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Background: Lymphoma is a common malignant tumor in children. The pathologic subtyping of 
lymphoma is high complex, and the treatment options vary. The different pathologic subtypes of lymphomas 
have no significant differences on computed tomography (CT) images. As it is a hematologic disease, 
patients with lymphoma often show abnormalities in the spleen, and so the aim of this study was to construct 
a model for differentiating Burkitt lymphoma (BL) from lymphoblastic lymphoma through the extraction of 
radiomic features of the spleen from CT images. This could provide an efficient, noninvasive method that 
can differentiate the common pathological subtypes in patients with pediatric lymphoma. 
Methods: The clinical data and imaging data of 48 patients with lymphoblastic lymphoma and 61 patients 
with BL were retrospectively analyzed. The dataset was divided into a training set (n=76) and a test set 
(n=33) through complete randomization. Radiomics features of the spleen were separately extracted from 
CT images in the noncontrast enhanced, arterial, and venous phases. These phase-specific features were 
integrated to construct fusion models. Three classifiers, quadratic discriminant analysis (QDA), logistic 
regression (LR), and support vector machine (SVM), were employed to build the models. 
Results: The fusion model exhibited superior performance compared to individual models. There was no 
significant difference between the fusion models constructed by QDA and LR in either the training set or 
the test set. Among the four fusion models constructed with the SVM classifier, SVM_4 emerged as the best 
performing model. The area under the curve, sensitivity, specificity, and F1-score of the SVM_4 model were 
0.967 [95% confidence interval (CI): 0.935–0.998], 0.86, 0.97, and 0.913 in the training set, respectively, and 
0.754 (95% CI: 0.584–0.924), 0.611, 0.867, and 0.71 in the test set, respectively. 
Conclusions: The radiomics features of the spleen demonstrated the capability to distinguish between the 
two most common lymphoma subtypes in pediatric patients. This noninvasive approach holds promise for 
efficient and accurate discrimination.
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Introduction

Lymphoma, a hematological disease, has a complex set of 
subtypes and is one of the most common malignancy among 
both adult and pediatric patients (1,2). However, children 
and adults with lymphoma have significantly different 
pathologic subtypes in clinical practice. For example, 
Hodgkin lymphoma exhibits a bimodal distribution, peaking 
between the ages of 15 and 30 years and again in patients 
aged >55 years; however, it is rare among pediatric patients 
under the age of 5 years (3). Diffuse large B-cell lymphoma 
(DLBCL) is a non-Hodgkin lymphoma (NHL) and has 
the highest incidence among adult patients (4). Burkitt 
lymphoma (BL) and lymphoblastoid lymphoma (LBL) are 
the two most prevalent subtypes in pediatric patients (5), and 
these two subtypes have distinctly different therapy protocols 
in clinic (6,7). Therefore, accurate diagnosis of pathological 
subtypes of lymphoma is critical to effective clinical practice.

Image examinations play an important role in the 
staging of lymphoma (8). Enhanced computed tomography 
(CT) is the most commonly used imaging modality for 
directly visualizing enlarged lymph nodes and extranodal 
organ involvement. Although different subtypes are 
associated with different typical imaging features (9,10), 
accurate diagnostic pathologic typing from images remain 
challenging. For instance, in some cases, the patients do not 
manifest enlarged lymph nodes, and in some CT images, 
the scanning range does not contain enlarged lymph nodes, 
which makes it even more difficult to diagnose lymphoma 
on CT.

The spleen is the major lymphatic organ in the human 
body, and most of the studies on the spleen in those with 
lymphoma have focused on examining the involvement of 
spleen (11-14). Although the spleen in some adult patients 
with lymphoma exhibits no obvious abnormalities on 
conventional images, radiomic features of the spleen can 
still be used to differentiate common subtypes of adult 
lymphoma (15). Therefore, we believe that CT images of 
the spleen hold the potential to yield more comprehensive 
insights into lymphoma. Radiomics, as an emerging 
technology, can reflect tissue heterogeneity in conventional 
images (16) by extracting a massive number of features 

images for high-throughput, quantitative analysis (17). 
Therefore, the purpose of this study was to identify LBL 
from BL using radiomics features of the spleen. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-122/rc).

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Ethics Committee of the Children’s 
Hospital of Chongqing Medical University (issue No. 
386[2023]; date: 2023.8.20). The requirement of individual 
consent for this retrospective analysis was waived.

Patients

A retrospective analysis of patients with BL and LBL 
who attended the Children’s Hospital of Chongqing 
Medical University was conducted. We collected the data 
of 279 patients with pediatric lymphoma treated from 
2012 to 2023. The inclusion criteria were as follows: (I) 
pathologically confirmed BL or and LBL and (II) complete 
noncontrast, arterial-phase, and venous-phase CT images. 
Meanwhile, the exclusion criteria were as follows: (I) 
incomplete spleen on CT images, (II) incomplete images or 
poor image quality, and (III) previous treatment. Data from 
61 patients with BL and 48 patients with LBL treated from 
2012 to 2023 were collected. The oldest patient at the time 
of the initial consultation was no more than 18 years old. 
The mean imaging date for patients with LBL was August 
15, 2018, and that for those with BL was June 2, 2019. The 
flowchart of patient inclusion is shown in Figure 1. 

CT image acquisition

Transverse-axis scanning was performed using a LightSpeed 
VCT 64-row spiral CT machine (GE HealthCare, Chicago, 
IL, USA) and a Brilliance iCT 256-row spiral CT machine 
(Philips, Amsterdam, the Netherlands) under the following 
parameters: tube voltage, 80–110 kV; automatic adjustment 
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279 patients were collected between 
November 2012 and February 2023

Exclusion criteria:
(I)	 Incomplete spleen on CT images
(II)	 Incomplete images or poor 

image quality
(III)	Patient has received previous 

treatment

Inclusion criteria:
(I)	 Patients with pathologically 

confirmed Burkitt’s lymphoma and 
lymphoblastic lymphoma

(II)	 Complete unenhanced, arterial-
phase, and venous-phase CT images

109 patients were enrolled in this study

Lymphoblastic lymphoma 
(n=48)

Burkitt’s lymphoma 
(n=61)

Figure 1 Flowchart of patient inclusion in the study. CT, computed tomography.

of tube current; layer thickness, 5.0 mm; and layer spacing, 
5.0 mm. As an uncooperative patient can result in lower 
image quality, we sedated any patients who were unable to 
cooperate after obtaining consent from the patient’s parents 
using 10% chloral hydrate (0.5 mL/kg) administered orally 
or intramuscular phenobarbital sodium injection (5 mg/kg).

Segmentation, preprocessing, and feature extraction

CT images of the spleen in the noncontrast, arterial, and 
venous phases were automatically segmented using the 
uAI portal version 20230515 (Shanghai United Imaging 
Intelligence Co., Shanghai, China). We used a well-
established deep learning model based on a visual basic net 
(VB-Net) to automatically segment the region of interest 
(ROI) (18). The algorithm was validated on 28,581 cases 
of data, 17% of which served as an independent test set. 
The results of the test set showed that the algorithm 
segmentation Dice value was 0.85±0.03, and it took less than 
2 seconds to segment the ROI of a patient. Subsequently, 
the radiologist checked the segmented ROIs (Figure 2), and 
manual modifications were necessary in a limited number 
of cases. Preprocessing tasks, including discretization (bin 
width: 25), normalization (window level: 40; window width: 
400), and image resampling (1×1×1 mm3; interpolator: 
B-spline), were performed using the abovementioned 
software before feature extraction. The purpose of 
preprocessing is to eliminate image differences caused by 
different scanning equipment. In this study, feature selection 
was performed only in the training set, and transformation 

was performed on both the training and test set. For all 
radiomics features, Z-score normalization was performed to 
eliminate the effect of feature dimensionality on the model. 
We obtained the mean and variance of the features based 
on the training set data and further performed Z-score 
normalization on the training set. Z-score normalization of 
features in the test set was performed using the mean and 
variance obtained from the training set. The most relevant 
features were identified in order using SelectKBest (k value: 
15; method: F-value; P value: 0.05), maximum relevance and 
minimum redundancy (mRMR) (n selected features: 10), 
and least absolute shrinkage and selection operator (LASSO) 
algorithms (alpha value: 0.05). The selected features were 
used to construct radiomics models. To build an optimal 
classification model, we integrated the final selected features 
from CT images of different phases, and since there were 
more features after integration, we again performed feature 
selection using the LASSO algorithm.

Model construction

All cases were completely randomized into training and 
test sets in a ratio of 7:3. Three classifiers, quadratic 
discriminant analysis (QDA) (regularization parameter =1.0; 
tolerance =0.0001), logistic regression (LR) (penalty = L2; 
tolerance =0.0001; C=1.0), and support vector machine 
(SVM) (gamma =0.01; Kernel = rbf; c=1.0), were chosen 
for modeling. The models were systematically constructed 
in the noncontrast CT images, arterial phases CT images, 
and venous phases CT images, respectively. As mentioned 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 8 August 2024 5633

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5630-5641 | https://dx.doi.org/10.21037/qims-24-122

previously, we integrated the radiomics features of different 
phases for the construction of fusion models. Fusion models 
were created in the same way. We referred to the radiomics 
features used to construct fusion models as Feature 1 
(noncontrast CT + arterial phase), Feature 2 (noncontrast 
CT + venous phase), Feature 3 (arterial phase+ venous 
phase), and Feature 4 (noncontrast CT + arterial phase + 
venous phase). Similarly, the constructed fusion models 
were referred to as Model 1, Model 2, Model 3, and Model 4.  
Finally, we validated the performance of the radiomics 
models in the training and test sets using evaluation metrics 
of sensitivity, specificity, accuracy, precision, and F1-score. 

Statistical methods

Data analysis was conducted using SPSS 25.0 software 
(IBM Corp., Armonk, NY, USA). The chi-square test was 
used for categorical variables, while the t-test was used for 
continuous variables. Receiver operating characteristic 
(ROC) curves, decision curve analysis (DCA), and 
calibration curves were used to visualize the strengths and 
weaknesses of the models. Key metrics, including area under 
the curve (AUC), accuracy, sensitivity, specificity, precision, 
and F1-score were calculated to evaluate and compare the 
results of the models.

Results

Patients

We compared the patients with LBL and those with BL 
in terms of clinical characteristics, including gender, age, 
involvement stage, splenic involvement, and we found 
no statistically significant differences between these two 
groups of patients. The detailed results are shown in 
Table 1. In addition, patients were referred for positron 
emission tomography-CT (PET/CT) scans after diagnosis 
of lymphoma, and we could ascertain from the PET/CT 
report if the patient’s spleen was involved. If patients did 
not undergo PET/CT, splenic involvement was defined as a 
craniocaudal diameter >13 cm on CT.

Feature selection

A total of 2,264 features were automatically extracted. First, 
15 features were selected by SelectKBest, mRMR reduced 
these to 10 features, and finally, the selected features 
were derived via the LASSO algorithm. The selected 
features of each single and fused models are available in 
the supplementary material (Table S1). Figure 3 shows 
the features of fusion Model 4 and its corresponding 
coefficients, including 4 first-order features, 2 gray-level 

A B C

D E F

Figure 2 Example of automatic delineation of spleen ROIs in patients with lymphoblastic lymphoma or Burkitt lymphoma. The red 
highlighted areas are the ROIs. Delineation of the ROI on one slice of a patient with lymphoblastic lymphoma (male, 6 years old) in the (A) 
noncontrast phase, (B) arterial phase, and (C) venous phase. Delineation of the ROI on one slice of a patient with Burkitt’s lymphoma (male, 
7 years old) in the (D) noncontrast phase, (E) arterial phase, and (F) venous phase. ROI, region of interest.
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co-occurrence matrix (GLCM) features, 2 gray-level size 
zone matrix (GLSZM) features, and 2 gray-level run-length 
matrix (GLRLM) features. 

Single model construction and evaluation

Table 2 lists the AUCs and other results for the training 

and test sets of each model. More detailed results are 
available in the supplementary material (Table S2). Among 
the three different classifiers—QDA, LR, and SVM—the 
highest AUC values were generated by the nonenhanced 
CT models. The AUCs in the training and tests sets, 
respectively, for QDA CT were 0.85 (95% CI: 0.76–0.94) 
and 0.719 (95% CI: 0.541–0.896), those for LR CT 
were 0.868 (95% CI: 0.785–0.95) and 0.726 (95% CI: 
0.55–0.902), and those for SVM CT were 0.872 (95% CI: 
0.793–0.952) and 0.737 (95% CI: 0.565–0.909). According 
to the Delong test (Tables S3-S5), the AUC of QDA CT 
was significantly higher than that of QDA venous phase, 
and the AUC of logistic CT was significantly higher than 
that of the logistic arterial phase in the training set.

Evaluation of the fusion models

Figure 4 depicts each fusion model’s ROC curves, and Table 3  
lists the AUC values of each fusion model’s training 
and test sets, along with other evaluation criteria. More 
detailed results can be found in the supplementary material  
(Table S6) We can see that the SVM_4 model [AUC 
=0.967, 95% confidence interval (CI): 0.935–0.998; AUC 
=0.754, 95% CI: 0.584–0.924] had the highest AUC value 
in the training set, while the models with the highest AUC 
value in the test set were SVM_1 (AUC =0.888, 95% CI: 
0.812–0.964; AUC =0.763, 95% CI: 0.594–0.932), QDA_4 
(AUC =0.825, 95% CI: 0.729–0.92; AUC =0.763, 95% CI: 

Table 1 Comparison of clinical data in patients with LBL and BL

Characteristic LBL (n=48) BL (n=61) P value

Gender (%) 0.108

Female 15 (31.3) 11 (18.0)

Male 33 (68.7) 50 (82.0)  

Splenic involvement (%) 0.923

Yes 9 (18.8) 11 (18.0)

No 39 (81.2) 50 (82.0)

Involvement stage (%) 0.724

I 0 (0.0) 0 (0.0)

II 4 (8.3) 4 (6.6)  

III 23 (47.9) 44 (72.1)  

IV 21 (43.8) 13 (21.3)  

Age (years),  
median (Q1–Q3)

8.14 (5–11) 6.57 (4–10) 0.417 

LBL, lymphoblastic lymphoma; BL, Burkitt lymphoma.
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Table 2 Comparison of results between the training and test sets for the single models

Model name
Training group Testing group

AUC (95% CI) Sensitivity Specificity F1-score AUC (95% CI) Sensitivity Specificity F1-score

QDA_CT 0.85 (0.76–0.94) 0.698 0.818 0.759 0.719 (0.541–0.896) 0.667 0.6 0.667

Logistic_CT 0.868 (0.785–0.95) 0.767 0.818 0.805 0.726 (0.55–0.902) 0.611 0.6 0.629

SVM_CT 0.872 (0.793–0.952) 0.86 0.667 0.813 0.737 (0.565–0.909) 0.722 0.6 0.703

QDA_arterial 0.753 (0.645–0.862) 0.721 0.636 0.721 0.73 (0.551–0.909) 0.722 0.6 0.703

Logistic_arterial 0.757 (0.649–0.865) 0.698 0.636 0.706 0.726 (0.545–0.907) 0.667 0.6 0.667

SVM_arterial 0.791 (0.691–0.892) 0.86 0.636 0.804 0.674 (0.483–0.866) 0.611 0.4 0.579

QDA_venous 0.776 (0.667–0.884) 0.721 0.636 0.721 0.707 (0.519–0.896) 0.667 0.8 0.727

Logistic_venous 0.787 (0.678–0.896) 0.721 0.697 0.738 0.693 (0.503–0.882) 0.667 0.667 0.686

SVM_venous 0.796 (0.691–0.901) 0.744 0.667 0.744 0.704 (0.52–0.888) 0.667 0.667 0.686

AUC, area under the curve; CI, confidence interval; QDA, quadratic discriminant analysis; CT, computed tomography; SVM, support vector 
machine.

Figure 4 ROC curves in each fusion model. (A) ROC curve for the QDA classifier in the training set. (B) ROC curve for the logistic 
classifier in the training set. (C) ROC curve for the SVM classifier in the training set. (D) ROC curve for the QDA classifier in the test set. (E) 
ROC curve for logistic classifier in the test set. (F) ROC curve for the SVM classifier in the test set. QDA, quadratic discriminant analysis; 
AUC, area under curve; SVM, support vector machine; ROC, receiver operating characteristic.
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0.59–0.935), and Logistic_4 (AUC =0.844, 95% CI: 0.754–
0.933; AUC = 0.763, 95% CI: 0.59–0.936). We performed 
the Delong test (Tables S7-S9) to determine whether the 
differences between the fusion models were statistically 
significant or not. We found that in training set, the P values 

of SVM4 in comparison with the other three models were 
all less than 0.05. Therefore, we concluded that the AUC of 
SVM_4 was significantly superior to that of fusion Model 
1, 2, and 3 in the training set; meanwhile, for the QDA and 
LR classifiers, the differences between models were not 

https://cdn.amegroups.cn/static/public/QIMS-24-122-Supplementary.pdf
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Table 3 Comparison of results between the training and test sets for the fusion models

Model name
Training group Testing group

AUC (95% CI) Sensitivity Specificity F1-score AUC (95% CI) Sensitivity Specificity F1-score

QDA_1 0.866 (0.784–0.948) 0.744 0.848 0.8 0.73 (0.55–0.909) 0.556 0.933 0.69

Logistic_1 0.879 (0.801–0.956) 0.907 0.727 0.857 0.726 (0.547–0.905) 0.556 0.933 0.69

SVM_1 0.888 (0.812–0.964) 0.93 0.727 0.869 0.763 (0.594–0.932) 0.667 0.867 0.75

QDA_2 0.851 (0.761–0.94) 0.698 0.879 0.779 0.733 (0.554–0.913) 0.611 0.933 0.733

Logistic_2 0.884 (0.808–0.961) 0.837 0.818 0.847 0.726 (0.545–0.907) 0.611 0.933 0.733

SVM_2 0.883 (0.806–0.96) 0.837 0.848 0.857 0.722 (0.539–0.905) 0.611 0.933 0.733

QDA_3 0.788 (0.685–0.891) 0.721 0.758 0.756 0.707 (0.523–0.892) 0.722 0.733 0.743

Logistic_3 0.825 (0.73–0.921) 0.953 0.636 0.854 0.7 (0.515–0.885) 0.667 0.8 0.727

SVM_3 0.852 (0.761–0.943) 0.884 0.697 0.835 0.693 (0.506–0.879) 0.556 0.867 0.667

QDA_4 0.825 (0.729–0.92) 0.793 0.606 0.833 0.763 (0.59–0.935) 0.722 0.867 0.788

Logistic_4 0.844 (0.754–0.933) 0.907 0.636 0.83 0.763 (0.59–0.936) 0.722 0.867 0.788

SVM_4 0.967 (0.935–0.998) 0.86 0.97 0.913 0.754 (0.584–0.924) 0.611 0.867 0.71

AUC, area under the curve; CI, confidence interval; QDA, quadratic discriminant analysis; SVM, support vector machine.

significant. To perform a comprehensive comparison of the 
advantages and disadvantages of fusion models, we plotted 
calibration curves (Figure 5) and decision curves (Figure 6), 
which indicated that SVM_4 significantly outperformed 
the other fusion models in the training set. Comprehensive 
analysis of the above data suggested that among the four 
fusion models constructed by the SVM classifier, Model 4  
had the highest efficacy in distinguishing between LBL  
and BL.

Discussion

Lymphomas are one of the most prevalent malignant 
tumors in children, most of which are NHL, with the most 
common subtypes being LBL and BL. Accurate diagnosis of 
subtypes is important in selecting the appropriate treatment 
plan. The most important approach for determining the 
pathological subtype of lymphoma is excisional biopsy; 
it is the precursor to appropriate diagnosis, but this 
test is not only invasive for pediatric patients but also 
difficult to achieve in cases of lymphoma located in the  
mediastinum (19), puncture biopsy can also identify tumor 
subtypes, but the accuracy of puncture biopsy is not high 
due to sampling errors. In clinical practice, the examination 
of imaging remains critical for patients with lymphoma. The 
most frequently used imaging modality is CT, and the most 

accurate imaging modality to determine clinical staging 
is PET/CT or PET-magnetic resonance imaging (20).  
However, regardless of the method, radiologists are 
unable to use images to identify the pathological subtype 
of lymphoma in patients. Radiomics is rapidly developing 
and has been used in a variety of tumor diagnostic and 
prognostic studies, demonstrating excellent predictive 
capabilities (21,22). Similarly, radiomics has a wide range 
of applications in lymphoma. Xu et al. (23) extracted 
the textural features of lymphoma on enhanced CT, 
using 5 feature selection methods and 9 classifiers to 
construct a total of 45 models to differentiate intrahepatic 
cholangiocarcinoma from hepatic lymphoma. Eertink  
et al. (24) reported that combining radiomic features in 
baseline PET/CT with MYC gene status could predict 
progression over the following two years in patients with 
aggressive B-cell lymphoma.

Previous studies have focused on enlarged lymph nodes, 
but in clinical practice, not all patients with lymphoma 
present with enlarged lymph nodes (11,25,26), and most 
enlarged lymph nodes are found incidentally, as the majority 
of patients are admitted for various other medical reasons. 
The spleen is the major lymphatic organ, and splenic 
involvement or primary lymphoma of the spleen may occur 
in patients with lymphoma (27). Choosing the spleen over 
enlarged lymph nodes as the region of interest has several 
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Figure 6 DCA for each fusion model. (A) DCA for the QDA classifier in the training set. (B) DCA for the logistic classifier in the training set. (C) 
DCA curves for the SVM classifier in the training set. (D) DCA for the QDA classifier in the test set. (E) DCA for the logistic classifier in test set. (F) 
DCA for the SVM classifier in the test set. QDA, quadratic discriminant analysis; SVM, support vector machine; DCA, decision curve analysis.
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advantages: first, the technology of automatic splenic 
segmentation is highly mature (28,29), is significantly more 
efficient than is manual delineation, and allows for the 
method of study to be more easily applied in the clinic. VB-
Net was developed on the basis of the V-Net architecture, 
which is an encoder-decoder network with skip and residual 
connections (30). Second, patients with lymphoma often 
do not undergo lymphadenectomy, so when radiologists 
select multiple lymph nodes for segmentation they are 
often unable to confirm that the selected lymph nodes are 
enlarged because of lymphoma invasion (31). Moreover, on 
CT images, enlarged lymph nodes often appear as fused 
masses, making it difficult to determine the boundaries 
of a single lymph node, which undoubtedly makes it 
more challenging for radiologists to manually segment 
them. With the spleen, there is no such problem with 
segmentation.

The aim of this study was to demonstrate that splenic 
radiomic features can be used to identify common 
pathologic subtypes in pediatric patients. Although Enke  
et al. (15) demonstrated that radiomics features of the spleen 
are valuable in the diagnosis and subtype classification of 
lymphomas, the related research has only been conducted 
in adult patients; however, the distribution of subtypes 
differs between adult and pediatric patients, and research 
on pediatric patients is lacking. Therefore, in our study, 
three classifiers were used to model the features of different 
phases separately. A total of 21 models were built, and the 
AUC values, specificity, sensitivity, and F1-score of single 
models and fusion models were compared. This revealed 
that fusion models perform better, and the analysis of fusion 
models indicated no significant difference between the 
results of fusion models constructed by QDA and LR in the 
training set and test set. The training set of SVM_4 showed 
significantly better results compared with models, but the 
test set did not show a significant difference, which we 
believe was due to the small sample size of the test set.

Among the 10 features used to construct Model 4, there 
are 4 first-order statistics, 2 GLCM features, 2 GLSZM 
features, and 2 GLRLM features. First-order statistics 
quantify the intensity distribution of individual voxels 
through histogram analysis, such as mean, median, percentile, 
skewness, and entropy. However, the first-order features 
cannot describe the relative positional relationships between 
voxels, and the texture features are derived by calculating 
the relative positional relationships between voxels, which 
can better reflect the structural texture differences of the 
tissue in the tumor (32). The GLCM is the joint probability 

distribution of the simultaneous occurrence of two gray-scale 
pixels at a certain distance from each other (17); GLSZM 
reflects the number of times elements j and i are adjacent to 
each other in the image, and is a measure of the degree of 
gray scale inhomogeneity in the tumor (33); and GLRLM 
represents the information about the runs of pixels with the 
same gray value in a certain direction. First-order statistics 
and GLCM play roles in differentiating Borrmann type IV 
gastric cancer from primary gastric lymphoma (34), and 
GLCM and GLRLM can also help differentiate DLBCL 
from follicular lymphoma (35). Previous studies have 
indicated that radiomic features differ between lymphomas 
and other tumors or between different subtypes of 
lymphoma. Our study confirmed that such features from the 
spleen differed between patients with LBL and those with 
BL. This may be due to the fact that in normal spleens, the 
red pulp consists of a complex network of blood vessels while 
the white pulp consists of lymphoid tissue, whereas in the 
spleens of patients with lymphoma, the white pulp structures 
are infiltrated and compress the red pulp, causing changes 
in voxel values that are imperceptible to the naked eye on 
CT images (14,36). Such changes are different depending on 
the pathologic subtypes. Moreover, the majority of features 
selected for this model are wavelet-transformed features. 
Wavelet is a higher-order statistical method that places linear 
or radial wave matrix on images, helping to reveal valuable 
information in the lesion that is not visible to the naked eye.

There are some limitations to this study that should 
be noted. (I) We employed a retrospective design, which 
has problems of selection bias and the inability to strictly 
control the quality of images. (II) Lymphoma is a malignant 
disease which has a complex array subtypes, but in this 
study, the two subtypes most common in child patients 
were selected. (III) We used a limited sample size (IV) 
and a single-center design that lacked external validation. 
In the future, multicenter, prospective, and multimodal 
studies can be conducted to increase the sample size and 
number of features to build more reliable and convincing 
models. (V) In this study, spleen invasion was determined 
based on PET/CT reports, which might have led to 
differences in interpretation. Imaging protocols for patients 
were not available for this study, and it is possible that the 
type of software, doses of fluorodeoxyglucose, and image 
acquisition time could have varied between institutions.

Conclusions

In conclusion, the radiomic features of the spleen on 
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enhanced CT can be used to predict pathologic subtypes in 
pediatric lymphoma patients. However, this study’s findings 
are not sufficient to support clinical application at this time 
due to the limitations mentioned above. In the future, we 
will increase the sample size, add different pathological 
subtypes, and conduct multicenter studies to continuously 
improve these models. It is hoped that spleen radiomic 
features can be used predict the subtypes more accurately 
in the future and be productivity employed role for the 
early clinical diagnosis and customization of treatment 
plans. Through this noninvasive and rapid method, more 
information is obtained from the images. We will continue 
to conduct research on the value of splenic radiomic 
features in staging prediction and the prognostic prediction 
in patients with pediatric lymphoma.
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