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Abstract: Human induced pluripotent stem cells (hiPSCs) and hiPSCs-derived cells have the potential
to revolutionize regenerative and precision medicine. Genetically reprograming somatic cells to
generate hiPSCs and genetic modification of hiPSCs are considered the key procedures for the study
and application of hiPSCs. However, there are significant technical challenges for transgene delivery
into somatic cells and hiPSCs since these cells are known to be difficult to transfect. The existing
methods, such as viral transduction and chemical transfection, may introduce significant alternations
to hiPSC culture which affect the potency, purity, consistency, safety, and functional capacity of
hiPSCs. Therefore, generation and genetic modification of hiPSCs through non-viral approaches
are necessary and desirable. Nanotechnology has revolutionized fields from astrophysics to biology
over the past two decades. Increasingly, nanoparticles have been used in biomedicine as powerful
tools for transgene and drug delivery, imaging, diagnostics, and therapeutics. The most successful
example is the recent development of SARS-CoV-2 vaccines at warp speed to combat the 2019 coro-
navirus disease (COVID-19), which brought nanoparticles to the center stage of biomedicine and
demonstrated the efficient nanoparticle-mediated transgene delivery into human body. Nanopar-
ticles have the potential to facilitate the transgene delivery into the hiPSCs and offer a simple and
robust approach. Nanoparticle-mediated transgene delivery has significant advantages over other
methods, such as high efficiency, low cytotoxicity, biodegradability, low cost, directional and distal
controllability, efficient in vivo applications, and lack of immune responses. Our recent study using
magnetic nanoparticles for transfection of hiPSCs provided an example of the successful applications,
supporting the potential roles of nanoparticles in hiPSC biology. This review discusses the principle,
applications, and significance of nanoparticles in the transgene delivery to hiPSCs and their successful
application in the development of COVID-19 vaccines.

Keywords: nanoparticles; magnetic nanoparticles; human induced pluripotent stem cells; human in-
duced pluripotent stem cells-derived cardiomyocytes; transgene; transfection; nanomedicine; SARS-
CoV-2; COVID-19; vaccine

1. Introduction

Induced pluripotent stem cells (iPSCs) are derived from somatic cells that are geneti-
cally reprogrammed into an embryonic-like, pluripotent state capable of differentiating into
all three germ layers. Since the landmark study reporting iPSCs [1], the field has greatly
expanded [2–6]. Human iPSCs (hiPSCs) have the potential to revolutionize regenerative
and precision medicine by providing a limitless source of differentiated cells for biomedical
research, cell-based therapy, disease modeling, drug testing, and high-throughput drug
discovery in a patient-specific manner [4,5,7,8].

Generation and genetic modification of hiPSCs represent the essential procedures
for the study and application of iPSCs. The methods and platforms for reprogramming
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somatic cells to generate iPSCs have been evolving in the past decade [6,9,10]. For sci-
entific studies and biomedical applications, expression of different tracking markers and
transcription factors in human iPSCs (hiPSCs) is required. With the advent of genome
editing using CRISPR-Cas9 technology [11,12], it has become increasingly feasible to correct
disease-causing mutations in patient-specific hiPSCs in order to create isogenic lines for
disease modeling or potential therapeutics [13,14]. However, there are significant technical
challenges for transgene delivery into hiPSCs since these cells are notoriously difficult to
transfect [15–18]. Currently, the major transgene delivery methods are commonly divided
into two categories: viral and non-viral methods, and the non-viral method is further sub-
divided into chemical, physical, and physicochemical methods (Figure 1). Viral transgene
delivery method has been widely used with high transduction efficiency and capacity of
long-term transgene expression. Four types of viral vectors are widely used in transgene
delivery, including adenoviral, adeno-associated viral, lentiviral, and retroviral vectors.
However, the usage of viral transduction raises safety concerns including cytotoxicity,
cellular immune responses, transgene integration into host genome, and generation of
nonspecific mutations. Non-viral methods, including physical methods such as injec-
tion or electroporation and chemical methods such as lipofection, are potentially safer
alternatives for transgene delivery into hiPSCs. However, their transfection efficiency is
relatively lower [16,17]. Therefore, although multiple methods of genetic modifications
exist, their efficiency, cytotoxicity, safety, and cost remain unsatisfactory [15,18]. Increas-
ingly, nanoparticles have been used in biological research and medicine as powerful tools
for transgene and drug delivery, imaging, diagnostics, and therapeutics [19,20]. A very
successful application of nanoparticles in biomedicine is the extreme fast-pace develop-
ment of SARS-CoV-2 vaccines, which has saved lives and has helped people to resist the
challenges of the COVID-19 pandemic [21–27]. Nanoparticle-mediated transgene delivery
method integrates the strategies and advantages of both the chemical and physical meth-
ods, demonstrating the promising and huge application potential. We therefore put it in
the physicochemical transfection category (Figure 1). This review will discuss principles
and applications of nanoparticles in transgene delivery.
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2. Physical, Chemical, and Biological Properties of Nanoparticles

Over the past two decades, nanotechnology has revolutionized the fields from astro-
physics, semiconductor industry to biology, as evidenced in the rise of nanotechnology-
focused publications and the continued investment in nanotechnology research through
the National Nanotechnology Initiative [28]. Since the 1950s, small-scale technologies
slowly made their way into the semiconductor industry, first through reducing the size of
transistors and then through advancing toward molecular electronics [29]. Today, the semi-
conductor industry has embraced new forms of nanoscale technology in two-dimensional
materials and flexible circuit boards.

Nanoparticles are microscopic structures with at least one dimension less than 100 nm,
which subsequently demonstrate novel physical and chemical properties from their bulk
materials [30,31]. The most important properties on a nanoscale is the increased surface
area to volume ratio. The increasing surface area to volume ratio leads to an increase
in the dominance of the surface atoms of the nanoparticle over those in its interior [30].
The shape of the nanoparticles varies from spherical to a variety of other shapes such as
cube, prism, hexagon, octahedron, disk, wire, rod, tube, etc. Based on the properties of
composite materials, nanoparticles can be classified into simple and core/shell (composite)
nanoparticles [30]. Simple nanoparticles are made from one material. Whereas, core/shell
particles are made of two or more materials. The core/shell type nanoparticles consist of
a core (inner material) and a shell (outer layer material). The material combinations of
core and shell include inorganic/inorganic, inorganic/organic, organic/inorganic, and or-
ganic/organic materials [30]. The choice of shell material is critical and strongly dependent
on the end application purpose. During the production process, several properties of
nanoparticles such as dimensions, uniformity, surface area, and superparamagnetism can
be well controlled for specific applications. At room temperature, using the simple “par-
ticle in a box” model from quantum mechanics, we expect to see quantum phenomena
arise for systems a few nanometers in length. At these scales, classical conceptions of
physics become less able to describe physical phenomena. It is also around these scales
that nanotechnologies, such as quantum dots and nanoparticles, operate.

3. Nanoparticles in Biomedicine

While molecular electronics has yet to truly take hold in the electronics industry,
the rise of nanotechnology has brought new-found applications in the field of biomedicine.
The major classes of nanoparticles in biomedical applications include lipid-based nanoparti-
cles, inorganic nanoparticles and polymeric nanoparticles. Lipid-based nanoparticles are or-
ganic nanoparticles with various structures, typically spherical with lipid bilayer wrapping
at least one internal aqueous compartment, and classically exemplified as liposomes. Lipid-
based nanoparticles have many advantages including formulation simplicity, less toxicity
for in vivo application, biocompatibility, high bioavailability, larger payloads, and a range
of physicochemical properties that can be controlled to modulate their biological characteris-
tics [32]. Therefore, lipid-based nanoparticles are the most common class of FDA-approved
nanomedicines [33]. Lipid-based nanoparticles are typically composed of phospholipids,
which are the major components of biological membranes. Inorganic nanoparticles are
usually made of inorganic materials, which can be precisely formulated with a variety
of sizes and surface areas, structures and shapes. Inorganic nanoparticles have unique
physical, electrical, magnetic and optical properties due to the properties of the core ma-
terial. The coatings of the inorganic nanoparticles can be modified to define the surface
properties for multiple biomedical applications. Iron oxide is a commonly used material
for inorganic nanoparticles synthesis, and iron oxide nanoparticles make up the majority
of FDA-approved inorganic nanomedicines [32,34]. Polymeric nanoparticles are organic
nanoparticles usually synthesized by natural or synthetic materials, as well as monomers or
preformed polymers with a variety of structures and properties. The most common types of
polymeric nanoparticles are nanocapsules and nanospheres. Within these two large categories,
polymeric nanoparticles are further divided into polymersomes, micelles, and·dendrimers
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based on shapes [32]. The inorganic nanoparticles are usually coated (core/shell or composite)
by polymers to gain the surface properties in biomedical application.

As outlined in Figure 2, nanotechnology has wide-spread applications in biological
system such as biomarkers, imaging, diagnostics, and therapeutics. Advances in medical
imaging through nanomaterial-based technologies have led to improved results in optical,
nuclear, ultrasound, and magnetic resonance imaging (MRI) [35–37]. Some of the earliest
advances made use of paramagnetic iron oxide particles to image cancerous tissue in lymph
nodes [38]. More recent applications have drawn from novel quantum physics structures,
such as quantum dots [39,40], liposomes [41], nano-shells [42], and nanotubes [40,43] to
target biomarkers. These technologies allow for the targeting of various structures and
tissues for imaging purposes, greatly improving the accuracy of diagnoses.

Nanoparticles have also found place in nucleic acid and drug delivery and nano-
therapeutics. The nanoparticles used in drug delivery include protein-drug conjugated,
polymer-based, liposomal, and dendrimer-based [44]. Nucleic acids and drugs can be
physically or chemically conjugated to the polymer for delivery. This facilitates delivery of
various payloads including hydrophobic and hydrophilic compounds, as well as cargos
with different molecular weights such as small molecules, macromolecules including nu-
cleic acids, proteins and vaccines. These applications make polymeric nanoparticles ideal
for delivery applications in biological system. By modulating properties such as composi-
tion, stability, responsivity, and surface charge of the polymeric nanoparticles, the loading
efficacies and release kinetics of these therapeutics can be precisely controlled [32]. Tar-
geting techniques for cancer treatments [44] include passive targeting reliant on passive
accumulation [45], active targeting using receptors [46], or triggered targeting through pH-
based [47] or external stimuli such as UV-light [48], ultrasound [49], or electric and magnetic
field [50]. Similar techniques have also been applied for neurological and cardiovascular
disorders [51].
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With advances in nanotechnology and nanoparticle production techniques, the avail-
ability and flexibility of nanoparticle platforms have significantly increased. Lipid-based



Pharmaceuticals 2021, 14, 334 5 of 18

nanoparticles have been employed in the novel mRNA vaccines as those recently made against
the SARS-Cov2 coronavirus [21–27]. These vaccines employ lipid-based nanoparticle capsules
which carry the mRNA for coding the spike protein of the virus. The biological applications
of nanoparticles continue to increase quickly as manufacturing techniques improve.

New technologies based on nanotechnology have been transformed into numerous
biological applications, and the use of nanoparticles for targeted delivery has undoubtedly
improved drug delivery capabilities. Magnetic nanoparticles are of particular interest due
to their ability to be drawn to specific tissues reliably and with little disruption to the tissue
itself [52–56]. As such, they represent an important branch within nanotechnology with
significant potential for application, for example, in transfection of hiPSCs.

4. Nanoparticles in the Development of COVID-19 Vaccines

Since the emergence of the 2019 coronavirus disease (COVID-19) caused by the se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there have been approx-
imately 115 million confirmed cases globally and about 2.6 million global deaths as of
4 March 2021 [57]. Consequently, and expectedly, vaccine development has since acceler-
ated as more structural information about SARS-CoV-2 and its variants becomes available.
Currently, the four major structural proteins that may produce an immune response are the
spike protein, nucleocapsid protein, membrane protein, and the envelope protein [58–60].
The most common target is the SARS-CoV-2 spike protein, which mediates cellular entry
via the angiotensin-converting enzyme 2 (ACE2) cell receptor [61]. As rapid development
of vaccines continues, the practicality and versatility of nanoparticles in COVID-19 vac-
cine formulation become more apparent [27,62]. In contrast to previously conventional
vaccines that took advantage of live-attenuated, inactivated, or killed forms of a particu-
lar pathogen, these nanoparticle-based vaccines may be synthetic or virus-like particles
(VLPs) that encapsulate nucleic acids or antigens or present conjugated-antigens on the
surface [27]. Additionally, nanoparticles may be engineered to perform target-specific
deliveries to antigen presenting cells (APCs) at specific regions in the body [63,64] and may
even serve as adjuvants to accentuate immunogenicity by producing more robust cellular
and humoral immunity [65].

Pertinent to the pandemic, the utilization of nanoparticles/nanocarriers has made
headlines, as BioNTech/Pfizer [66] and Moderna [67] both developed mRNA COVID-19
vaccines using lipid-based nanoparticles [23], which demonstrated 94–95% efficacy in
clinical trials [68]. These nanoparticles ensure effective delivery of mRNA into cells where
they get translated into the spike protein that would subsequently trigger an immune
reaction. Lipid-based nanoparticles, however, are just one of a few broad categories of
nanoparticle delivery platforms that have been used for COVID-19 vaccine development.
In addition to lipid-based delivery vehicles like liposomes, polymeric (e.g., polylactide,
chitosan), metal and nonmetal inorganic (e.g., gold, silica, silver), and VLPs nanoparti-
cles may be engineered and exploited (Figure 3) [27,62,69]. Indeed, the most recently
approved COVID-19 vaccine in the United States is the Johnson & Johnson (J&J) vaccine,
which utilizes an adenovirus that carries a SARS-CoV-2 DNA particle that codes for the
spike protein [70]. Despite the relatively low 66% overall efficacy of the J&J vaccine, it is
relatively stable at room temperature and does not require ultracold storage conditions like
the BioNTech/Pfizer and Moderna vaccines, which makes vaccine distribution to under-
privileged and underdeveloped areas more feasible. These three FDA-approved COVID-19
vaccines are not the only ones that have used nanoparticle technology. Many COVID-19
vaccine candidates from all around the world to some extent have employed nanoparticles,
as they operate on the same size scale [25,27]. The rapid development and subsequent
FDA approval in record time have illuminated the great potential for nanoparticle technol-
ogy in vaccine development. Indeed, the challenges of the pandemic have presented an
opportunity to refine this wonderful technology.



Pharmaceuticals 2021, 14, 334 6 of 18

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 6 of 20 
 

 

cellular entry via the angiotensin-converting enzyme 2 (ACE2) cell receptor [61]. As rapid 
development of vaccines continues, the practicality and versatility of nanoparticles in 
COVID-19 vaccine formulation become more apparent [27,62]. In contrast to previously 
conventional vaccines that took advantage of live-attenuated, inactivated, or killed forms 
of a particular pathogen, these nanoparticle-based vaccines may be synthetic or virus-like 
particles (VLPs) that encapsulate nucleic acids or antigens or present conjugated-antigens 
on the surface [27]. Additionally, nanoparticles may be engineered to perform target-spe-
cific deliveries to antigen presenting cells (APCs) at specific regions in the body [63,64] 
and may even serve as adjuvants to accentuate immunogenicity by producing more ro-
bust cellular and humoral immunity [65]. 

Pertinent to the pandemic, the utilization of nanoparticles/nanocarriers has made 
headlines, as BioNTech/Pfizer [66] and Moderna [67] both developed mRNA COVID-19 
vaccines using lipid-based nanoparticles [23], which demonstrated 94–95% efficacy in 
clinical trials [68]. These nanoparticles ensure effective delivery of mRNA into cells where 
they get translated into the spike protein that would subsequently trigger an immune re-
action. Lipid-based nanoparticles, however, are just one of a few broad categories of na-
noparticle delivery platforms that have been used for COVID-19 vaccine development. In 
addition to lipid-based delivery vehicles like liposomes, polymeric (e.g., polylactide, chi-
tosan), metal and nonmetal inorganic (e.g., gold, silica, silver), and VLPs nanoparticles 
may be engineered and exploited (Figure 3) [27,62,69]. Indeed, the most recently approved 
COVID-19 vaccine in the United States is the Johnson & Johnson (J&J) vaccine, which uti-
lizes an adenovirus that carries a SARS-CoV-2 DNA particle that codes for the spike pro-
tein [70]. Despite the relatively low 66% overall efficacy of the J&J vaccine, it is relatively 
stable at room temperature and does not require ultracold storage conditions like the Bi-
oNTech/Pfizer and Moderna vaccines, which makes vaccine distribution to underprivi-
leged and underdeveloped areas more feasible. These three FDA-approved COVID-19 
vaccines are not the only ones that have used nanoparticle technology. Many COVID-19 
vaccine candidates from all around the world to some extent have employed nanoparti-
cles, as they operate on the same size scale [25,27]. The rapid development and subsequent 
FDA approval in record time have illuminated the great potential for nanoparticle tech-
nology in vaccine development. Indeed, the challenges of the pandemic have presented 
an opportunity to refine this wonderful technology. 

 

Figure 3. Potential applications of nanoparticles in the development of COVID-19 vaccines. Fig-
ure generated using BioRender.

5. Magnetic Nanoparticles

The application of magnetic particles in medicine can be dated back to the 1950s
when Gilchrist et al. used a magnetic field-heated metallic particles to destroy metastasis
in lymph nodes missed at operation [71]. Magnetic particles were progressively used
as the supportive materials and tools in many applications including enzyme immobi-
lization, drug delivery, and cell separation [54,72–74]. Most materials that we consider
“magnetic” in fact exhibit a specific type of magnetism, called ferromagnetism. In these ma-
terials, the internal magnetic dipoles are aligned and thus react, in bulk, to magnetic fields.
Other types of materials, such as paramagnetic materials, also interact with magnetic fields,
though much more weakly than ferromagnetic materials [75,76]. Magnetic fields interact
with paramagnetic materials by inducing internal magnetic fields. Both ferromagnetic
and paramagnetic materials are then attracted to the poles of the field, just as iron filings
are attracted to the two ends of a bar magnet. Magnetic nanoparticles are characterized
by their response to external magnetic field and their size of around a hundred nanome-
ters [75]. They usually have an inorganic iron oxide core with organic or inorganic shell or
coating. Their size means that, at room temperature and even less so at body temperatures,
they tend not to exhibit quantum behavior. However, they also become extremely useful
for applications on the cellular level.

The essential magnetic properties of nanoparticles offer potential application possibili-
ties which are of great biomedical interest [77]. Magnetic nanoparticles have application in
in vivo imaging, targeted drug delivery, transgene delivery, and image guided diagnosis
and therapy [52–56,75,77]. They were also used in a range of cells, from cancerous cells to
hiPSCs and hiPSC-derived cells. Specifically, they have been successfully used to deliver
transgenes to hiPSC-derived cardiomyocytes [78]. Here, magnetic nanoparticles serve as
an essential alternative for hiPSC transfections due to higher efficiency and better targeting.
In all cases, the magnetic quality of these nanoparticles facilitates control and detection
through magnetic fields.

The most common nanoparticle used for drug delivery applications are superpara-
magnetic iron oxide nanoparticles [79]. They exhibit a specific type of paramagnetism,
called superparamagnetism, which occurs for small particles of ferromagnetic materials.
Superparamagnetic nanoparticles around 10–100 nm in size exhibit strong magnetic be-
havior under a magnetic field and act as a single magnetic domain. As shown in Figure 4,
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the internal magnetic field of superparamagnetic nanoparticles fully align, as one domain,
with external magnetic fields. However, in the absence of a magnetic field, they do not
produce their own field. For biological applications, superparamagnetic nanoparticles are
given an inorganic or organic coating, onto which the drug or nucleic acid is loaded [78,79].
For example, for the transfection of hiPSCs, a superparamagnetic iron oxide nanoparticle
is usually coated with specific proprietary cationic molecules with which transgenes can
be associated. The transgene-bond magnetic nanoparticles can be magnetized, directed
to, and concentrated on the cell surface using a magnetic plate. A similar technique can
be used to direct nanoparticles in three-dimensional space using advance magnetic field
techniques. These particles have already proved useful for targeted imaging techniques
based on MRI technology [80]. Similar strategies were used for directed drug delivery [81].
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6. HiPSCs and hiPSC-Derived Cardiomyocytes (hiPSC-CMs)

iPSCs came to the center stage in stem cell biology and regenerative medicine since
the original publication and description of iPSCs [1]. HiPSCs are emerging as a promis-
ing strategy with potentials to revolutionize tissue engineering, industrial and personal-
ized drug testing and screening, human disease modeling and treatment, and precision
medicine [5,82]. HiPSCs are of human origin carrying complete human genomes, and they
are pluripotent, a potential to be differentiated into any types of human somatic cell types.
HiPSCs are stems cells that have the capacity of self-renewal, can be turned on or off to
stay in activate state or quiet state, and can be expanded from a single cell to limitless
numbers of cell progeny. HiPSCs from patients carry the complete genetic information of
the individual, and may work as a template and model system for genome editing and
correction to investigate and treat human genetic disorders and diseases. HiPSCs from
patients with monogenic diseases can faithfully recapitulate the disease phenotypes in vitro
when they are differentiated into disease-relevant cell types. Therefore, hiPSCs provide
powerful tools and inexhaustible resources for potential applications in biomedicine.

Heart disease is the leading cause of mortality for men, women, and people of most
racial and ethnic groups in the United States, and causes more deaths than all cancers
combined, and costs about 219 billion each year from 2014 to 2015. About 655,000 people die
of heart disease in the United States every year (1 in every 4 deaths) (https://www.cdc.gov/
heartdisease/facts.htm, accessed on 5 March 2021). Coronary heart disease, or ischemic
heart disease, is the most common type of heart disease, killing 365,914 people in 2017
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in the United States. The major damage of coronary heart disease to human heart is the
massive loss of functional cardiomyocytes in ischemic myocardium. Cardiac specification
occurs very early during embryonic development, and the heart has very limited intrinsic
capacity to regenerate and repair the damaged tissue, leading to high morbidity and
mortality. It is clearly inadequate to reverse the damaged cardiac function following injury.
To repair the damaged cardiac tissues, multiple approaches for increasing cardiomyocyte
numbers in the injured adult heart have been proposed. Transplantation of in vitro derived
cardiomyocytes into the injured area is an important approach for cell-based therapy.
HiPSCs provide the limitless and patient-specific stem cell sources for differentiation and
generation of cardiomyocyte-like cells. The American Heart Association has published
a scientific statement to address the hiPSCs for cardiovascular disease modeling and
precision medicine, highlighting the importance, strategies, opportunities and challenges
of hiPSCs and hiPSC-CMs in cardiovascular medicine and biomedical applications [83].
Patient and disease-specific hiPSC-CMs provide unprecedented opportunities to discover
new drug targets and screen compounds for cardiovascular disease, which will vastly
improve the ability to test drugs efficiently, as well as tailor and titrate drug therapy for
each patient [84]. Transplantation of hiPSC-CMs to the diseased heart has been intensively
tested in preclinical and clinical studies, and has demonstrated to be a promising cell-based
strategy for the treatment of cardiovascular diseases despite many challenges [85–87].
The use of patient somatic cell-reprogrammed iPSCs may help to circumvent potential
immunogenicity of the transplanted iPSC-CMs.

7. Nanoparticles in iPSC Generation and Precision Medicine

For generation of iPSCs, somatic cells need to be reprogramed by expression of a set of
transcription factor genes. The original mouse iPSCs were established by retrovirally intro-
ducing four transcription factors (c-Myc, Oct3/4, Sox2, and Klf4) into mouse fibroblasts [1].
Viral transduction is an efficient way to deliver the transgenes into the cell. However,
the usage of viral transduction has safety concerns including cytotoxicity, cellular immune
responses, transgene integration into host genome, generation of nonspecific mutations,
oncogenesis and teratoma development in therapeutic use. Therefore, generating iPSCs
through a non-viral approach is necessary and desirable. Nanoparticle-mediated transgene
delivery stands out to be an efficient method for the generation of iPSCs. Using polyami-
doamine dendrimer-modified magnetic nanoparticles as a delivery system, Ruan et al.
developed a delivery method by transfecting 293T cells by four transcription factor genes
including Oct4, Sox2, LIN28, and Nanog, and packaging plasmids such as PSPAX2 and
PMD2.G, and finally the resultant supernatant was incubated with human fibroblast cells
to generate iPSCs [88]. Biodegradable cationic polymer PEI-coated super paramagnetic
nanoparticles were first reported to be used for direct generation of iPSCs from fibroblasts
by transgene delivery and expression [89]. A similar approach using liposomal mag-
netofection (LMF) method for iPSC generation from mouse embryonic fibroblast cells
was reported [90]. Other cation polymers such as poly-β-amino ester nanoparticles were
also used to package the plasmid DNAs for their delivery to somatic cells to generate
iPSCs [91,92]. Arginine-terminated generation 4 polyamidoamine (G4Arg) nanoparticles
were successfully used for the delivery of a single plasmid construct carrying the four
transcription factors into mouse embryonic fibroblasts to generate iPSCs [93]. Recently,
several other types of nanoparticles were used for the reprograming of somatic cells to
iPSCs including octadecylamine-based cationic lipid nanoparticles [9,94]. In addition,
protein and peptide-based systems were used to reprogram somatic cells to iPSCs [95–98].
Nanoparticles were used for the encapsulation and conjugation of the peptides for deliv-
ery and functional integration [99–102]. The combination of peptide-based system and
nanoparticles will provide a new powerful tool for iPSC generation and application.

iPSCs are undifferentiated and pluripotent cells that can be directed to differentiate
into specialized cells guided by intrinsic or external cues [6,103]. Differentiation of iPSCs
into specific cells depends on the expression of specific genes. The forced differentiation of
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iPSCs needs to be guided by external cues. Transgene delivery of inducing factors is one of
the efficient ways for guiding iPSCs differentiation. However, iPSCs are difficult to transfect.
Nanoparticles emerged as a novel tool for transgene delivery to iPSCs. Mesoporous silica
nanoparticles (MSNs) were utilized and evaluated for the generation of iPSCs [104,105].
The study shows that FITC-conjugated MSNs (FMSNs) could be used as suitable carriers
for biomolecule delivery and labeling of iPSCs. FMSNs of various surface charges could be
efficiently internalized by iPSCs without causing cytotoxicity. We recently reported that
magnetic nanoparticles can be successfully and efficiently used for the transfection of iPSCs
and iPSC-CMs [78]. In addition, nanoparticles have also been widely used in the transgene
delivery and differentiations of adult stem cells and embryonic stem cells, which have been
discussed in a recent review [20].

Patient-specific iPSCs derived cells allow individualized disease modeling, drug screen-
ing, and drug testing for precision medicine. As we discussed above, nanoparticles play
critical roles in generating the patient-specific iPSCs and the derived cells by providing a
new transgene delivery tool. Moreover, nanoparticles can also be engineered for imaging,
cell tracking, drug delivery, and tissue engineering in a more personalized manner [32,106].

8. Transgene Delivery to hiPSCs Using Nanoparticles

HiPSCs and hiPSCs-derived cells have the potential to revolutionize regenerative,
therapeutic, and precision medicine. hiPSCs represent a stable, limitless and inexhaustible
source of cells for targeted differentiation into somatic cells for the downstream clinical and
research applications. However, the quality-controlled culture and production of hiPSCs
require highly specific culture protocols and conditions, including the defined components
of culture medium, durations, and microenvironment [82,107,108]. Disruptions associ-
ated with the existing transgenic methods during the genetic modifications, such as viral
transduction and chemical transfection, may introduce significant alternations to cell cul-
ture which will affect the potency, purity, consistency, and functional capacity of hiPSCs.
Therefore, physical transfection methods may be better ways for the transgene delivery
with minimum interference to the normal culture process. For example, electroporation
has been reported as an efficient transgene delivery approach [109]. However, its clear
disadvantage lies in high voltage-induced damage to cells as well as nonspecific transport
of molecules in or out of the cells and disturbance to cellular homeostasis [110]. Magneti-
cally enhanced nucleic delivery (magnetofection), first reported in 2000 with experimental
evidence [53], has the potential to advance physical transgene delivery. Moreover, the su-
perparamagnetic nanoparticles were later used for enhancing the transgene delivery [111].
Since then, magnetic nanoparticles have been widely used in the transgene delivery to the
cells [53,81,112–114]. The principle of the magnetofection using magnetic nanoparticles is
shown in Figure 5.

Magnetofection using magnetic nanoparticles in stem cells was first reported in trans-
gene delivery to neural precursor and stem cells [115,116] and then human mesenchymal
stem cells [117]. The results demonstrated an enhanced transfection with negligible toxi-
city. There are no adverse effects observed on stem cell proliferation and differentiation.
Since then, the magnetic nanoparticles have been extensively used in transgene delivery
to stem cells [118–120]. Therefore, magnetofection using magnetic nanoparticles offers a
simple and robust approach for transgene delivery to stem cells. However, whether the
iPSCs and iPSC-derived cells can be efficiently transfected or not by magnetic nanoparticles
is still not tested or addressed.

We proposed and tested the transfection of hiPSCs using commercially available
magnetic nanoparticles [78]. A schematic representation of the experimental protocol
was shown in Figure 6. The transfection was conducted following the manufacturer’s
instructions (Neuromag, OZ Biosciences Inc., San Diego, CA, USA) and published meth-
ods [121,122]. The magnetic nanoparticles are positively charged, with a zeta > +30 mV in
water. The size of the nanoparticles ranges from 140 to 200 nm with the majority around
160 nm, and the particle population is homogeneous. Briefly, plasmid DNAs (pIRES2-
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EGFP, Clontech Laboratories, Inc., Mountain View, CA, USA or a double fusion construct
(an integrating vector) with green fluorescence protein (GFP) [123].) were diluted in cell
culture medium, and the nanoparticles reagent was added to the culture medium contain-
ing DNA. After brief vortexing and 20-min incubation at room temperature, the medium
containing the DNA/nanoparticle complexes was added to the cell culture dish. The dish
was then placed on a magnetic plate and incubated in a cell culture incubator for 1, 2,
and 4 h. Cells were harvested or differentiated after 24–48 h of transfection. For comparison,
lipofectamine 2000 and 3000 (Thermo Fisher Scientific, Waltham, MA, USA) were used.

We first tested the double fusion construct, and the confocal microscopic images of
transfected cells are shown in Figure 7A. Flow cytometric analyses were used to directly
quantify nanoparticle-mediated transfection in HEK 293 cells and hiPSCs (Figure 7B,C).

We further tested the transfection using a non-integrating GFP construct (pIRES2-
EGFP) and optimized the time needed for magnetofection (Figure 8A,B). We note a signifi-
cant increase in percentages of GFP-positive hiPSCs using 4 h of magnetofection. Impor-
tantly, there was a significant increase in the efficiency of transfection using magnetofection
compared to lipofetamine-2000 and -3000 (Figure 8C).
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were detected from the GFP expression in the cells. (C). Summary data from D (* p < 0.05, n = 3–7).
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(A). Flow cytometric analysis of pIRES2-EGFP-transfected hiPSCs using 1, 2, and 4 h of magnetofec-
tion. (B). Summary data from A (* p < 0.05, n = 3–7). (C). Comparison of the transfection efficiency
of hiPSCs using pIRES2-EGFP vector and lipofectamine-2000, -3000 and nanoparticle-mediated
transfections. Four hours of transfection was used for all the conditions (* p < 0.05, n = 3–7).

9. Transfection of hiPSC-CMs Using Nanoparticles

HiPSC-CMs hold great promise for cardiac repairments and regenerations, disease mod-
eling, drug discovery, and toxicology evaluation [84,124–126]. A large number of studies
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have refined the techniques for efficient directed-differentiation of hiPSCs into cardiomy-
ocytes [127]. In addition, multiple studies have provided evidence for the application
of hiPSC-CMs in cardiac transplantation in animal models [128]. Cardiomyocytes are
terminally-differentiated and highly organized somatic cells. Transgene delivery to hiPSC-
CMs by traditional chemical and viral transfection methods have been met with challenges
such as low efficiency and cellular toxicity [129]. To investigate magnetic nanoparticles as
a possible alternative to existing methods, we tested their ability to deliver transgenes into
iPSC-CMs.

In our study, one possible concern using magnetofection is whether the procedure may
alter the differentiation efficiency of hiPSCs. Here, we first compared the differentiation
efficiency between control (non-transfected) and transfected hiPSCs into cardiomyocytes
(CMs). The hiPSC-CMs exhibited large beating clusters with spontaneous firing APs, consis-
tent with populations of ventricular-like, atrial-like, and nodal-like APs (Figure 9A,B) [124].
There were no significant differences in the efficiency of differentiation into cardiomy-
ocytes between control hiPSCs and GFP-transfected hiPSCs using magnetic naonoparticles
(Figure 9C,D). We further evaluated the efficiency of magnetofection in hiPSC-CMs. By us-
ing flow cytometric analysis of both myosin heavy chain (MyHC) and GFP positive cells,
we directly demonstrated that magnetofection was more efficient than lipofectamine not
only in hiPSCs, but also in hiPSC-CMs (Figure 9E,F) using pIRES2-EGFP construct.
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microscopic images of GFP-transfected hiPSC-CM. Scale bar is 10 µm. (B). hiPSC-CMs exhibit sponta-
neous APs with ventricular-like, atrial-like, and nodal-like characteristics. The dotted line represents
0 mV. (C,D) Assessment of the efficiency of differentiation into cardiomyocytes (CMs) in control
hiPSCs compared to hiPSCs transfected with double fusion construct using magnetic nanoparticles by
analysis of myosin heavy chain (MyHC) positive cells. Summary data are shown in the right panels.
(E,F) Comparison of the transfection efficiency in double positive hiPSC-CMs (MyHC+/GFP+) using
pIRES2-EGFP vector and lipofectamine-2000, -3000, and nanoparticle-mediated magnetofections.
Data were collected 4 h after transfection (* p < 0.05, n = 3).

10. Conclusions and Perspectives

Since the original and landmark description of iPSCs, the iPSCs technology has been
rapidly and extensively applied in biological research, and regenerative and precision
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medicine. HiPSCs provide a limitless source of human cell types needed for therapeutic,
research, disease modeling, and precision medicine [4,5,125,126]. Generation and genetic
modification of iPSCs are essential procedures for studies and applications of hiPSCs
in biomedicine, which rely on the technical advances in the field to facilitate and pro-
mote the iPSC biology. Nanoparticles have diverse applications in biomedicine including
nanoprobes and sensors, enhanced imaging, magnetic separation, drug and transgene de-
livery, hyperthermia and cancer therapy [19,52,53,55,56,77,81,112,114,130–132]. The most
successful example is the recent development of SARS-CoV-2 vaccines as we discussed
above. Nanoparticle-mediated gene transfer offers significant advantages over other gene
transfer methods, such as high efficiency, low cytotoxicity, biodegradability, low cost,
directional and distal controllability, efficient in vivo applications, and lack of immune
responses [53,54,115,116,121,122]. The two cutting-edge fields of iPSCs and nanoparti-
cles empower the cross-field development of novel techniques. The possible limitation
may come from the cytotoxicity of nanoparticles, which results from the accumulation
of nanoparticles in endosomes and/or vacuoles in cells [133,134]. However, iron oxide
nanoparticles will be degraded through normal iron metabolism over time, although the
mechanism is still not well understood [19,53]. A recent study addressed the long-term fate
of the intracellular magnetic nanoparticles in mesenchymal stem cells and found substan-
tial degradation. Stem cells may even be re-magnetized after degradation of nanoparticles,
demonstrating the ability of biosynthesizing new magnetic nanoparticles from iron released
in the cytosol from the degradation [135]. The natural magnetism produced by human
stem cells is the key process to avoid long-term cytotoxicity of nanoparticle intake and will
help to develop new tools for nanomedicine. Moreover, the distal control of nanoparticles
by magnetic fields will further potentiate the in vivo application and delivery of nucleic
acids to specific organs for targeted gene therapy [54]. Finally, there exist unmet needs
for designing, developing, and producing nanoparticles for precision and personalized
medicine [106,136–139]. Therefore, nanoparticle application in iPSCs will have unmatched
potential in regenerative and personalized medicine.
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