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Abstract

Spontaneous blinking is one of the most frequent human behaviours. While attentionally

guided blinking may benefit human survival, the function of spontaneous frequent blinking in

cognitive processes is poorly understood. To model human spontaneous blinking, we pro-

posed a leaky integrate-and-fire model with a variable threshold which is assumed to repre-

sent physiological fluctuations during cognitive tasks. The proposed model is capable of

reproducing bimodal, normal, and widespread peak-less distributions of inter-blink intervals

as well as the more common popular positively skewed distributions. For bimodal distribu-

tions, the temporal positions of the two peaks depend on the baseline and the amplitude

of the fluctuating threshold function. Parameters that reproduce experimentally derived

bimodal distributions suggest that relatively slow oscillations (0.11–0.25 Hz) govern blink

elicitations. The results also suggest that changes in blink rates would reflect fluctuations of

threshold regulated by human internal states.

Introduction

Spontaneous blinking is the most frequent eye-closing behaviour in daily life [1]. Humans

spontaneously blink 20–30 times per minute [2]. This is approximately 5–10 times as many as

the necessary frequency to maintain the humidity of eye surfaces [3].

In recent years, it has been hypothesized that such frequent blinking could play an impor-

tant role in adaptive human behaviours [4], [5]. Participants in a laboratory experiment tended

to blink immediately after the emergence of intermittently presented visual stimuli [6] indicat-

ing that people reliably receive visual information avoiding oversight errors. Similarly,

researchers have reported that viewers were likely to blink at implicit breaks in expert storytell-

ing performances [7]. These findings suggest that people know when to blink through interac-

tion with external inputs. As a result, temporal shifts of attention are guided by professional

performances, with an emerging synchronizations of blinking. Neurological research further
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showed that spontaneous blinks contribute to disengaging attention from audio-visual stimuli

[8]. Owing to this function, people would be able to allocate attention to new targets immedi-

ately after blinking. Thus blinking could be a means for humans to efficiently gather informa-

tion from the huge amount of surrounding audio-visual stimuli.

Although numerous experimental studies have been developed, little theoretical research

using mathematical models has been carried out. The one-dimensional stochastic diffusion

(OSD) model has been proposed as a mathematical model of spontaneous blinking [9]. This

model assumes a blink generator in which electrical potential varies depending on the external

inputs of corneal stimulation such as dryness, dust, or muscle fatigue. The electrical potential

varies as Brownian motion process, resulting in a blink when the potential reaches a threshold.

The potential exponentially decays to a constant value when the blink generator receives no

inputs. Thus, intervals between spontaneous blinks are formulated as a first-passage-time to a

constant threshold. According to [9], burst patterns in blinking can be explained by assuming

that the threshold was shifted lower when the participants were drowsy.

Human blinking rates, however, vary in a few tens of seconds while watching an audio-

visual stimulus [10]. A realistic model should account for this variation. In addition to such

temporal characteristics, changes in blinking rates often provide less common distributions of

inter-blink intervals (IBIs) in cognitive tasks [6], [11]. Thus, an adequate model should repro-

duce the diverse distributions of spontaneous blinking. The OSD model cannot reproduce dis-

tributions of IBIs because of its stochastic nature and constant threshold.

In this paper, we propose a leaky integrate-and-fire (LIF) model with a variable threshold

to represent the fluctuation of internal states of human blinks. First, we examine the reproduc-

ibility of the distributions of IBIs by the OSD model, however, the OSD cannot reproduce

experimental results. Then, we show that the proposed LIF model reproduces a variety of dis-

tributions such as the positively skewed, normal, peak-less, and bimodal distributions of IBIs.

Finally, we explore the parameters that reproduce the distributions of IBI reported in a classi-

cal experimental study.

Model of human spontaneous blinks

One-dimensional stochastic diffusion model

In this model, changes in the potential X of the blink generator are governed by the following

equation:

dXðtÞ ¼ �
XðtÞ
b
þ m

� �

dt þ �dWðtÞ; ð1Þ

with an initial condition X(0) = X0.

In Eq (1), W is a Wiener process that is characterized by spontaneous decay β (> 0), average

input μ (−1< μ<1), and a noise term of ϕ (> 0) for a random process. This stochastic dif-

ferential equation is formally equivalent to the Ornstein-Uhlenbeck process. The interval

between one blink and the next (IBI) can be expressed as a first-passage-time density function,

which is defined by the time duration between the initial potential X0 and the time to pass the

threshold potential.

The OSD model is based on the Ornstein-Uhlenbeck process and therefore the potential X
obeys the mean reversion law [9]. If we took P(ω|α, t) as the probability that a stochastic vari-

able α is given when t = 0 whereby we gain ω at time t, in this model, P(−1|X0, t) = 0. Accord-

ing to Hoshino [9], this mathematical assumption represents the physiological nature of a

blinking generator that reliably repeats to active blinking within a finite time period without

assuming a reflecting boundary.

Threshold-varying integrate-and-fire model of human blinking
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The results of numerical simulations demonstrated that the OSD model can reproduce the

positively skewed distribution of experimentally observed IBI [9]. However, this model does

not reproduce the other previously reported distributions of IBI (See, Fig B in S1 File).

Leaky integrate-and-fire model with a variable threshold

Although the primary physiological function of blinking is to prevent dryness of eye-surfaces,

cognitive functions of human blinks have also been reported [7], [12]. A human blinks in

accordance with semantic segmentations of audio-visual information. For example, people

tend to blink after looking at punctuation marks in reading tasks [12] and immediately after

listening to the punch line of jokes while viewing a storytelling performance [7]. Neurological

research indicated that spontaneous blinks contribute to disengaging attention from audio-

visual stimuli [8]. Cognitive load is integrated while audio-visual information is continuously

accumulated. When people blinks, however, the cognitive load is reset by attentional dis-

engagement where a part of audio-visual information is transmitted to the next processing

stage. These facts indicate that we can model the biophysical changes in an internal value of a

blink generator which is driven by cognitive load as well as by physiological inputs such as dry-

ness and fatigue of muscle.

As one of the possible models, we used a leaky integrate-and-fire model with a variable

threshold to represent such a blink-and-reset mechanism. The leaky integrate-and-fire models

have been used as models of changes in membrane potential of a single neuron [13]. Human

blinking is a macroscopic phenomenon that involves several brain areas. However, as far as we

could assume that integrate-and-reset mechanism as a plausible postulation, the leaky inte-

grate-and-fire model is suitable for human blinking as well.

As a possible mechanism for blinking intervals providing a variety of distributions, we

assumed that the changes in blink rates are regulated by internal states that could vary in

accordance with external stimuli. To construct the model, we assume a simply formulated situ-

ation where a background oscillation exists as a regulator of frequent human blinking. Such

oscillation would emerge spontaneously as a result of physiological rhythms in addition to the

rhythm induced by the external stimuli during an experimental task that requires visual atten-

tion. In this study, we consider a leaky integrate-and-fire model with a variable threshold [14].

The potential V of blinking generator is governed by

dV
dt
¼ � cV þ I þ x; ð2Þ

where c is a constant decay term and I is an external input with intensity b. The last term repre-

sents the Gaussian noise ξ* N(0, σ2) derived from the random fluctuation of external stimuli.

The noise ξ = 0 when σ = 0.

One way to extract a particular rhythmic process in a physiological system is to set a vari-

able threshold function [15]. Then, we introduced the following threshold function θ(t) deter-

mined by

yðtÞ ¼ aþ k sin
2pt
t
; ð3Þ

where a is the baseline constant, k is the amplitude coefficient, and τ is the period. When V
reaches the threshold, it immediately elicits a blink.

Fig 1(a) and 1(b) show the typical pattern when a = 1 and k = 0, i.e. θ(t) = 1. In a simple

case of a perfect integrator without decay and noise, i.e. c = 0 and σ = 0, V demonstrates a

monotone increasing with accumulating non-negative external inputs I (Fig 1(a)). Even when

Threshold-varying integrate-and-fire model of human blinking

PLOS ONE | https://doi.org/10.1371/journal.pone.0206528 October 30, 2018 3 / 14

https://doi.org/10.1371/journal.pone.0206528


the threshold is constant, V, in the integrate-and-fire model, behaves in a complex way due to

the decay term c and the noise σ = 0, resulting in the creation of irregular IBIs (Fig 1(b)). The

parameter k determines the amplitude of the threshold function θ(t). Owing to the nonlinear-

ity of the varying threshold function θ(t), IBIs can show rather complex patterns even if the

external input I is constant. The model was deposited in BioModels Database [16] and

assigned the identifier MODEL1810190001.

Previous researches have revealed the effect in a modulation of the current in LIF models of

a neuron numerically and analytically [13], [17], [18]. A modulation of the current can be

mathematically transformed to the variations of threshold. Therefore, the LIF model with a

variable threshold would provide results that correspond to the previous research on a neuron.

Fig 1. Results by the LIF model with (a), (b) a constant and (c) a variable threshold. The V increases with integrating the binomial input I. The

parameter c is the decay term and the parameter σ is the standard deviation of noise ξ. The baseline of the threshold function a = 1. (a) There are no

decay and no noise, i.e., c = 0 and σ = 0. (b) There is no noise, i.e., σ = 0. (c) The threshold is time-varing with the amplitude k and the period τ where the

decay and the noise exist.

https://doi.org/10.1371/journal.pone.0206528.g001
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However, the LIF model would also be useful to understand statistical behavior of the human

blinkings if the LIF model fit the data from physiological experiments.

Numerical simulation and analysis

Parameters

To the best of the authors’ knowledge, no mathematical proof provides that first-passage-time

density functions of the Ornstein-Uhlenbeck process always exhibits positively skewed distri-

butions. Thus, the ODS model [9] may reproduce a variety of distributions when specific

parameters are set. Hence, we re-examined the distributions simulated by the OSD model. In

this replication, threshold potential was set to 1.0 and the parameters of the Ornstein-Uhlen-

beck process were set as shown in Table 1 to cover the typical ranges of decay β and input μ
that elicit blinking at realistic intervals. In the numerical experiments, the parameters β, μ, and

ϕ are increased by the values denoted in the third column of Table 1.

In all simulations, the time step was set to dt = 0.001 s. The total time for observation was

50 min (= 3, 000 s) to gain enough occurrences of IBI to estimate the distribution of human

spontaneous blinking [3].

On the other hand, in the simulations of the proposed model, parameters were set as fol-

lows: the intensity of the external input I of which intervals obey a binomial distribution was

set to b = 1. To explore a relatively wide range of intensities for the inputs, a constant threshold

baseline a = 1 was set. When we assume the simple case with c = 0 and σ = 0, it is necessary to

accumulate non-negative inputs 1, 000 times because b × dt = 0.001. Taking into account the

binomial distribution of I, 2, 000 steps were needed on average to reach the threshold baseline.

In other words, the variable V reaches the threshold in an average of 2 s. For instance, in case

that k = 0.20, this corresponds to a maximum deviation 1/5 from the threshold baseline when

a = 1. In case that k = 0.0, however, the threshold is a constant θ(t) = a because

k sin
2pt
t
¼ 0: ð4Þ

The period τ corresponds to the frequency of the threshold function θ(t). For example, the fre-

quency of the threshold is 0.1 Hz for τ = 10 s and 10.0 Hz for τ = 0.1 s. Fig 1(c) shows the typi-

cal pattern when a = 1, k = 1/10, and τ = 5 s, i.e.

yðtÞ ¼ 1þ
1

10
sin

2pt
5
: ð5Þ

Evaluation of distribution

Based on observation of human blinking behaviours, Ponder and Kennedy [19] reported four

types of distributions of IBI. Although this study is classical, we focused on this study because

it had reported all of known distributions. Moreover, the distributions were obtained from suf-

ficient number of participants with using a certain procedure. Variations of distributions were

consistent with that obtained in the following experimental studies [2], [5]. Thus, Ponder &

Table 1. Parameters used in the OSD model.

range an increment

β [0.01, 10.0] 0.01

μ [0.1, 10.0] 0.1

ϕ [0.5, 1.0] 0.05

https://doi.org/10.1371/journal.pone.0206528.t001
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Kennedy’s [19] four types of distributions of IBI are very informative even in recent years.

According to [19], the results show that most common distribution was positively skewed

(62.0%, 31/50 people). The authors also observed peak-less distributions (22.0%, 11/50),

bimodal distributions (12.0%, 6/50), and normal distributions (4.0%, 2/50).

We evaluated the peaks of simulated distributions of IBIs using kernel estimation of proba-

bility density. The kernel density function f̂ hðxÞ was estimated as

f̂ hðxÞ ¼
1

nh

Xn

i¼1

KðuÞ: ð6Þ

We used a Gaussian kernel function, which is described as

KðuÞ ¼
1
ffiffiffiffiffiffi
2p
p e� u2=2; ð7Þ

where

u ¼
x � xi
h

: ð8Þ

In this equation, xi was the ith observed value and h was the bandwidth, n was the total number

of xi. For kernel density estimations, we used the C++ library [20] in which the optimal band-

widths h were calculated as the integral over the square of the curvature using the trapezoidal

rule.

We then estimated the number of peaks in the simulated distributions by applying the

peak-finding algorithm [21]. In order to detect peak(s), this algorithm differentiates the esti-

mated probability density and finds the locations where the signs change from positive to neg-

ative. Each peak is determined relatively rather than absolutely because the probability density

could be high depending on the bandwidth. Therefore, a peak was defined as the point that ful-

fills the following two conditions that the peak point exceeds 0.1, and exceeds one quarter of

the difference between the maximum value and the minimum values. If any probability density

was incomputable due to low occurrence of blinking, the peak-finding algorithm was not

applied to those specific results.

We evaluated the kernel-estimated distribution in the range of 0–20 s, which is the usual

IBI range. We calculated the median of the results of the simulations for comparison with the

means of experimental data, because the shapes of the distributions were diverse. For unimo-

dal distributions, we used these median values to detect the skewness. If the time location of

the peak was lower than the centre of the estimated range, we regarded the distribution as the

positively skewed.

For bimodal distributions, we evaluated the time locations of two simulated peaks. We per-

mitted differences within ±0.025 s for each reported peak. For instance, if the time locations in

the experimental data were 0.5 s and 5.5 s, we assumed that these peaks were reproduced when

the first simulated peak was located between 0.475–0.525 s and the second simulated peak was

located between 5.475–5.525 s. The width of each histogram bin in Ref. [19] was 0.5 s, and

therefore the range was narrow enough to capture the simulated peaks.

Results

Distributions of IBI simulated by OSD model

Our simulations resulted in 901, 000 solutions for the OSD model. Then, 70.53%(635, 488/901,

000) of the solutions had a peak, while the remainder (29.46%) had no peak defined by the

peakfinder algorithm; bimodal and other multimodal distributions were not detected. One

Threshold-varying integrate-and-fire model of human blinking
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third (30.84%, 195, 985/635, 488) of distributions with a peak were positively skewed although

the time location of the peak depended on the parameters. Otherwise (69.15%, 439, 503/635,

488), the simulated distributions approximated normal distributions (See, Fig B in S1 File, for

detail). Regarding the distributions without peaks, the probability density was approximately

constant within the range of 0–20 s, which is chosen for the simulation. We considered that

these results demonstrated peak-less distributions at least in this range. Thus, the one-dimen-

sional stochastic diffusion model reproduced only positively skewed, normal and widespread

peak-less distributions of IBIs.

Proposed model

Parameters and behaviours of V and distributions of IBI. Contrary to the OSD model,

the leaky integrate-and-fire model with a variable threshold reproduced a variety of distribu-

tions depending on the parameters. By experimenting with the parameters, we thus could

reproduce the distributions of IBI of spontaneous human blinking.

When the parameters were fixed at a = 1, σ = 0, and k = 0, the mean and median values

increased as c became larger within the range of 0.0–0.3 (Fig 2(a)). The symmetric shape of the

distribution did not change. In the leaky integrate-and-fire model, the intervals of the external

input I obey a binomial distribution. Theoretically, the proposed model reproduces the normal

distribution of IBI with these specific parameters because a binomial distribution with suffi-

cient sample size approximates a normal distribution.

When the parameters were fixed at σ = 0 and c = 0 and then the amplitude k of the threshold

functions varied in the range of 0.0–0.3, the medians of the distributions were almost constant.

In this case, however, the tails of the distributions expanded and the shorter IBI showed rela-

tively higher probability density than the longer one (Fig 2(b)).

Fig 2. Results obtained by the LIF model with a variable threshold. Probability density functions change in accordance with decay term c or amplitude

of threshold function k. (a) The symmetric shape of distributions are maintained even when the decay term c becomes larger. (b) The tails of the

distributions expand when the amplitude k becomes larger.

https://doi.org/10.1371/journal.pone.0206528.g002

Threshold-varying integrate-and-fire model of human blinking

PLOS ONE | https://doi.org/10.1371/journal.pone.0206528 October 30, 2018 7 / 14

https://doi.org/10.1371/journal.pone.0206528.g002
https://doi.org/10.1371/journal.pone.0206528


The proposed model was capable of reproducing bimodal distributions by setting the

amplitude k and the period τ of threshold functions. As shown in Fig 3(a), when the thresh-

old function θ(t) is convex downward, the value V frequently reached the threshold. In this

case, the number of the peak was unity. When the threshold function θ(t) fluctuated near the

baseline with a smaller amplitude and a longer period, prolonged IBIs occurred (Fig 3(b)).

Due to the effect of the decay term c, the value V remained just below the threshold. In this

case, the number of peaks was two. Therefore, if a larger decay term was chosen, we were

able to obtain both relatively longer IBIs and shorter IBIs even when the baseline was much

lower (Fig 3(c)).

Fig 3. Results by the LIF model with a variable threshold. The V increases with integrating the binomial input I. The parameter c is the decay term and

the parameter σ is the standard deviation of noise ξ. The baseline of the threshold function a = 1 and the threshold is time-varing with the amplitude k
and the period τ. (a) The period τ is short and the prolonged IBI is observed only if the value V is not trapped by the threshold function which is convex

down. (b) When the threshold function is convex up with the large period τ, the prolonged IBI is frequently observed. (c) Due to the large decay term c,
the prolonged IBI is observed even when the period τ is small.

https://doi.org/10.1371/journal.pone.0206528.g003
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We chose the parameters of the proposed model as shown in Table 2 to cover approxi-

mately widest ranges of c and k. The third column in Table 2 shows increments for the param-

eters c, k, and τ (See, S2 File for a sample of the results). The period 1� τ� 10 s was set to

correspond to the range 0.1–1.0 Hz. For the sake of simplicity, other parameters were fixed to

a = 1 and σ = 0.

In the range of these parameters, we obtained 174,629 solutions for the proposed model.

The results of peak-detection showed that 4.68% (8, 170/174, 629) of distributions were peak-

less, 37.95% (66, 273/174, 629) were unimodal, 41.03% (71, 653/174, 629) were bimodal, and

1.38% (2, 411/174, 629) of those were trimodal. The remaining 14.96% (26, 122/174, 629) of

distributions were not computable due to their lower number of blinks.

The proposed model also produced trimodal distributions. Fig 4 demonstrates the number

of peaks depending on decay term c and amplitude k when a = 1 and σ = 0 (these parameters

are discussed in the next section).

Reproduction of Ponder and Kennedy’s [19] bimodal distributions of IBI. The pro-

posed model is capable of reproducing bimodal distributions of IBIs. In this reproduction, the

time bins that contain peaks were determined by the combination of baseline a and amplitude

k of the threshold function θ(t). The value V is most likely to reach the threshold when the

threshold function θ(t) has a minimal value at

sin
2pt
t
¼ � 1;

where

yðtÞ ¼ aþ k sin
2pt
t
¼ a � k:

Hence, the time location of the first peaks (the peak closest to 0) is determined by the values

a − k. If the decay term exists in the range of 0< c< 1, the first peak is located around 0.5 s

Table 2. Parameters used in experiments by the LIF model with a variable threshold.

range an increment

c [0, 1] 0.01

k [0, 0.9] 0.01

τ [0.5, 10] 0.5

https://doi.org/10.1371/journal.pone.0206528.t002

Fig 4. The number of peaks of the distributions of IBI in case that c and k are changed. The color bars show the number of peaks. (a) Trimodal distributions are

observed as red clusters surrounded by the areas of bimodal distributions. (b) For the larger period τ, trimodal distributions are not observed.

https://doi.org/10.1371/journal.pone.0206528.g004
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when a − k’ 0.15. If the value V is not trapped by the threshold function, it increases with

non-negative inputs. Then, the value V certainly hits the threshold function which is convex

downward. Therefore, the intervals between the time location of the first peak and that of the

second peak are always smaller than the period τ of the threshold function. Consequently, the

time location of the second peak depends on the period τ.

Assuming that the threshold function determines time locations of peaks, we can reproduce

two peaks where we intend to allocate. Table 3 demonstrates the time locations of peaks and

the means in the bimodal distributions in the experimental study [19].

The parameters shown in Table 3 demonstrate the minimum value a − k and the period τ
that reproduce bimodal distributions. As shown in Table 3, 0.14� a − k� 0.35 and the period

was 4.0� τ� 9.0 s. These periods correspond to 0.11–0.25 Hz.

Furthermore, the proposed model also produces trimodal distributions if particular param-

eters are given. For instance, we obtain trimodal distributions when c = 0.05, a = 1, and

k = 0.6, i.e., a − k = 0.4 under the condition that the period τ = 7.5. The combinations of

parameters that reproduce trimodal distributions were distributed as clusters (red regions in

Fig 4(a)). The trimodal distributions were also obtained when we expanded the ranges of

parameters to 0� c� 1 and 0� k� 0.9 (See, Fig C in S1 File). The trimodal distributions

could exist in areas surrounded by the bimodal distributions (Figs C (b) and C (c) in S1 File).

To reproduce the empirical bimodal distributions reported by Ponder and Kennedy [19], the

parameter range of τ was estimated as 4.0–9.0. Within this range, we obtain the trimodal distri-

butions as well (Figs C (b) and C (c) in S1 File).

Discussion

Distributions of spontaneous human blinking

Although the OSD model [9] reproduced the positively skewed, normal, and peak-less distri-

butions of spontaneous human blinking, the model did not reproduce bimodal distributions

within the range of typical parameters. In contrast, the proposed model reproduced all four

distributions including the bimodal one.

Contrary to the previous experimental study [19], the positively skewed distribution was

not the most common among the numerical results of the proposed model: 66, 273 cases

(37.95%) followed a unimodal distributions and only 22, 142 (12.6%) cases were positively

skewed. The normal distributions were also achieved by the binomial nature of inputs, albeit

only in the simplest cases with noiseless inputs and thresholds with a constant value, i.e. σ = 0

and k = 0. In most simulations, however, σ = 0 and k> 0. These results suggest that a noisy sys-

tem reproduces the positively skewed distributions if the threshold varies periodically. One

Table 3. Peaks and means reported in Ref. [19] and the parameter ranges to reproduce these peaks.

Reported in Ref. [19] Parameters of the proposed model

Case First peak Second peak Mean a − k τ Freq.[Hz] Median

1 0.5 3.5 2.05 0.14–0.19 4.0–7.0 0.14–0.25 2.42–2.73

2 0.5 5.0 3.31 0.14–0.16 6.0–8.5 0.12–0.16 3.45–3.86

3 0.5 5.0 3.64 0.14–0.16 6.0–8.5 0.11–0.16 3.45–3.86

4 0.5 6.5 4.12 0.15–0.16 8.0–8.5 0.11–0.13 4.65–4.91

5 1.0 5.5 3.95 0.30–0.35 6.5–9.0 0.11–0.15 3.95–4.65

6 0.5 7.0 4.45 0.15 9.0 0.11 5.03

For case 6, one combination of parameters existed.

https://doi.org/10.1371/journal.pone.0206528.t003
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possibility is that positively skewed distributions are common in previous studies (e.g., [3],

[19]) as a consequence of the ubiquitous noise in biological systems, such as blink generators.

The bimodal distribution was also observed in the experimental study [19], albeit less com-

monly than the positively skewed and normal distributions. To reproduce the bimodal distri-

butions, the differences between baseline and threshold amplitude, i.e. a − k, had to be set at

lower values. When the value of the threshold function was convex downward (Fig 3(c)), the

model elicited a series of blinks within short intervals. Frequent blinking in a short period,

known as “blink bursts” [9], could be explained by the short term decrease of the threshold

function.

In this paper, the proposed model also produced trimodal distributions. The combinations

of the parameters that produce the trimodal distributions were not localized but distributed in

small regions (Fig 4). In future research, we will examine whether or not trimodal distributions

of IBI can be confirmed experimentally. As one of the cases, we consider a viewing task that

requires visual attention. In such a simple perceptional task, we could assume that cognitive

load, i.e., I, is almost task-independent, or obey a stochastic process. The saliency and the stim-

ulus value is well controlled and thus the visual attention is simply regulated by the presenta-

tions of visual targets. Here, k and c could be interpreted as individual factors, sensitivity to the

external stimuli and tendency to induce blink suppressions, respectively. When sensitivity of a

participant becomes higher, this is represented as a larger value of k in the model. The parame-

ter c is a decay term and thus if c is larger, the value V tends to fluctuate under the threshold,

producing prolonged IBIs. Therefore, a larger c corresponds to the tendency to induce blink

suppressions.

Trimodal distributions might be observed when we change the conditional variables that

correspond to k and c in experiments with participants who show bimodal distributions. First,

the targets of visual attention is intermittently presented within 7.5 s, which corresponds to τ.

Second, when sensitivity of a participant k is relatively low, e.g., k = 0.2, the shortest IBI would

be averagely 1.6 s when there is no decay c = 0. Meanwhile, a participant has a moderate ten-

dency of blink suppression, in the range of c = 0.41–0.45, trimodal distributions could be

observed. For this participant, the value V fluctuates under the threshold function because

decay and the input intensity are well balanced, producing prolonged IBIs. However, once the

threshold is convex downward due to disappearance of targets, the value V must hit the thresh-

old function in several hundred milliseconds, resulting a termination of the prolonged IBI.

Two cases can occur after the reset. In one case, it takes a few seconds until the V reaches to

the threshold again because the previous reset occurred approximately at the maximum value

of the threshold function. In another case, short-term sequential blinking is observed if the

previous reset occurred at near the minimum value of the threshold function. As the results,

prolonged IBI and two types of behaviours after reset would produce the trimodal distribu-

tions of IBI.

In more complex task, k corresponds to the integration of task-dependent cognitive loads

as well as individual sensitivity to the external stimuli. Thus, we need considerations on certain

characteristics of the variable threshold when we argue more complex tasks by applying the

proposed model.

The variable threshold and biological oscillations

The results of numerical simulations in this study suggest that the variable threshold plays a

critical role in producing a variety of IBI distributions, especially for the bimodal distribution.

Numerous experimental studies have revealed that the blink rates are regulated by internal

states of the participants during performing cognitive tasks (e.g., [6, 11]). While we assumed
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that the variable threshold represented particular physiological fluctuations, a few plausible

candidates of human internal states exist.

Researchers have reported that dopamine levels in the brain may influence IBI. For exam-

ple, pathologic reduction of dopamine induces a lower frequency of blinking and fewer varia-

tions of IBI [3]. The blinking rate varies depending on the level of tonic and phasic dopamine

[22]. In other words, the frequency of blinking varies in accordance with the innate baseline

and transient states of the dopamine levels. As one possibility, one could speculate that the

threshold fluctuations in the proposed model correspond to phasic dopamine levels. If this

hypothesis is correct, blinking frequencies increase with phasic dopamine levels, reshaping the

distributions of IBI.

Rhythms of human biological systems such as brain waves [23] and attentional fluctuations

[24] could also be candidates. The results of reproduction of the bimodal distributions sug-

gested that relatively slow oscillations (0.11–0.25 Hz) regulate blinks. Recent neurological stud-

ies have found delta-band (0.5–4 Hz) blink-related oscillations (BROs) in a resting sate [25].

One study [23] reported that spontaneous blinks activate precuneus regions related to aware-

ness and monitoring of the environment. Physiological fluctuations represented by the thresh-

old function in the proposed model may relate to such brain waves.

Consistency between the model and the physiological foundations of motor

control

In the proposed LIF model, V represents the changes in an internal value of a blink generator.

Although the location of the blink generator circuit is controversial [3], human blinking must

be involved in the general motor control circuits. There is no major contradiction if we assume

that the integration of cognitive load may correspond to a direct path of excitatory motor con-

trol circuits that increase blinking frequency. On the other hand, inhibitory signals decrease

blinking frequency and therefore can provide less frequent blinks, leading variations of IBI [2],

[3]. The variations of the threshold would be in accordance with an indirect path of inhibitory

motor control circuits. The results on IBI distributions in this paper suggest that a variable

threshold can create two or three types of IBI. When we acknowledge the variable threshold in

the LIF model corresponds to this inhibitory control, we can argue that human blinking rates

vary in a few tens of seconds due to the effect of inhibitory signals [5]. While the LIF models

are often used for a neuron, it also seems that the model would be useful to represent human

blinking as the macroscopic phenomenon that involves multiple brain areas.

Conclusion

In this paper, we proposed a leaky integrate-and-fire model with a variable threshold to model

human spontaneous blinking. The proposed model could reproduce the positively skewed,

normal, and peak-less distributions of IBI. Moreover, the proposed model reproduced the

bimodal distributions, which could not be reproduced by the OSD model at least within the

typical range of parameters.

Parameters that reproduce the temporal locations of peaks in the experimental distributions

reported by a classical study [19] suggest that relatively slow oscillations (0.11–0.25 Hz) govern

blink elicitations. The proposed model also predicts the existence of the trimodal distributions

of IBI and the distributions could be produced by the non-specific parameters. As a possible

mechanism, we can assume that changes in blink rates would reflect fluctuations of threshold

regulated by particular human internal states such as a brain dopamine level or rhythms of

human biological system.
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