., 2008). After a period
of weeks, the effector T cell population contracts and a smaller
memory T cell population in formed. Memory T cells can be
tissue-resident or circulating and can respond immediately to
control a second infection by the same pathogen (Reviewed in
Seder and Ahmed, 2003; Chang et al., 2014).

CD4+ and CD8+ T cells are activated through similar
mechanisms, but they play unique functional roles in infection.
The CD4+ T cell response orchestrates both cell-mediated (Th1)
and humoral (Th2) immunity in response to foreign pathogens.
After initial activation, differentiation is driven by cytokine-
dependent transcription factor expression (O’Shea and Paul,
2010). IFN-γ and IL-12 initiate Th1 responses characterized by
T-bet expression and IL-2 and IFN-γ production. This induces
a cellular response against intracellular pathogens characterized
by enhanced CD8+ T cell cytotoxicity and development of
memory CD8+ T cells (Mosmann et al., 1986). Notably, T-bet
is a prevalent NK cell transcription factor and IL-2 is a potent
NK cell activator; NK cell IFN-γ production in these conditions
amplifies Th1 responses (Domzig et al., 1983; Townsend et al.,
2004). GATA3 expression induces Th2 responses that produce
IL-4, IL-5, and IL-15 and promote B cell antibody production
and memory development (Mosmann et al., 1986). CD4T cells
can also differentiate into Tfh, Th17, and T regulatory cells
(Tregs). Tfh cells are important costimulatory cells for B cell
development (Reviewed in Vinuesa et al., 2005). Th17 cells are
highly inflammatory cells regulated by Rorγt which produce IL-
17, IL-22, and IL-27 and are associated with tissue homeostasis
during infection (Park et al., 2005). Tregs are characterized by
Foxp3 expression; they dampen the immune response and limit
lung injury during influenza infection through secretion of TGF-
β and IL-10 (Sakaguchi, 2000).

CD8+ T cells, or cytotoxic T cells, kill infected or “altered-
self ” cells (Zinkernagel and Doherty, 1974; Blanden et al., 1975).
They release cytotoxic granules following recognition of a foreign
antigen presented on MHC I. CD8+ T cells also express FasL
and TRAIL through which they induce apoptosis in target cells
(Kägi et al., 1994b; Jeremias et al., 1998). Viruses including
herpesviruses, poxviruses, and adenoviruses evade CD8+ T cell
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immunity through downregulation of class I MHC molecules
(Andersson et al., 1985; York et al., 1994; Byun et al., 2009).
This would leave the virally infected cells susceptible to NK cell
cytotoxicity, but they often employ other evasion mechanisms
which affect expression of NK cell activating ligands on infected
cells. For example, Kaposi’s sarcoma-associated herpesvirus
disrupts surface expression of ligands to NKG2D and NCR
NKp80 while myxoma virus downregulates Fas (Coscoy and
Ganem, 2000; Guerin et al., 2002; Thomas et al., 2008).

T cell cytotoxicity can be altered by inhibitory receptors or
cytokines in the environment. T cell “exhaustion” is characterized
by increased expression of inhibitory receptors and can prevent
excessive inflammation but result in impaired viral clearance.
T cell inhibitory receptors, similar to those discussed for NK
cells, include PD-1, Lag3, Tim3, and TIGIT (Grosso et al.,
2009; Yu et al., 2009; Jin et al., 2010). Treg cytokines IL-10 or
TGF-β contribute to inhibitory receptor expression (Wherry,
2011). T cell dysfunction is primarily studied in cancer or
chronic infections such a HIV, hepatitis B/C, and LCMV
clone 13 (McLane et al., 2019). However, there is evidence
of dysfunctional T cell activities due to inhibitory receptors
in acute viral infections as well (Erickson et al., 2012). T
cell expression of inhibitory receptors or immunosuppressive
cytokines is implicated both in impairing viral clearance and
protecting against tissue damage. For example, in influenza
infection one study found enhanced Tim3 function improved
survival outcomes whereas another found the opposite (Sharma
et al., 2011; Cho et al., 2012). To understand T cell responses, it
is important to acknowledge the balance between these features.
Furthermore, the simultaneous regulation of both T cells and
NK cell cytotoxicity through these mechanisms has not been
addressed. It is possible that inhibitory receptors are necessary to
limit pathological consequences of one response but impair the
other cell type’s control of the infection.

Phenotype in Peripheral Tissues
Both naïve and memory T cells circulate through the lymphatics
and vasculature until they encounter cognate antigen, but
some memory T cells reside in the tissues and are termed
tissue-resident memory T (TRM) cells. TRM cells are generally
identified by the expression of CD69 and CD103, but this
method is not entirely accurate as CD69 can be transiently
expressed on activated circulating cells and there are some
TRM cells which do not express one or both of these markers
(Masopust and Soerens, 2019). Furthermore, CD103 is more
commonly required for CD8+ TRM cell maintenance in tissues
than for CD4+ T cells (Casey et al., 2012). Chemokine receptor
expression is also used to identify organ specific TRM cells. An
example of this in the lung is described in section Role in the
Lung. Like tissue-resident NK cells, TRM cells are poised to
respond rapidly to infection and therefore are important for
immune surveillance and host protection. The development and
maintenance of TRM cells is reviewed more thoroughly elsewhere
(Masopust and Soerens, 2019).

Role in the Lung
In naïve mice, over 90% of T cells in the lung are circulating
in the vasculature. During influenza and other infections or

inflammatory responses, T cells accumulate transiently in the
lung parenchyma (Turner et al., 2014). Amultitude of chemokine
receptors, adhesion molecules and their ligands have been
proposed as regulators of T cell homing to the lung. CXCL16
expression in the lung is important in CXCR6+ T cell homing;
this is responsible for the recruitment and maintenance of TRM

cells in the airways following influenza infection inmice (Morgan
et al., 2005; Wein et al., 2019). Murine T cells are imprinted with
lung-homing receptor CCR4 upon activation by lung DCs and
elicit protective immune responses against influenza (Mikhak
et al., 2013). Alternatively, the expression of CCR4 ligands CCL17
and CCL22 correlate with harmful lung inflammation in WT
and humanized mouse models of asthma (Perros et al., 2009;
Zhang et al., 2017). CCR5 and CXCR6 were similarly implicated
in CD8+ T cell recruitment and related lung pathology in COPD
patients (Freeman et al., 2007). Chemotaxis of T cells into the
lung could play an important role in both T cell-mediated
protection and pathology during lung inflammation.

Following respiratory virus infections, the population of T
cells which persist as resident memory cells in the lung are
correlated with protection upon secondary exposure. Both CD4+

and CD8+ memory cells exist in the lung of recovered mice, but
the population is skewed to favor CD8+ T cells (Hogan et al.,
2001a,b). A study of influenza infection in mice demonstrated
influenza-specific lung-resident memory T cells were CD69+,
with CD4+ TRM cells co-expressing CD11a and CD8+ TRM cells
co-expressing CD103. In humans, lung-resident T cells showed
similar expression patterns following influenza infection (Turner
et al., 2014). During murine infection with Mycobacterium
tuberculosis, CD4+CD69+CXCR3+ TRM cells increase in the
lung parenchyma. These cells show similar features to previously
described hypofunctional lung-resident NK cells: decreased IFN-
γ production and increased PD-1 expression. However, they are
associated with decreased bacterial load upon infection (Sakai
et al., 2014). Stimulation during infection could overcome the
expression of inhibitory receptors or they could have another
uncharacterized protective role.

The lung has three functionally distinct compartments
which are important to analyze separately: tissue, airways, and
vasculature. Many studies characterize responses of the lung
in general, but do not look further into cells in the airways
or vasculature. This potential limitation should be considered
when interpreting data of lung immune cells. To be more
thorough, the airways can be studied through bronchoalveolar
lavage and cells circulating in the vasculature can be distinguished
from cells resident in the tissue through intravascular staining
(Anderson et al., 2012). Better understanding of the regulation
and phenotypic characteristics of distinct lung immune cell
populations will broaden knowledge of their protective or
pathogenic roles during respiratory infections.

INFLUENZA VIRUS INFECTION

Influenza virus infects respiratory epithelial cells through HA
binding of sialic acids on the cell surface. Infection normally
occurs in the upper respiratory tract, but some infections—
common in avian influenza—spread to the lower respiratory tract
and lead to increased disease severity (Shinya et al., 2006; Van Riel
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et al., 2006). The lung epithelium employs a variety of mucosal
immune mechanisms to combat infection. Infected epithelial
cells and surrounding innate immune cells sense the presence of
viral RNA through pattern recognition receptors and promote
an antiviral state by producing interferons (IFNs), interferon
stimulated genes (ISGs), and pro-inflammatory cytokines. The
main cells which contribute to this initial response are tissue-
resident macrophages and DCs. Cytokines and chemokines
recruit circulating innate effector cells including neutrophils,
monocytes, and NK cells (Iwasaki and Pillai, 2014; Chen et al.,
2018). NK cells can directly kill infected cells while monocytes,
alveolar macrophages, and neutrophils clear dead cells from the
site of infection through phagocytosis (Hashimoto et al., 2007).
During this time, B cells and T cells of the adaptive immune
response are activated and migrate to the lung where they are
essential for viral clearance. Innate immune responses must
be able to efficiently activate this adaptive immune system to
effectively clear the infection (Wells et al., 1979).

Initial contributions from both pro- and anti-inflammatory
cytokines are important in preventing morbidity and mortality.
In infected mice, gene expression peaks at 8 days post infection.
Genes involved in immune activation, cell proliferation, and
inflammatory anti-viral responses—type I and II interferons,
TNF-α, chemokine receptors, and other pro-inflammatory
cytokines—dominate the response (Pommerenke et al., 2012).
In humans, the response is similar with increases in pro-
inflammatory cytokines including IFN-γ, TNF-α, IL-17, and IL-
6 and anti-inflammatory cytokine IL-10 (Hayden et al., 1998;
Bermejo-Martin et al., 2009; Yu et al., 2011). Altered expression
of particular cytokines can disrupt lung homeostasis and affect
host outcomes. This is a major area of research with therapeutic
potential. We will discuss cytokine responses in terms of NK cells
and T cells specifically; the general immunomodulatory role of
cytokines in influenza infection has been reviewed elsewhere (Liu
et al., 2016; Guo and Thomas, 2017).

Controlling viral replication and limiting immune-mediated
tissue damage in influenza infection requires delicate balance.
The lung epithelium employs a variety of mechanisms to
limit unnecessary tissue damage in healthy individuals, but
many of these are downregulated during infection to allow for
sufficient immune responses (Snelgrove et al., 2011). Numerous
immune cells and signaling molecules have been implicated
in both lung immunopathology and host protection during
influenza infection. For example, macrophages and neutrophils
are important in clearance of infected apoptotic cells, but
excessive infiltration is linked to influenza-induced lung injury
(Hashimoto et al., 2007; Perrone et al., 2008; Narasaraju et al.,
2011). IL-1 prolongs survival of influenza-infected mice at the
expense of lung immunopathology (Schmitz et al., 2005). IL-6
has protective effects in experimental models of influenza, but in
humans high levels of IL-6 are associated with severe infection
(Yu et al., 2011; Dienz et al., 2012). We will address similar
discrepancies for NK cell and T cell specific factors. Studies often
attribute conflicting conclusions to differences in viral strains,
infection doses, or mouse genetic backgrounds. More work is
needed to understand the biological relevance and therapeutic
potential of this data.

NK CELLS AND T CELLS IN INFLUENZA
INFECTION

Recognizing Infected Cells and Activation
Although both NK cell and T cell responses to influenza
are characterized by cytokine production and direct killing of
infected cells, their mechanisms of activation vary. NK cells
in the lung vasculature and tissue are the first to encounter
influenza-infected cells. These NK cells vary in phenotype and
function—some are immature, circulating cells whereas others
are mature, lung-resident cells—and are important for initial
viral control and recruitment of immune effector cells. Within
3 days following low dose influenza infection in mice, CXCR3+

and CCR5+ NK cells accumulate in the lung, airways, and lung-
draining lymph nodes (Ge et al., 2012; Carlin et al., 2018).

Early studies of lung NK cells suggested natural cytotoxicity
receptors (NCRs) NCR1 (mouse), NKp44 and NKp46 (human)
encoded by the Ncr1 gene bind to HA on the surface of
infected cells. NCRs are traditionally viewed as stimulatory NK
receptors. One study of influenza infection in Ncr1−/− mice
suggests they are necessary for protection (Arnon et al., 2001;
Mandelboim et al., 2001; Gazit et al., 2006). However, the
stimulatory potential of NCR1 and NKp46 binding to HA during
influenza infection is debated in the field. One study challenged
NKp46-dependent NK cell activation using a mouse model with
a W32R substitution in Ncr1. The mutation disrupted NKp46
expression on the NK cell surface without deleting the whole
gene. Lack of NKp46 expression was associated with increased
Helios-dependent transcription factor expression and NK cell
activation. Themutation resulted in higher levels of NK cell IFNγ

production and significantly higher survival during influenza
infection (Narni-Mancinelli et al., 2012). More work is needed to
clarify conflicting data regarding NKp46/NCR1-dependent NK
cell responses.

NK cell costimulatory receptors 2B4 and NTB-A bind to HA
and enhance NK cell cytotoxicity, but cannot activate NK cells
on their own (Duev-Cohen et al., 2016). Influenza virus has
evolved immune evasion mechanisms for NK cell recognition
of HA. For example, virally encoded NA glycoproteins remove
sialic acid residues on NKp46/NCR1, disrupting human and
murine NK cell recognition of HA (Bar-On et al., 2013).
Alternatively, HA can internalize into NK cells and inhibit
NKp44/46-induced cytotoxicity through disruption of the ζ

signaling chain (Mao et al., 2010). Influenza can also directly
infect mouse and human NK cells, removing potential cytotoxic
cells from the environment (Guo et al., 2009; Mao et al., 2009).
This could impair NK cell responses, but they possess alternative
activation mechanisms.

CD16 (FCγRIII) binds to the Fc portion of influenza-specific
antibodies and initiates ADCC. Studies in humans and macaques
demonstrate seasonal influenza infections elicit cross-reactive
antibodies to HA and NA epitopes of multiple influenza strains;
these antibodies promote NK cell ADCC against infected target
cells (Jegaskanda et al., 2013c, 2014). The presence of ADCC-
promoting antibodies correlates with reduced disease severity
in humans and could explain the trend during the 2009 H1N1
pandemic where older individuals—whoweremore likely to have

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 August 2020 | Volume 10 | Article 425

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Frank and Paust NK and T-cells in Influenza

cross-reactive antibodies in their serum—were not as affected
as younger individuals (Jegaskanda et al., 2013b; Valkenburg
et al., 2019). A study in immunocompromised HIV patients
who had never received an influenza vaccine found they also
had cross-reactive antibodies capable of mediating NK ADCC
against pH1N1 and H3N2 strains, confirming these antibodies
can emerge from natural exposure to seasonal influenza strains
(Nehul et al., 2018). There is also evidence that humans produce
antibodies to conserved internal proteins which activate NK
cells in vitro (Jegaskanda et al., 2013a; Vanderven et al., 2016).
Seasonal influenza infections promote the development of cross-
reactive antibodies which promote NK cell ADCC during
infection with various influenza strains. This is a physiologically
relevant protection mechanism which should be considered in
the development of influenza therapeutics and vaccines.

Stress-related mechanisms are also associated with changes in
NK cell activation state. For example, NKG2D recognizes stress-
induced ligands MICA/B and ULBP on infected macrophages
and DCs, respectively (Sirén et al., 2004; Draghi et al., 2007).
Additionally, ssRNA recognition through endosomal pattern
recognition receptor TLR7 activates spleen and lung NK cells in
response to influenza infection in mice (Stegemann-Koniszewski
et al., 2018). Undoubtedly, there are more mechanisms through
which influenza infection leads to NK cell activation and in order
to fully understand the NK cell response we should work to
understand mechanisms of activation beyond NCRs and CD16.

Over the last several years, extensive research established
that adaptive-like NK cells exist, recognize viral antigens, and
contribute to host protection from secondary infection with
a variety of pathogens, including influenza. The details of
NK memory responses are reviewed elsewhere (Cerwenka and
Lanier, 2016; Paust et al., 2017). Briefly, memory NK cells localize
to the liver due to expression of CXCR6 and mediate protective
responses against secondary influenza infection in mice (Paust
et al., 2010; Li et al., 2017). There is evidence that influenza
vaccination in mice promotes development of memory NK
cells which rapidly secrete large amounts of IFN-γ upon viral
challenge (Dou et al., 2015; Goodier et al., 2016). The recognition
mechanisms which mediate NK cell antigen-specific responses
are unclear. Future studies which address this for influenza
and other pathogens will help with efforts to target NK cell
responses therapeutically.

Antigen-specific T cells recognize influenza-infected cells
through TCR binding to virally encoded peptides presented on
MHC. Naïve influenza-specific T cell clones are activated by
DCs and undergo proliferation in the lymph nodes before they
become functional effector cells (Lawrence and Braciale, 2004).
CCR7−/− mice with inefficient DC migration to the lymph node
fail to mount a protective influenza-specific T cell response (Heer
et al., 2008; Ho et al., 2011). Following initial activation and
proliferation in the lymph nodes, T cells return to the lung where
they are activated by infected cells (Román et al., 2002; Legge and
Braciale, 2003).

T cells recognize a variety of external and internal influenza
proteins. Conserved surface matrix protein 1 (M1) and
intracellular nucleoprotein (NP) are important for T cell-
mediated heterosubtypic immunity to influenza. Significant

research in the 1970s and 80s identified T cell immunity
to NP and M1 were responsible for cross-reactivity between
strains whereas T cell clones specific for HA or NA only
mediated strain-specific protection (Braciale, 1977; Townsend
et al., 1984). Cross-reactive T cells were identified in recent
years to novel influenza strains: pH1N1, H5N1, and H7N9.
In each case, cross-reactive T cells from healthy patients were
characterized in vitro and their presence was further correlated
with protection against morbidity and mortality in humans and
mice (Lee et al., 2008; Guo et al., 2011; Sridhar et al., 2013;
McMaster et al., 2015). In one study following pH1N1 patients,
the presence of IFN-γ+IL-2− cross-reactive memory CD8+ T
cells specifically was strongly correlated with less severe disease
(Sridhar et al., 2013). One universal influenza vaccine approach
involves enhancing T cell-meditated heterosubtypic immunity
to conserved epitopes. Although the presence of cross-reactive
T cells seems to be protective, studies should address cytokine
production of these cells to understand the potential effects of
enhancing cross-reactive T cell responses on T cell-mediated
lung immunopathology.

Effector Functions
Unique functional populations of NK cells and T cells contribute
significantly to influenza responses through cytokine production
and/or direct killing of infected cells. In general, the cell
phenotype, mechanism of activation, and surrounding cytokine
milieu are determinants of each cell’s effector function. Here, we
analyze NK and T cell effector functions and their contributions
to lung immunopathology during influenza infection. The main
ideas from this section are visualized in Figure 1.

Cytokine Production
Phenotypically immature NK cells and CD4+ T cells are the
predominant cytokine producing subsets in influenza infection.
Among CD4+ T cells, the Th1 response dominates over the
Th2 response. Evidence suggests an increased Th2 response
or presence of Th2 cytokines impairs anti-influenza immunity;
mice treated with IL-4 do not have efficient CD8+ T cell
activation and clear influenza infection slower than untreated
controls (Moran et al., 1996). Th17 and Treg contributions to the
host response are characterized by unique cytokine production
patterns: Th17 cells secrete IL-17 and IL-22 whereas Tregs secrete
IL-10 and TGF-β. CD8+ T cells can secrete cytokines as well,
although they are more often characterized as contributors to the
cytotoxic response. Cytokines affect all aspects of the immune
response: they can promote inflammation and prime immune
responses, inhibit inflammation and prevent excessive tissue
damage, or both.

IFN-γ is a pro-inflammatory cytokine produced by both
NK cells and Th1 cells. Mice administered IFN-γ blocking
antibodies have impaired humoral and cell-mediated immunity
and significantly lower survival rates following influenza
infection than IFN-γ-sufficient mice (Baumgarth and Kelso,
1996; Ishikawa et al., 2010). NK cell IFN-γ production in the lung
is generally attributed to circulating cells. However, human lung-
resident CD56brightCD49a+CD69+CD103+ NK cells are potent
IFN-γ producers in response to influenza infection (Cooper et al.,
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FIGURE 1 | NK cell and T cell effector functions in the lung—cytokine secretion and cytotoxicity—mediate viral clearance and lung immunopathology. Most lung NK

cells are terminally differentiated hypofunctional cells circulating in the lung vasculature, whereas a small population of immature lung-resident cells are capable of

higher cytotoxicity and cytokine production. CD8+ T cells and NK cells mainly kill infected cells through cytotoxic granules containing perforin and granzymes.

Cytotoxicity is not believed to have serious pathological consequences. T cells and NK cells produce a variety of cytokines, some of which—IFN-γ, IL-2, IL-10,

IL-17—have unclear effects on host outcome. TNF-α seems to be a significant contributor to lung damage but not required for protection. Alternatively,

tissue-regenerative cytokine IL-22 is considered an important protective factor. IL-10 regulates NK cell and T cell responses, but it is unclear whether higher levels of

IL-10 improve or worsen host outcomes.

2018). Th1 cells in the lungs and airways secrete high levels
of IFN-γ. This contrasts Th1 cells in the lymph nodes which
primarily produce IL-2 (Brown et al., 2004). Th1 derived IL-2
in the lymph node promotes CD8+ T cell secretion of IFN-γ
during DC-dependent activation (Blachère et al., 2006). IFN-γ
and IL-2 together promote cellular immune responses necessary
for control of influenza infection: CD8+ T cell activation and B
cell differentiation (Sarawar and Doherty, 1994).

In IFN-γ−/− mice, DCs and T cells show decreased migration
to the lymph nodes and limited influenza-specific responses in
the lung. This is rescued by adoptive transfer of WTNK cells; NK
cell-derived IFN-γ alone is sufficient for T cell activation during
influenza infection, while T cell-derived IFN-γ is complementary
(Ge et al., 2012). IFN-γ from NK cells also promotes antibody
class switching to IgG2a and suppresses IgG1, IgG2b, IgG3, and
IgE production (Snapper and Paul, 1987). NK cells contribute
further to antibody production through direct contact with
B cells: CD11a/CD54 (human), CD40L/CD40 (human), and
CD2/CD48 (mouse) binding. One mechanism is described in
mice where NK cells induce expression of germline transcripts
which are necessary for IgG2a production (Gray and Horwitz,
1995; Blanca et al., 2001; Gao et al., 2005). It is efficient for IFN-γ
to favor IgG2a production, as the NK cell ADCC receptor CD16
is an Fcγ receptor which preferentially binds the Fc region of IgG
antibodies (Perussia et al., 1984). NK cell and B cell interactions

are promoted by IFN-γ and are essential for antibody production
and NK cell cytotoxicity, two vital host protective mechanisms
against influenza infection.

Type I IFN signaling through IFN-α/β receptor (IFNAR)
stimulates NK and Th1 IFN-γ production during influenza
infection (Sareneva et al., 1998; Hwang et al., 2012). Multiple cells
with lung-resident populations have been implicated as a source
of type I IFN during influenza infection including monocytes,
macrophages, DCs, and bronchial epithelial cells (Sirén et al.,
2004; Draghi et al., 2007; Kronstad et al., 2018). IL-12, IL-18, and
IL-2 have also been studied as stimulators of IFN-γ production.
IL-12−/− and IL-18−/− mice do not show significant changes
in NK cell IFN-γ, CD69 or CD107a expression, but in vitro
experiments show that IL-12 and IL-18 efficiently activate IFN-
γ expression in infected Th1 cells (Sareneva et al., 1998; Hwang
et al., 2012). IL-2 derived from Th1 cells promotes significant
IFN-γ production by human CD56bright peripheral blood NK
cells following in vitro influenza infection (He et al., 2004).
Furthermore, influenza vaccination promotes IL-2-dependent
IFN-γ secretion by memory-like human NK cells in vitro
following secondary exposure (Goodier et al., 2016). Another
human peripheral blood study with the 2009 H1N1 strain,
however, found that neither IL-2 nor T cells are required for
NK IFN-γ production (Kronstad et al., 2018). IFN-γ levels may
be impacted by other factors besides stimulation: a study in
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humans found high expression of inhibitory receptors CD54
and CD112 in patients with low NK cell IFN-γ production.
This is a potential immune evasion mechanism through which
influenza viruses impair NK cell IFN-γ production (Kronstad
et al., 2018). The stimulatory mechanisms and effects of IFN-γ
production on influenza infection control are well-studied but
still not fully understood.

TNF-α secreted by NK cells and T cells contributes
significantly to the pro-inflammatory cytokine response
during influenza. Influenza infection induces low expression
of chemokines CCL2, CCL5, CXCL8, and CXCL10 on lung
epithelial cells. In the presence of TNF-α this chemokine
expression increases and promotes recruitment of immune
effector cells. TNF-α also increases expression of pro-
inflammatory pathway intermediates—IRF1, IRF7, RIG-I,
and IKKε–and reduces viral replication in cultured human
lung epithelial cells infected with influenza (Seo and Webster,
2002; Matikainen et al., 2006; Veckman et al., 2006). CD8+

T cells produce significant amounts of TNF-α; binding
of inhibitory receptor NKG2A on T cells is important in
limiting excessive production of TNF-α during influenza
infection (Zhou et al., 2008). CD16−CXCR3+CD49a+

NK cells also secrete TNF-α (Scharenberg et al., 2019).
These cells seem to fit the phenotypic profile of previously
described CD56brightCD69+CD49a+CD103+ lung-resident
NK cells (Cooper et al., 2018). TNF-α production by NK
cells and CD8+ T cells broadly activates pro-inflammatory
and migratory responses which contribute to influenza
infection control.

Th17 cells induce a highly inflammatory environment
through secretion of IL-17. NK cells have also been shown to
produce IL-17 in response to infections, but this has not been
described in influenza specifically (Passos et al., 2010). IL-17 is
associated with expression of pro-inflammatory cytokines—IFN-
γ, G-CSF, IL-6, IL-1B, and TNF-α—and neutrophil recruitment
in mouse lungs (Crowe et al., 2009). In section Balance Between
Viral Clearance and Immunopathology, we discuss increasing
evidence that pro-inflammatory functions of IL-17 mediate lung
damage in severe human influenza infections.

NK and T cell-derived anti-inflammatory cytokines
contribute to tissue homeostasis. Tregs, typically characterized
by their IL-10 secretion, inhibit the function of influenza-specific
CD4+ and CD8+ T cells. In their presence, CD4+ and CD8+

T cells in the lung are less proliferative (Haeryfar et al., 2005;
Bedoya et al., 2013). CD8+ T cells produce IL-10 in response to
IFNAR signaling, IL-27, and CD4+ T cell-derived IL-2 during
influenza infection in mice. Disturbing IFNAR signaling or
CD4+ T cell-derived IL-2 disrupts CD8+ T cell production of
IL-10 but not IFN-γ (Sun et al., 2011; Jiang et al., 2016). Type
I IFNs, IL-27, and IL-2 contribute to stimulating NK cell and
CD4T cell antiviral function; induction of CD8+ T cell IL-10
production by these signaling molecules is equally significant
and should be considered in studies which use the presence
of these cytokines as a measure of immune activation or host
resistance to influenza infection. Some reports claim NK cells
only secrete IL-10 during systemic infections (Perona-Wright
et al., 2009). This could explain why there is no evidence of

IL-10 production during influenza’s localized infection, but more
investigation is needed.

Recent work challenged the idea that IL-10 is purely anti-
inflammatory. The study uncovered a complex process where
IFN-γ producing Th1 cells secrete IL-10 in the early stages of
infection and counteract NA-mediated activation of latent TGF-
β in flu-specific CD4+ T cells. In this case, IL-10 suppresses
viral evasion mechanisms and enhances IFN-γ and TNF-α
production. In later stages of infection when NA is not present,
IL-10 exhibits immunosuppressive properties and protects the
host from excessive tissue damage (Dutta et al., 2015). It is unclear
if this applies to specifically Th1-derived IL-10 and if these IL-10
producing Th1 cells are always active during influenza infection.
Regardless, this critical observation complicates IL-10’s role in
influenza infection.

IL-22 is a tissue-regenerative cytokine secreted by NK cells
and Th17 cells in the lung, trachea and airways during influenza
infection. IL-22R is upregulated in alveolar epithelial cells after
influenza-induced injury, and IL-22 promotes recovery of those
damaged cells (Orange and Biron, 1996). Th17 secretion of IL-
22 is a self-regulatory mechanism with counteracts IL-17 and
promotes tissue homeostasis. Similarly, studies show IL-22 from
NK cells is important in minimizing lung damage caused by
their own pro-inflammatory responses (Guo and Topham, 2010;
Kumar et al., 2013).

Cytokine responses of NK cells and T cells are a focus of
influenza research. The effects of some are well-characterized
whereas others have only been described in a few studies.
Regardless, the field lacks a complete understanding of the
individual contributions of each cytokine to host protection and
lung damage. We discuss this further in section Balance Between
Viral Clearance and Immunopathology.

Cytotoxicity
Influenza infection also promotes cytotoxic functions of NK
cells and T cells which correlate with viral clearance and
positive survival outcomes. Mice with perforin deficiencies have
significantly lower survival rates when infected with the same
influenza dose asWTmice, and their LD50 dose is about 10 times
lower than WT. NK cells and T cells from perf−/− mice do not
show functional cytotoxic killing of infected cells and although
their cytokine and antibody responses increase significantly,
perf−/− mice are unable to efficiently clear the infection (Liu
et al., 2003). NK and T cells also kill infected cells through
Fas/FasL and TRAIL/TRAIL-DR interactions, complementing
perforin and granzyme-mediated cytotoxicity to improve host
resistance to infection (Topham et al., 1997; Ishikawa et al., 2005).

NK cell cytotoxicity is typically affiliated with mature
CD56dimCD16+ cells, but there is conflicting evidence of the
responsiveness of this population in the lung (Robinson et al.,
1984; Marquardt et al., 2017; Cooper et al., 2018). A recent
study challenged the general acceptance of hyporesponsive
lung NK cells; they observed increased NK cell cytotoxicity in
both CD56dim and CD56bright subsets from human blood and
lung following influenza infection (Scharenberg et al., 2019).
CD56brightCD49+CD69+CD103+ lung-resident cells are also
capable of mounting strong cytotoxic responses (Cooper et al.,
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2018). Contributions of different populations to total NK cell
cytotoxic function have not been fully described in vivo, but it
is clear there are NK cells in the lung and blood which mediate
cytotoxic killing of influenza infected cells and contribute to
viral clearance.

T cell cytotoxicity is mostly attributed to CD8+ T cells,
but Th1 cells also lyse influenza infected cells and contribute
to viral clearance (Graham et al., 1993, 1994). CD8+ T cells
which are activated and proliferate in the lymph node have
the potential to kill infected cells upon migration to the lung.
However, CD8+ T cells which experience additional stimulatory
interactions with DCs in the lung have higher cytotoxic function.
When DCs are absent from the mouse lung, impaired CD8+ T
cell activation correlates with higher mortality and viral titers
(McGill et al., 2008).

Environmental stimuli can affect the magnitude of the
cytotoxic response. For example, IFN-γ enhances cytotoxic
activity of both cell types. IFN-γ depletion partially impairs
NK cytotoxicity, but completely suppresses T cell cytotoxicity
(Ishikawa et al., 2010). IL-18−/− mice show significant reduction
in lung NK cell cytotoxicity and have 20% lower survival rates in
response to influenza infection. These mice have no detectable
changes in CD8T cell cytotoxicity, so changes in survival are
likely associated with defective NK cell responses (Liu et al.,
2004). Both NK cells and T cells directly kill infected cells, but
are not identically activated or regulated. This is beneficial for the
host response, as one can compensate for the other in different
physiological conditions.

Balance Between Viral Clearance and
Immunopathology
The extent to which NK cell and T cell responses are protective
before they begin to become pathogenic is highly debated. We
will attempt to dissect this in terms of influenza infection;
other articles address all aspects of the immune response in
mediating lung immunopathology during respiratory infections
(Damjanovic et al., 2012; Newton et al., 2016; Tavares et al.,
2017). Mechanistic studies in mice attempt to characterize
contributions of NK cell and T cell responses to host protection
and pathology. There are conflicting hypotheses as to the effect
of different cell populations and soluble mediators on optimal
host responses: efficient viral clearance while maintaining lung
homeostasis. Studies of human infections attempt to connect
hypotheses from mouse models to real patient outcomes, but
there is no clear consensus as to which are the most beneficial
or detrimental aspects of the host response to influenza. The
ability to understand the host response lies in understanding how
a host’s overall health is affected by viral replication and immune
defense mechanisms given external factors such as viral serotype,
severity of infection, and stage of the immune response.

Mouse models of influenza infection have correlated NK
and T cells with both protection and tissue damage. IL-15
knockoutmice have defects inmultiple cell types including CD8+

T cells, NK cells, NKT cells and intraepithelial lymphocytes
and are protected from lethal dose of influenza infection.
Their immune response is characterized by less myeloid cell

infiltration, increased IL-10 expression and decreased levels of
pro-inflammatory cytokines IL-6 and IL-12. One study of IL-15
knockout mice attributed improved outcomes to limited CD8+

T cell-mediated damage, whereas another claimed the absence of
NK cells was protective (Nakamura et al., 2010; Abdul-Careem
et al., 2012). Likely, both contribute in some way which should be
analyzed further. Neither of these studies looked at doses which
were not lethal in wildtype mice. The literature suggests NK cells
are associated with pathology in high dose infection due to more
NK cell recruitment to the lung; the same question has not been
answered so clearly for T cells (Zhou et al., 2013; Carlin et al.,
2018). This is worth investigating, as severity of lung damage is
largely dose dependent.

In addition to the viral dose, many hypothesize that whether
NK cells have a positive or negative effect on host immune
responses to influenza is dependent on the mouse genetic
background. IL-15 knockout mice do not show major strain-
dependent responses; antibody depletion of NK cells resulted
in slightly better protection in B6 mice than BALB/C, but the
authors attribute this to a more complete NK depletion in B6
mice (Abdul-Careem et al., 2012). Another study compared
several strains of mice receiving high-dose influenza infection.
After NK depletion, they found that only 129 mice exhibited
decreased ability to control viral replication. NK cells from
129 mice were characterized by increased IFN-γ expression
compared to other strains, but no differences in CD107a (Abdul-
Careem et al., 2012). This suggests the protective effects in these
mice are due to higher IFN-γ expression whereas cytotoxic
functions of NK cells do not affect the ability to control
the infection.

The role of NK cells in severe disease should be considered
from the perspective of human infections as well. In humans
infected with pandemic H1N1, NK cell lymphopenia in the blood
has been reported in association with severe disease. One patient
with a complete absence of peripheral blood NK cells even had
detectable viral RNA in the blood. In this context, the absence
of NK cells is harmful for human outcomes and viral control.
However, this data was obtained from blood samples, not lung
or airway, so it is possible that decreased NK cells in the blood is
due to increased migration to the lung (Denney et al., 2010; Fox
et al., 2012). Despite significant efforts, there is still no consensus
as to whether NK cell responses are protective or pathogenic in
influenza infection.

The role of the influenza-specific CD8+ T cell response
in lung immunopathology has been studied extensively. A
fundamental study presented contradictory roles: CD8+ T cell-
deficient mice have reduced lung damage at the expense of
lower survival (Wells et al., 1981). Cell-intrinsic contributions
by T cells can be analyzed through adoptive transfer of HA-
specific CD8+ T cells into a mouse constitutively expressing HA
on its respiratory epithelial cells. This model revealed CD8+

T cell responses alone can induce significant host damage:
weight loss, pro-inflammatory cytokine accumulation, monocyte
recruitment, and death (Enelow et al., 1998). A variety of
regulatory mechanisms induce inhibitory receptor expression
and are essential to prevent excessive CD8+ T cell responses
to influenza infection (Zhou et al., 2008; Erickson et al., 2016).
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Nevertheless, T cell responses are necessary to clear infections
and understanding the mechanisms through which they are
responsible for immunopathology during natural infections is
important for developing effective therapeutic interventions.

Tregs limit immunopathology but can suppress protective
anti-viral responses in an antigen-specific manner. They
accumulate in the mouse lungs, airways, and mediastinal
lymph nodes before effector T cells, but after NK cells, in
response to influenza infection (Betts et al., 2012). They directly
inhibit CD4+ and CD8+ T cell proliferation and anti-viral
responses (Haeryfar et al., 2005; Bedoya et al., 2013). Tregs
also inhibit NK cell cytotoxicity when exposed to influenza
antigens, although the interactions between NK cells and Tregs
are not thoroughly characterized (Trzonkowski et al., 2004).
There is evidence, but limited mechanistic understanding, of
their effect on innate immune responses: transferring Tregs
into Rag−/− mice improves survival outcomes by preventing
excessive myeloid cell infiltration in the lung (Antunes and
Kassiotis, 2010). Tregs are fundamental in promoting recovery;
inhibiting Treg function following viral clearance increases
neutrophil infiltration, promotes pro-inflammatory cytokines in
the airways, and impairs weight gain (Moser et al., 2014). Overall,
Tregs seem to be more beneficial than harmful to the host
response: preventing lung damage improves survival outcomes
more than the increased cytotoxic responses in their absence.

Despite unclear contributions of NK and T cells overall, many
efforts attempt to characterize their role in immunopathology
based on cytokine production. Both cell types produce TNF-α
following influenza infection. Inhibiting TNF-α signaling leads
to increased survival outcomes and decreased lung damage
following lethal dose influenza infection. Transcriptional analysis
following TNF-α blockade revealed an overall decrease in pro-
inflammatory cytokines and increase in CD4+ T cells and NK
cells in the lung. These results implicate CD8+ T cell—not CD4+

T or NK cell—secretion of TNF-α and subsequent cytokine
storm as a main mediator of lung damage during lethal influenza
infections (Belisle et al., 2010; Shi et al., 2013). Other studies
demonstrate CD8+ T cell-derived TNF-α contributes to lung
pathology by promoting inflammation and inducing apoptosis
in alveolar epithelial cells. However, it is not required for T cell-
mediated viral clearance in mice (Liu et al., 1999; Xu et al., 2004).
Notably, none of these studies used lower infectious doses so
it is unclear if TNF-α mediates detrimental lung damage in all
infections. In human studies of 2009 pH1N1 infection, TNF-
α levels were higher in hospitalized patients than mild cases.
Within severe cases, the patients in non-critical states showed
higher expression of TNF-α than those with critical illnesses
(Bermejo-Martin et al., 2009; Yu et al., 2011). TNF-α may be
protective among patients who develop severe disease. This study
did not address lung damage like those in mice, but it is possible
that although TNF-α induces lung damage during infection, it is
necessary for a fully functional host response.

IFN-γ production is a significant part of the NK cell and T cell
response to influenza infection. It has been implicated as both
helpful and harmful in influenza infection. Adoptive transfer
of HA-specific IFN-γ deficient CD8+ T cells showed that IFN-
γ is not essential for optimal protection but is important for

recruitment of effector cells and control of hyperinflammatory
responses (Wiley et al., 2001). Another study showed that IFN-
γ has protective effects in mice with intact NK cell responses
but not in NK deficient mice (Weiss et al., 2010). Most
recently, IFN-γ was observed to suppress innate lymphoid cell
function. IFN-γ deficiency protected mice challenged with a
lethal dose of influenza H1N1 virus (Califano et al., 2018). Due
to IFN-γ’s various roles in infection, it is likely these studies
yield different results due to distinct experimental conditions
and procedures. The challenge, as with other questions of
protection vs. pathology in influenza virus, is determining
which information is physiologically relevant to humans. IFN-
γ expression and correlation with patient outcomes has been
analyzed in various studies. Like with TNF-α, levels of IFN-γ
in hospitalized pandemic H1N1 patients are significantly higher
than in mild cases. However, within hospitalized patients high
levels of IFN-γ is associated with less severe disease (Bermejo-
Martin et al., 2009; Yu et al., 2011). More work should be done
to further analyze the effects of IFN-γ on patient outcomes,
especially in relation to NK cells and the functionality of their
IFN-γ production.

The role of IL-17 in human and murine influenza infection,
like other inflammatory cytokines, is highly controversial. IL-
17−/− mice exhibit less weight loss, decreased lung pathology,
and increased survival in response to influenza infection. This
could be due to decreased neutrophil infiltration or cytokine
production in the lung; IL-17−/− mice have lower levels of IFN-
γ, G-CSF, IL-6, IL-1B, and TNF-α compared to WTmice (Crowe
et al., 2009). A mouse model of 2009 pH1N1 infection also
showed that blocking IL-17 signaling enhances survival outcomes
(Li et al., 2012). Alternatively, a study of IL-10 knockout mice
observed increases in the Th17 response were protective against
high-dose infection. The protection was attributed to IFN-γ
production and cytotoxic activity of Th17 cells in addition to
elevated IL-17 levels (McKinstry et al., 2009). Knowing IL-17
plays a dynamic role in infection outcomes, numerous studies
address Th17 responses in humans and their correlation with
disease outcome. Some studies observe higher levels of IL-17
in patients who effectively control the infection compared with
patients who experience severe disease or death (Almansa et al.,
2011). Other studies claim the presence of IL-17 is associated
with more severe disease. One study of human pandemic
H1N1 infection found, like TNF-α and IFN-γ, IL-17 expression
was increased in patients with severe disease but within all
hospitalized patients the presence of IL-17 was associated with
higher survival (Bermejo-Martin et al., 2009). The overlap in
expression characteristics of TNF-α, IFN-γ, and IL-17 in patients
with severe influenza infection is an interesting observation.
More studies should investigate potential redundancies in their
responses and attempt to differentiate which are truly essential
for the observed protection in severe disease.

IL-22 is generally studied for its protective effects during
recovery from influenza infection. IL-22−/− mice recover slower
and have increased lung damage and lymphocyte infiltration in
the lungs and airways (Pociask et al., 2013). While Th17 cells
produce IL-22 in the lung in response to a variety of stimuli, their
contribution in influenza infection is not as established as that of
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NK cells. One study found murine lung CD27− NK cells produce
IL-22 when stimulated with IL-23 but observed no significant
changes in weight loss or survival. Following this, another group
showed NK cell-derived IL-22 is protective against excessive
weight loss by promoting regeneration of tracheal epithelial cells.
Although the first NK cell study claimed no significant effects
in the absence of IL-22 and the second saw the opposite, both
sets of data show a similar trend of increased weight loss in
IL-22 depleted mice. The lack of significance could be due to
different methods of IL-22 depletion; The first study used an IL-
22 blocking antibody whereas the second used IL-22 knockout
mice (Guo and Topham, 2010; Kumar et al., 2013). Further
investigation in mice revealed that in lethal infections, IL-22 does
not have any impact on the outcome, but in sublethal infections it
is important for limiting inflammation and initiating tissue repair
(Ivanov et al., 2013). It is unclear whether IL-22 production by
NK cells and T cells has a physiologically relevant protective role
in human influenza infections.

IL-10 can be produced by NK cells and multiple T cell
subsets, but the contributions of different IL-10 sources to
the host response to influenza is unclear. Some studies show
that IL-10 deficient mice have higher influenza survival rates.
However, other studies claim deficiencies in IL-10 signaling
can increase morbidity and mortality (McKinstry et al., 2009;
Sun et al., 2009, 2010). These conflicting results could be
due to stimulatory roles of IL-10 during early stages of
influenza infection discussed in section Cytokine Production.
They reported highermorbidity andmortality inmice with either
IL-10 deficiency or overexpression. This suggests a homeostatic
level of IL-10 which does not induce too strong of an initial
inflammatory response—but is still strong enough to prevent
excessive tissue damage—is ideal for host protection in influenza
infection (Dutta et al., 2015). In humans, high levels of IL-10
have been associated with severe disease, however this is often
attributed to IL-10 mediated immune suppression impairing
the ability of the patient to control the infection (Yu et al.,
2011). A potential role for IL-10 in harmful hyperinflammatory
responses has not yet been studied in association with severe
disease in humans. It is also unclear whether excessive IL-10
production is a byproduct of highly pathogenic infections or if
increased IL-10 directly contributes to severe disease progression
in humans. Surely, more work must be done to understand the
role of IL-10 in lung homeostasis during murine and human
influenza infections.

One study described IL-27 as an important regulator of
previously described aspects of the T cell response to influenza.
IL-27R−/− mice had significantly worse outcomes in terms of
viral load, lung pathology and survival; they concluded that IL-
27 protects mice from severe pathology by inhibiting excessive
CD4+ T cell IFN-γ, IL-17, and TNF-α production. They treated
WT mice with recombinant IL-27 (rIL-27) following lethal
dose influenza infection and found lower IL-17 levels and
higher IL-10 levels correlated with increased protection without
compromising viral clearance. Interestingly, they only saw these
effects when they treated with rIL-27 at peak viral titer or later,
compared with worse outcomes if they treated at early stages of
infection. Likely, the early inflammatory response is necessary for

favorable outcomes, but as adaptive immune cells accumulate in
the lung increased inflammation mediates harmful tissue damage
(Liu et al., 2014). This study ties together information discussed
about positive and negative aspects of the T cell response and
suggests that many of these functions are regulated by IL-27.
Complementary studies in mice and humans are needed to
fully understand the impact of IL-27 on the host response to
influenza infection.

While studies in mice are limited in their physiological
relevance to human infections, human studies also present
challenges in drawing conclusions. Mechanistic studies of the
human lung are logistically difficult and rare, but analysis of
PBMCs of infected patients does not always represent the site of
infection. Therefore, human host responses cannot be adequately
compared to mice. Many human studies of hospitalized patients
are biased toward young children or older adults. Although these
populations represent the most accessible cases, they may not
represent influenza responses from all demographics. Similarly,
many studies focus on severe viral strains such as pandemic
H1N1 or avian influenza infections rather than analyzing
immune responses to more mild seasonal influenza cases. While
our understanding of why some cases of influenza develop into
severe life-threatening diseases has progressed, there is much to
learn about individual immune responses and how they can be
manipulated to affect patient outcomes.

Non-human primates (NHPs) are an alternative model which
address some challenges associated with mouse and human
studies. They have been successfully infected with numerous
influenza strains including 1918 and 2009 pandemic H1N1
(Kobasa et al., 2007; Safronetz et al., 2011), H5N1 (Baskin
et al., 2009), and H9N2 (Zhang et al., 2013). NHP immune
responses and gene expression patterns following influenza
infection closely mirror those of humans (Baskin et al., 2004).
Therefore, they will be an essential tool to expand our knowledge
of the mechanisms through which NK cells and T cells contribute
to lung pathology in human-like infections.

NK CELLS AND T CELLS IN INFLUENZA
THERAPEUTICS

There are ongoing efforts to develop therapeutics which prevent
acute lung injury (ALI) and acute respiratory distress syndrome
(ARDS) during influenza infection. Developing these drugs is
challenging as preventing the inflammatory response entirely
would lead to uncontrolled viral replication. It is difficult to
identify individual components of inflammatory responses which
are directly responsible for immunopathology vs. those which
are essential host responses or are simply byproducts of the
inflammatory environment.

Current anti-viral therapeutics are limited to two approaches:
neuraminidase and M2 ion channel inhibitors. Both aim to
limit replication and spread of the virus: NA inhibitors target
its enzymatic activity and M2 ion channel blockers prevent
its proton channel function. These therapies have limited
potential, however, because of side effects and the emergence
of resistant strains (Gubareva et al., 2000; Leonov et al., 2011).
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Additionally, if the virus has sufficiently activated the innate
immune system before the patient is treated, limiting viral spread
does not prevent pro-inflammatory responses which have already
begun. NA inhibitors, for example, are only useful if they are
administered within the first 2–3 days of infection (Gubareva
et al., 2000). In order to treat patients experiencing “cytokine
storm,” therapeutics must work to limit harmful inflammatory
immune responses without inhibiting viral clearance.

Targeting of individual cytokines has proven difficult; each
contributes to several anti-viral response mechanisms and
inhibiting their functions can lead to uncontrolled viral
replication. Cytokines important in NK cell and T cell immunity
such as IFN-γ and type I IFN have been studied as potential
targets to limit pro-inflammatory cytokine responses, but there
is no clear benefit to targeting them therapeutically. Alternatively,
TNF-α blockade has shown therapeutic potential to limit harmful
inflammatory responses to influenza without impairing viral
control. TNF-α blocking antibodies are of particular interest;
there are already approved drugs with this activity used to treat
autoimmune disorders such as Crohn’s disease and rheumatoid
arthritis (Karampetsou et al., 2010). Therapeutic blockade of
TNF-α signaling improves morbidity and mortality outcomes
following lethal dose influenza infection in mice (Shi et al.,
2013). A lethal dose in mice does not recapitulate all potential
human disease courses, so human studies of TNF-α blockade
are necessary to further assess its therapeutic potential. Other
pro-inflammatory cytokines and chemokines—which are not
prominent features of NK cell and T cell immunity but do
have important functions in influenza infection—have been
studied for their therapeutic potential (Reviewed in Ramos and
Fernandez-Sesma, 2015).

There are also efforts to broadly modulate inflammatory
responses through corticosteroid treatments. Original evidence
in a small cohort of patients suggested corticosteroids can reduce
morbidity and mortality in patients with ALI and ARDS (Tang
et al., 2009). This led to studies over the past several years which
provide conflicting results on the effects of corticosteroids on
influenza patient outcomes. One review and meta-analysis of
data from 30 human studies found that corticosteroid treatment
was not beneficial and was correlated with increased mortality
rates, however they acknowledged that the data quality was not
sufficient for fully conclusive analysis and that more studies are
needed to determine any conditions in which corticosteroids are
beneficial for survival outcomes (Lansbury et al., 2019).

It may be enlightening to understand the effect of this
treatment on NK cells and CD8+ T cells. There is no data
addressing this for influenza, but NK cells isolated from
asthmatic patients exhibit worse cytotoxic killing and cytokine
production following corticosteroid treatment (Duvall et al.,
2017). Liver NK cells from patients treated with certain
corticosteroids also show decreased proliferation, cytotoxicity
and cytokine production in hepatitis C virus infections (Ohira
et al., 2017). As for T cells, one study showed memory CD8+

T cells from asthmatic patients upregulate BLT1—a surface
receptor involved in T cell migration to the lung—following
corticosteroid treatment and this increases inflammation and
lung damage. However, CD8+ T cells in influenza infection

may have different properties than memory T cells exposed
to chronic inflammation (Ohnishi et al., 2008). Inflammation
contributes significantly to activating NK cells and T cells. In
the future, studies should test if the lymphocyte population
possesses adequate cytotoxic function to clear the virus following
anti-inflammatory treatments.

Although targeting inflammatory processes is at the forefront
of attempts to develop influenza therapeutics, there are emerging
cell-based therapies enhancing NK cell and CD8+ T cell
cytotoxicity to infected cells. ADCC is a cytokine-independent
NK cell killingmechanismwhich could avoid hyperinflammatory
responses. Activating ADCC would be especially relevant in
influenza where development of broadly neutralizing antibodies
has been unsuccessful but non-neutralizing cross-reactive
antibodies are readily available in human serum. Antibodies to
both NP and M2e have shown protective effects in mice along
with the ability to activate human NK cell ADCC mechanisms
(Carragher et al., 2008; El Bakkouri et al., 2011; Simhadri
et al., 2015; Vanderven et al., 2016). Treatment with NK ADCC
cell-activating antibodies could complement anti-inflammatory
therapeutics by promoting NK cell killing of infected cells
independently of inflammation. However, a certain level of
inflammation is necessary to recruit NK cells to the lung, so
more work should be done to understand optimal methods for
promoting NK cell recruitment and ADCC in the lung.

Activation of T cell-dependent immunity is a major focus
in the influenza vaccine field, but there are also vaccine-
independent T cell activation methods with potential to control
influenza infections. Bispecific T cell engaging (BiTE R©) antibody
constructs can activate T cells to kill target cells independent
of antigen-specificity. BiTE R© antibody constructs are fusions of
2 single chain fragment variable (scFv) molecules: one binds
to the antigen of interest and the other binds to CD3ε on
cytotoxic T cells. These have been implemented in the cancer
immunotherapy field, and M2e-specific BiTE R© constructs show
protective effects in mice infected with influenza (Huehls et al.,
2015; Pendzialek et al., 2017). This treatment approach has not
been studied further in mice and humans but presents a new
perspective on activating T cells to target influenza-infected cells.
As more work is done with M2e-specific antibodies, this may
become a more well-studied therapeutic option.

Various T and NK cell therapies—adoptive transfer with
chimeric antigen receptor (CAR), autologous or allogenic T and
NK cells—are promising cancer treatments. CAR T and NK cells
can be targeted to a specific antigen by combining an antigen-
specific Fv to an intracellular signaling domain which promotes
cytotoxicity upon antigen binding (Gross et al., 1989; Müller
et al., 2008; Garfall et al., 2015). Autologous transfer of ex-vivo
activated tumor-specific T or NK cells derived from the patient
can enhance cytotoxic activity (Spanholtz et al., 2010; Rosenberg
et al., 2011). NK cells are unique in that allogenic, MHC-
mismatched NK cells do not promote graft-vs. host disease. In
fact, allogenic NK cells are a powerful tool because they are not
inhibited by the host MHC molecules and therefore have a lower
threshold for stimulation when they encounter a malignant cell
(Lundqvist et al., 2006; Iliopoulou et al., 2010). Although these
approaches are currently focused on cancer, they could be used
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to mediate more efficient viral clearance in high-risk patients
infected with influenza.

Current therapies targeting NK cell and T cell responses are
limited. Anti-inflammatory approaches are more commonly
studied because hyperinflammatory responses leading to
cytokine storm are a common cause of morbidity and
mortality in severe influenza infections. These efforts are
hindered by incomplete understanding of the mechanisms
behind protective and pathogenic inflammatory responses.
Furthermore, the contributions of cytotoxic NK and T
cells to the inflammatory response and the effects of anti-
inflammatory therapeutics on their functions are poorly
understood. Some studies have moved away from efforts to
target a single anti-viral mechanism; cell-based immunotherapy
approaches could supplement anti-inflammatory therapeutics
and promote more efficient viral clearance by cytotoxic
NK and T cells. Preliminary data shows that NK cells and
T cells can be activated to potently kill influenza-infected
cells without contributing to damaging inflammatory
responses, but their potential in humans has not yet
been evaluated.

DISCUSSION

Despite 2018 marking 100 years since the deadliest influenza
pandemic in history, our understanding of influenza virus
infections is far from complete. Countless host protection
mechanisms have been characterized in mice with much focus
on a hallmark of severe disease: hyperinflammatory responses
and subsequent cytokine storm. Numerous other studies have
attempted to correlate human disease outcomes with these

immune mechanisms. NK and T cells are at the forefront of these
responses: cytotoxic killing of infected cells is essential for host
survival, but NK cell and T cell pro-inflammatory functions may
contribute to immunopathology. Through years of research, the
field is still unable to clearly distinguish protective responses from
harmful ones; Studies addressing this issue will be fundamental to
develop effective treatments for severe infections.

Some therapeutic approaches attempt to limit inflammation,
but until we can distinguish harmful inflammatory mechanisms
from necessary anti-viral responses this will be difficult. Others
are turning to cell-based therapies to activate NK cell and T
cell cytotoxicity against infected cells, but support for these
approaches is backed by limited data. Developing effective
treatments for severe influenza infections will likely involve
a combination of these strategies. Regardless, understanding
NK and T cell responses—both cytotoxicity and cytokine
production—will undoubtedly be vital to develop effective
therapeutics which can improve disease outcomes for patients
experiencing severe influenza infections.
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