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Abstract
The phosphosphatidylinositol-3-kinase (PI3K) signaling pathway is one of the most important intracellular signal transduction
pathways affecting cell functions, such as apoptosis, translation, metabolism, and angiogenesis. Lung cancer is a malignant tumor
with the highest morbidity and mortality rates in the world. It can be divided into two groups, non-small cell lung cancer (NSCLC)
and small cell lung cancer (SCLC). NSCLC accounts for >85% of all lung cancers. There are currently many clinical treatment
options for NSCLC; however, traditional methods such as surgery, chemotherapy, and radiotherapy have not been able to provide
patients with good survival benefits. The emergence of molecular target therapy has improved the survival and prognosis of
patients with NSCLC. In recent years, there have been an increasing number of studies on NSCLC and PI3K signaling pathways.
Inhibitors of various parts of the PI3K pathway have appeared in various phases of clinical trials withNSCLC as an indication. This
article focuses on the role of the PI3K signaling pathway in the occurrence and development of NSCLC and summarizes the current
clinical research progress and possible development strategies.
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Introduction to Phosphatidylinositol-3-Kinase (PI3K)
Pathway

Phosphatidylinositol3-kinase (PI3K) isan intracellular lipid
phosphokinase and the starting point of the PI3K–protein
kinase B (AKT)–mammalian target of rapamycin (mTOR)
signaling pathway. It is involved in various cellular
functions, suchas cell growth,proliferation, differentiation,
movement,migration, invasion, intracellular transport, and
angiogenesis, which are essential for tumorigenesis.[1]

PI3K can be divided into Type I, Type II, andType III based
on differing structures, functions, and substrate specifici-
ty.[2] For example, Type I and Type II are involved in cell
signal transduction, while Type II and III play an important
role inmembrane transportation.Type I PI3Kmaintains the
proliferation and survival of human tumor cells. It is
composed of a regulatory and a catalytic subunit and canbe
further divided into IA and IB.[3] The catalytic subunit of
class IA PI3K is one of the p110a, p110b, and p110d
Access this article online

Quick Response Code: Website:
www.cmj.org

DOI:
10.1097/CM9.0000000000002195

1272
encoded by the PIK3CA, PIK3CB, and PIK3CD, respec-
tively. The regulatory subunit is one of the five isoforms of
p85 encoded by the PIK3R1 gene, which are p85a, p85b,
p55a, p55g, and p50a. They are regulated by the upstream
growth factor receptor tyrosine kinases. Class IB PI3K is
composed of the catalytic subunit p110g encoded by
PIK3CG, and one of two related regulatory subunits
activated by G protein-coupled receptors, p101 or p87.
p110a and p110b are expressed in different types of human
cells, while the expression of p110d and p110g is limited to
immune and hematopoietic cells.[4] After the activation of
the PI3Kupstreampathway ligand, it directly interactswith
the p85 regulatory subunit and inhibits the binding. This
leads to the inhibitory effect of p85 on the catalytic sub-
unit p110, and to the activation of PI3K.[5] Activated
PI3Kphosphorylates phosphatidylinositol 4,5-bisphosphate
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(PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3).
PIP3 can then act as a second messenger, by recruiting
pyruvate dehydrogenase kinase 1 (PDK1) and AKT to the
plasmamembrane,andphosphorylatingserine473through
themammalian targetof rapamycin complex2 (mTORC2),
which partially activates AKT in the membrane. This will
stimulate PDK1 tophosphorylate threonine308,whichwill
lead to the complete activation of AKT.[6]

AKT is a member of the AGC (protein kinase A [PKA]/
protein kinase G [PKG]/protein kinase C [PKC]) protein
kinase family, which has serine–threonine protein kinase
activity.[7] It is composed of AKT1, AKT2, and AKT3.
They are located on chromosomes 14q32, 19q13, and
1q44, respectively. The downstream targets of AKT can be
divided into three groups: apoptotic proteins, transcrip-
tion factors, and protein kinases, which play key roles in
various cellular processes, including cell metabolism and
apoptosis.[8] It is worth noting that AKT phosphorylates
tuberous sclerosis complex 2 (TSC2), and then activates
mTORC1 through phosphorylation, which further pro-
motes tumorigenesis, cell cycle regulation, and apoptosis
inhibition.[9]

mTOR is an evolutionarily conserved serine/threonine
kinase that is divided into two types[10]: mTORC1, which
interacts with raptor protein, and mTORC2, which
interacts with rictor protein. mTOR stimulates cell growth
and proliferation by promoting various anabolic processes
and limiting catabolic processes.mTORC2mainly controls
the actin cytoskeleton and contributes to the complete
activation of AKT.[11] mTORC1 can regulate translation.
Two related downstream effectors are eukaryotic initiation
factor 4E (eIF4E) binding protein 1 (4EBP1) and p70
ribosomal S6 kinase 1 (p70S6K1),[12] which can increase
translation activity and participate in cell proliferation.

Tumor suppressor phosphatase and tensin homologs
(PTEN) are key negative regulators of the PI3K path-
way.[13] They regulate downstream signaling pathways by
dephosphorylation of PIP3 to PIP2 and prevent further
signal transduction by acting as the main regulator agent
of the PI3K pathway. Other PI3K negative regulators also
include inositol polyphosphate 4-phosphatase type II
(INPP4B)[14] and protein tyrosine phosphatase non-
receptor 12 (PTPN12).[15]
PI3K Pathway in NSCLC

Lungcancer is oneof themost commonformsof cancer. It is
a solid tumor with extremely high incidence and mortality
rates, with a 5-year survival rate of approximately 5%.[16]

Lung cancer canbe divided into twomajor categories, small
cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC). NSCLC accounts for 75–85% of lung cancers.
Currently, patients with NSCLC can be treated with
surgery, radiotherapy, chemotherapy, immunotherapy,
and targeted therapy; however, the prognosis and survival
rate remainpoor.[17]Onlysomepatientscanreceivesurgical
resection, which carries a risk of recurrence after surgery.
RadiotherapycancauseDNAdouble-strandbreak (DSB) in
cancer cells to inhibit their growth, but there are still
disadvantages, suchas radioresistance,metastasis, and local
1273
disease progression. Platinum-based chemotherapy used to
be the standard treatment forNSCLC,with a poor response
rate (17–32%) and overall survival (OS) (7.4–11.3
months).[18,19] Immunotherapy prolongs OS in patients
with negative driver genes, but the effect of immunotherapy
in patients with positive driver genes is limited. In 2016, the
U.S. Food and Drug Administration (FDA) and European
Medicines Agency (EMA) approved pembrolizumab as the
first-line treatmentforadvancedNSCLC(tumorproprotion
score [TPS] ≥50%) with negative epidermal growth factor
receptor (EGFR) or anaplastic lymphoma kinase (ALK)
mutations.[20]

The emergence of new therapies that target specific genetic
changes has altered the prospects for the treatment of
NSCLC.[21] The genes in key signaling pathways change,
which provides advantages for tumor cell survival and
proliferation.EGFR is oneof themost altered genes involved
in NSCLC, and EGFR tyrosine kinase inhibitors (TKIs)
improve response rates, postpone time to progression, and
prolong OS of NSCLC patients with EGFR mutations.[22]

These therapies have produced significant clinical effects
whenapplied topatientswithpositivemutations in the target
gene. Although the response rate of these drugs in mutation-
positive patients has been greatly improved compared with
chemotherapy, the tumor eventually progresses due to drug
resistance. Recently, new oncogene changes have been
discovered in NSCLC, including HER2 exon 20 insertion
mutations,[23]RET,[24]ROS1 rearrangements,[25] and genet-
ic changes in the PI3K pathway.
There are multiple mutations in the PI3K pathway in NSCLC

The PI3K pathway is involved in the regulation of various
cellular functions. Dysregulation of the PI3K signaling
pathway can induce various human diseases, especially
cancer. Mutations in the PI3K–AKT–mTOR pathway can
be observed in many different cancers, such as glioma,
liver cancer, breast cancer, colon cancer, ovarian cancer,
stomach cancer, and lung cancer.[26]

In NSCLC, changes in the PI3K pathway often appear in
high-grade tumors and advanced diseases, which may be
related to the degree of lung cancer malignancy.[27] The
dysregulation of this pathway occurs through various
mechanisms, including the expansion of different sub-
types, changes in important targets in the pathway, loss of
PTEN, and changes in cell biological behavior.

Mutations and amplifications of PIK3CA are often found
in patients with NSCLC.[28] PI3KCA is located at 3q26 on
chromosome 3 and encodes the catalytic subunit of PI3K
(p110a). The mutations of PIK3CA mainly exist in exons
9 and 20. Exon 9 of PIK3CA encodes the helical domain
of p110, and mutations of E542K, E545K, and E545Q in
exon 9 may inhibit the inhibitory effect of the N-terminal
Src homology 2 (SH2) domain of p85 on the catalytic
subunits of p110, leading to excessive PI3K pathway
activation.[29,30] Exon 20 encodes the kinase domain of
p110, so a mutation in H1047 of exon 20 may promote
constitutive activation of the PI3K signaling pathway. In
addition to mutations, the more common PI3KCA change
is amplification.[31] The PI3KCA gene is amplified to
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varying degrees in about 35% of lung squamous cell
carcinoma (LUSQ) and about 7% of lung adenocarcino-
ma (LUAD). As the result of a study of 86 NSCLC cell
lines, and 356 resected NSCLC tumor tissues, PIK3CA
mutation and expansion were found in 12.8% of NSCLC
cell lines and 19.1% of tumor tissues.[32] The results of
another study showed that PIK3CAmutations were found
in 3.7% of tumor tissues of 1144 patients with NSCLC
using next-generation sequencing.[28] Among these muta-
tion-positive patients, E545K mutations of exon 9
(57.1%) were the most common. It is worth noting that
the PIK3CA mutation in NSCLC may occur simulta-
neously with EGFR, KRAS, and ALK mutations.

Genetic changes in the AKT family have also been found in
NSCLC.E17K is anactivatingmutation in the lipid-binding
pleckstrinhomology (PH)domainofAKT1.[33] It is rareand
exists in 1–2% of LUSQ cases. However, studies have
shownthat there isanoverexpressionofAKT1andAKT2in
19%and32%ofLUSQcases, and 16%and12%ofLUAD
cases, respectively.[27] A study of 110 NSCLC tumor
specimens showed that 51% of the tumor tissues had
increased AKT activity.[34] It has been reported that there
may be a certain correlation between PI3K–AKT dysregu-
lation and the grade or stage of the tumor.[35]

The upregulation of the mTOR pathway has also been
confirmed in a large population of patients with
NSCLC,[33,36,37] and active phosphorylated mTOR (p-
mTOR) is present in 90% of patients with LUAD, 60% of
patients with large cell carcinoma, and 40% of patients
with LUSQ. The presence of mTOR activity may also be a
poor prognostic factor for early NSCLC. Several studies
have shown that increased mTOR expression is associated
with poor survival.[38]

PTEN is another commongene change in the PI3Kpathway
inNSCLC, and it is oneof the keymechanisms that enhance
the PI3Kpathway signal to initiate and enhance cancer.The
loss of PTEN function may be caused by mutations,
deletions, or inhibition of transcription by promoter
hypermethylation.[13] According to reports,[26,39] PTEN
deletions are present in 8–59%of LUSQ cases, and 4–46%
ofLUADcases,while PTENmutations are distributed in 3–
10%ofLUSQcases,and2%–5%ofLUADcases.Aseriesof
earlyNSCLC specimens showed that PTENexpressionwas
completely lost in 44% of tumors, 29% had a reduced
expression level, and 27%had a normal expression level. A
retrospective analysis of the Phase III FLEX study[40] of
chemotherapy combined with cetuximab in patients with
EGFR-expressing advanced NSCLC showed that 35% of
patients had negative PTEN expression, suggesting that the
presence of PTEN expression may be associated with
improved survival.

Activating the PI3K pathway promotes the proliferation and
metastasis of NSCLC

The PI3K–AKT–mTOR pathway is involved in various
cellular processes that promote tumor growth and
metastasis, such as cell survival, cell proliferation,
autophagy, cell migration and movement, cell metabo-
lism, genome stability, and angiogenesis [Figure 1].
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In the PI3K pathway, PTEN is a key regulator for regulating
cell cycle progression.Blocking thePI3Kpathway can reduce
the expression level of S-phase kinase-associated protein 2
(SKP-2) protein in lung cancer cells andblock the cell cycle in
the G1/S phase.[41] Constitutive activation of AKT or loss of
PTEN is one of the most common causes of altered cell
survival. The activation of AKT can downregulate the pro-
apoptotic B-cell lymphoma 2 (BCL2) family members,
BCL2-associated agonist of cell death (BAD) and BCL2-
associated X protein (BAX), and promote the activation of
apoptosis-related caspasehydrolases, caspase-3 andcaspase-
9, thereby inhibiting cell apoptosis.[7,42] AKT can also
phosphorylate the proto-oncogene murine double minute 2
(MDM2), leading to downregulation of p53-mediated
apoptosis.[43] In addition, activated AKT can also block
the inhibition of the nuclear factor kappa-light chain
enhancer of B cells (NFkB), by members of the inhibitor of
nuclear factor kappa-B (IkB) family.[44] NFkB has a wide
range of actions and can regulate the expression of hundreds
of genes involved in cell apoptosis, cell cycle, cell adhesion,
differentiation, and immune regulation.

The PI3K–mTOR pathway negatively controls autophagy
through various mechanisms.[45] First, when mTORC1 is
inhibited, adenosine 5-monophosphate-activated protein
kinase (AMPK) phosphorylates and activates autophagy-
promoting UNC-51-like kinase 1 (ULK1), which pro-
motes autophagosome formation. mTORC1 phosphor-
ylates ULK1 at multiple sites or phosphorylates and
inhibits ULK1’s positive regulators, autophagy-related
(ATG) 14 and ATG13, to inhibit its interaction with
AMPK, thereby preventing AMPK-dependent activation
of phosphorylation and preventing autophagy. In addi-
tion, transcription factor EB (TFEB) is responsible for
genes involved in lysosomal biogenesis. mTORC1 can also
indirectly inhibit autophagy through phosphorylation and
inhibition of nuclear translocation of TFEB.

The PI3K pathway also plays an important role in cell
migration and movement. PI3K and AKT can regulate the
epidermal–mesenchymal transition (EMT) of NSCLC.[46]

EMT promotes tumor invasion and metastasis and
increases cell motility and invasiveness. The loss of PTEN
function can change the tumor microenvironment, inhibit
the remodeling of the extracellular matrix, and promote
tumor cell invasion and metastasis. Ras homolog (Rho)
family proteins are involved in the assembly and formation
of actin,[47] and are related to membrane folds, cell
movement, and cell proliferation. mTORC1 can regulate
the activity of Rho family GTPases, thereby changing cell
migration and invasion capabilities. Additionally,
mTORC1 has been shown to upregulate matrix metal-
loproteinase 9 (MMP-9) for the proteolytic digestion of
extracellular matrix,[48] thereby regulating F-actin reorga-
nization, focal adhesion formation, and tissue remodeling,
and further regulating cell migration and invasion.

More importantly, the activation of the PI3K–AKT
pathway regulates tumor angiogenesis through multiple
downstream effectors, such as mTOR, forkhead box O3
(FOXO3), nitric oxide synthase (NOS), and glycogen
synthesis kinase 3 (GSK3).[49,50] These effectors usually
upregulate the expression of hypoxia-inducible factor 1
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Figure 1: PI3K pathway and its role in the occurrence and development of NSCLC. AKT: Protein kinase B; BAD: Bcl-xL/Bcl-2 associated death promoter; CASP: Caspase; CHEK1:
Checkpoint kinase 1; FOXO: Forkhead box O; GPCR: G protein-coupled receptor; GSK3: Glycogen synthesis kinase 3; HIF-1: Hypoxia-inducible factor 1; IkB: Inhibitor of nuclear factor
kappa-B; IKK: Inhibitor of nuclear factor kappa-B kinase; MDM2: Murine double minute 2; mTORC: Mammalian target of rapamycin complex; NF-kB: Nuclear factor kappa-light chain
enhancer of activated B cells; NO: Nitric oxide; NSCLC: Non-small cell lung cancer; P53: Protein 53; PDK1: Pyruvate dehydrogenase kinase 1; PI3K: Phosphosphatidylinositol-3-kinase;
PIP2: Phosphatidylinositol 4,5-bisphosphate; PIP3: Phosphatidylinositol-3,4,5-triphosphate; PTEN: Phosphatase and tensin homolog; RHO: Ras homolog; RTKs: Receptor tyrosine kinases;
TSC: Tuberous sclerosis complex; VEGF: Vascular endothelial growth factor.
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(HIF-1), thereby stimulating transcriptional activation of
vascular endothelial growth factor (VEGF), a powerful
stimulator of neovascularization, and promote tumor
angiogenesis. Additionally, the PI3K–AKT signaling
pathway can also upregulate the expression of tumor
necrosis factor (TNF),[51] promote endothelial cell
migration, and regulate tumor angiogenesis.

TheWarburg effect refers to the conversion of glucose into
lactic acid by cancer cells through high-rate anaerobic
glycolysis,[52] which produces a large amount of energy
and biological macromolecules. The PI3K pathway plays
an important role in this process. On one hand, inhibiting
the PI3K pathway prevents the activation of Tre-2/BUB2/
cdc 1 domain 4 (TBC1D4) to increase the translocation of
the glucose transporter 4 (GLUT4),[53] and prevents
gluconeogenesis by inhibiting FOXO1 and peroxisome
proliferator activated receptor gamma coactivator-1 alpha
(PPARGC1A). On the other hand, inhibiting the PI3K
pathway can also inhibit cholesterol biosynthesis and
GSK3, which are necessary for fatty acid uptake and
biosynthesis,[54] stimulate the activation of sterol regula-
tory element-binding protein 1C (SREBP1C), and inhibit
the synthesis of cholesterol and fatty acids. Additionally,
the lack of PTEN has been shown to promote adipogenesis
and b-oxidation by increasing the levels of peroxisome
proliferator activated receptor gamma (PPAR-g) and
SREBP1,[55] and by accelerating the production of energy
and biological macromolecules.

PTEN plays a powerful role in maintaining genome
stability and DNA repair in the nucleus.[56] Checkpoint
1275
kinase 1 (CHEK1) is a protein kinase that regulates DNA
damage response and cell cycle checkpoint response.
Deletion of PTEN will inhibit CHEK1 and cause genome
instability. In addition, nuclear PTEN upregulates RAD51
recombinase,[57] which is a component of the DNA DSB
repair system. Therefore, PTEN loss can cause homolo-
gous recombination defects in human tumor cells and
damage to the DNA repair system.

PI3K signaling pathway affects the sensitivity of NSCLC to
chemotherapy drugs and EGFR–TKIs

The dysregulation of the PI3K signaling pathway is
closely related to resistance to radiotherapy, chemother-
apy, and hormone-targeted therapy. Cisplatin and its
analogs are one of the standard treatment options for the
initial treatment of NSCLC. However, many patients
develop resistance to chemotherapy in a short period of
time. Chemotherapy resistance is a multifactorial phe-
nomenon, in which the dysregulation of the pro-
apoptotic and anti-apoptotic pathways plays an impor-
tant role.[58] In lung cancer, cells become resistant to
cisplatin by AKT gene amplification and overexpression.
Several studies have confirmed that the PI3K–AKT
signaling pathway can regulate anti-apoptosis-related
proteins and is closely related to NSCLC chemothera-
peutic drug resistance.[59,60] In addition, studies have
shown that activation of p53 reverses the resistance of
NSCLC cells resistant to chemotherapy with cisplatin by
downregulating the PI3K signaling pathway and pro-
moting the production of intracellular reactive oxygen
species (ROS).[61]
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In addition to chemotherapy, targeted therapy is one of the
most important methods for the treatment of NSCLC.
There is constitutive activation of the PI3K pathway in
67% of NSCLC patients with EGFR mutations.[62]

Clinical studies have shown that overexpression of the
PI3K pathway in advanced NSCLC is a poor prognostic
factor. Patients with EGFR mutations with PI3K pathway
activation had shorter progression-free survival (PFS) and
OS.[63] In patients with NSCLC treated with EGFR–TKI,
mutations in the PIK3CA gene may be an important
indicator for predicting and evaluating patient response and
prognosis.[64] Various resistance mechanisms of EGFR–TKI
treatment have been reported, among which PI3K pathway
changes are one of the most studied.[65] In NSCLC, the
absence of PTEN is associated with poor clinical outcomes
and resistance to many anticancer drugs including gefitinib
and erlotinib.[66,67] Everolimus is an mTOR inhibitor that
can overcome resistance to EGFR inhibitors.[65] Part of the
resistance mechanism may involve the activation of related
pathways caused by negative feedback interruption of the
PI3K signaling pathway. AKT can phosphorylate FOXO1,
leading to drug resistance.[68] Additionally, AKT can also
mediate PIKfyve phosphorylation,[69] promote EGFR trans-
port and degradation, and subsequently reduce EGFR levels,
resulting in weakened sensitivity to EGFR inhibitors. The
PI3K signaling pathway may have an important regulatory
role in NSCLC resistance. Therefore, overcoming PI3K
pathway-related drug resistance may increase the clinical
benefit of EGFR–TKIs.
PI3K signaling pathway affects NSCLC brain metastasis

The most common distant metastasis site of lung cancer is
the brain, with a 20–40% incidence rate.[70,71] Without
treatment, patients with brain metastases (BM) will
survive for up to 1–2 months after metastasis. Although
treatment for BM of NSCLC has made progress, the
efficacy of all treatment methods is low. The process of
NSCLC BM is very complex,[71] involving the shedding of
lung tumor cells to form circulating tumor cells, which
migrate through the blood circulation and pass through
the blood–brain barrier (BBB) to establish and grow new
tumors in the brain tissue. In recent years, some studies
have identified the key molecules involved in this process
and their impact on BM. A retrospective study of 61
patients who underwent surgical resection of primary
NSCLC and BM showed that changes in genes encoding
the PI3K signaling pathway were enriched in BM,[72]

indicating that the PI3K pathway may be associated with
an increased risk of metastasis. The BM-free survival of
patients who have activated PI3K signals in primary
NSCLC tumor tissues is significantly shorter, and their
disease spreads to the brain significantly faster than
patients without PI3K activation. This study highlights the
significant correlation between PI3K signaling and the
increased risk of metastasis in NSCLC patients.
Research of PI3K Inhibitors in NSCLC

The PI3K–AKT–mTOR signaling pathway has attracted
widespread attention as a single or combined target for the
treatment of cancer in the past few decades. In 2014,
idelalisib (Gilead Sciences) became the first PI3K inhibitor
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approved for marketing, and it is mainly used for specific
B-cell malignancies.[73] Subsequently, in 2017, the pan-I
PI3K inhibitor copanlisib (Bayer)[74] and the dual PI3Kd/
PI3Kg inhibitor duvelisib (Verastem)[75] were approved in
2017. PI3Ka inhibitor alpelisib (Novartis)[76] was ap-
proved for the treatment of advanced breast cancer in
2019 and umbralisib (TG Therapeutics)[77] for the
treatment of chronic lymphocytic leukemia, follicular
lymphoma, andmarginal zone lymphoma in 2021 has also
been approved for listing. In addition to these PI3K
inhibitors approved by the FDA for clinical treatment,
there are several new PI3K inhibitors for NSCLC in
various experimental stages. Targeting the PI3K pathway
has provided promising preclinical results,[78] and its
efficacy for NSCLC treatment in clinical trials is currently
being actively evaluated [Table 1].

Pan class I PI3K inhibitors have a certain inhibitory effect
on all subtypes of PI3K, including GDC-0941, BKM120,
PX-866, and XL-147. GDC-0941 mainly inhibits p110a
and p110d subtypes, and shows a synergistic effect with
mitogen-activated protein kinase kinase (MEK) inhibitors
in the treatment of advanced solid tumors.[79] In a phase IB
dose escalation trial, patients with advanced NSCLC
received GDC-0941 combined with standard first-line
chemotherapy, namely carboplatin and paclitaxel, or
cisplatin and pemetrexed, and optionally added bevaci-
zumab.[80] Experimental results showed that 43.9% of
patients achieved partial response (PR), and 30.9% of
patients had stable disease. However, the results of the
phase II study showed no significant prolongation of PFS
or OS.[81] BKM120 is another oral pan class I PI3K
inhibitor. Compared with wild type (WT)-PIK3CA,
BKM120 showed better efficacy in the treatment of
cancer patients with PIK3CA mutations.[82] In a phase I
trial of 43 patients with relapsed and refractory solid
tumors using PX-866 combined with docetaxel, one
patient with NSCLC and PIK3CA mutation achieved
PR.[83] In a phase I trial of XL-147, either as a single agent
or in combination with erlotinib, PR was achieved in one
patient for each type.[80,84]

In addition to pan class I PI3K inhibitors, various
inhibitors targeting PI3K subtypes have also been studied
to increase efficacy and reduce toxicity in the treatment of
NSCLC. PI3Ka-specific inhibitors have better anticancer
activity in tumors with PIK3CAmutations. Among them,
the p110a-specific inhibitors, which are entering clinical
trials, mainly include alpelisib[85] and serabelisib.[86]

Aspirin has also been found to specifically inhibit
p110a.[87] It is reported that PI3Kb plays an important
role in PTEN-deficient cancers.[88] Specific p110b inhib-
itors mainly include GSK2636771,[89] AZD818670,[90]

SAR26030171,[91] and taselisib.[92]

AKT’s adenosine triphosphate (ATP) competitive inhib-
itors include, but are not limited to, GSK-690693,
perifosine, and MK2206. GSK-690693 is a new type of
AKT inhibitor, which can inhibit the proliferation and
induce apoptosis of H460 and A549 NSCLC cells.[93]

Perifosine, an AKT inhibitor, produced a PR in a patient in
a phase I trial with 15 patients with advanced NSCLC.[94]

MK2206 is an allosteric small-molecule inhibitor that can
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inhibit all AKT subtypes. Its phase I clinical trials for
NSCLC have shown promising effects in causing tumor
shrinkage, and it is well-tolerated as a monotherapy in
patients.[95] In addition, the combined treatment of
MK2206 with paclitaxel, docetaxel, or erlotinib in
patients with advanced solid tumors has also been tested
in phase I clinical trials, in which one patient with NSCLC
achieved PR.[96] In a phase II trial ofMK2206 for NSCLC,
the combination with erlotinib was evaluated in patients
with NSCLC who had previously progressed on erlotinib
therapy. Patients were stratified according to EGFR
mutation status. The median PFS of patients with EGFR
mutations was 4.4 months, and that of EGFR wild-type
patients was 4.6 months.[97]

So far, the mTORC1 inhibitors approved by the FDA for
clinical trials in patients with NSCLC mainly include
temsirolimus and everolimus, both of which are deriva-
tives of rapamycin. Rapamycin was originally isolated
from the soil of Rapa Nui Island and has antifungal
activity.[98] Various rapamycin analogs have been devel-
oped. Rapamycin binds to FK506 binding protein 12
(FKBP12) to destroy raptor interaction with mTOR,
leading to the dissociation and inactivation of the
mTORC1 complex to prevent cell proliferation. Temsir-
olimus, as monotherapy, has a clinical benefit rate
(confirmed response and confirmed stable disease) of
35% in newly treated patients with NSCLC.[99] Ever-
olimus can selectively inhibit mTORC1 signaling, but in
the phase II trial, when combinedwith erlotinib, it failed to
show significant efficacy in patients with advanced
NSCLC.[100] In addition to rapamycin, various ATP-
competitive mTOR kinase inhibitors have entered clinical
trials targeting mTORC1 and mTORC2. AZD2014 has
played a great role in slowing down the progression of
LUSQ by inhibiting two mTOR kinases. In the dose-
escalation group of the TAX-TORC study, the combina-
tion of AZD2014 and paclitaxel achieved a remission rate
of 33% in previously treated LUSQ patients. AZD8055
has shown anti-tumor activity, and it has initially shown a
certain therapeutic effect in the treatment of patients with
advanced solid tumors.[101]

Given that mTOR and PI3K belong to the same
phosphoinositide 3-kinase-related kinase (PIKK) super-
family, with similar structural compositions and activa-
tion mechanisms, small molecule inhibitors targeting both
PI3K and mTORwere discovered during the development
of mTOR inhibitors.[102] PI3K–mTOR inhibitors have
been developed and tested in preclinical models or cancer
cell lines and are expected to be used in the treatment of
NSCLC. As a single drug, PKI-587 has the effect of
reducing lung cancer growth in in vitro cell culture and
mouse xenotransplantation tests.[103] XL765 has been
tested in combination with erlotinib in a phase I trial in
patients with NSCLC, and the combination is generally
well tolerated. Gedatolisib has been evaluated in a phase I
trial in combination with chemotherapy (docetaxel or
cisplatin) in the treatment of patients with NSCLC or with
dacomitinib in the treatment of patients with EGFR-
mutant NSCLC, and the results showed that the toxicity
profile can be controlled. There are currently ongoing
phase I/II trials.[104]
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Adverse Reactions of PI3K Inhibitors

Although PI3K inhibitors have good therapeutic effects
and prospects, their side effects limit their clinical
applications. In in vitro experiments and xenotransplan-
tation studies, PI3K inhibitors mainly have anti-prolifer-
ative effects on cancer cells.[105] However, these
experimental conditions do not reflect in vivo situations.
It cannot be ruled out that PI3K inhibitors may cause anti-
angiogenesis and active immune response in vivo, leading
to the death of cancer cells and possible drug-related
toxicity.

Inhibition of PI3K destroys insulin signals in muscles and
liver,[106] resulting in hyperinsulinemia and hypoglycemia.
Higher insulin levels may also reduce the degree of
inhibition of PI3K inhibitors in cells. Additionally, PI3K
inhibitors could also cause high blood pressure through
insulin-induced vasoconstriction.[106]

Because the PI3K–AKT–mTOR signals in healthy cells
regulate the basic cell functions, PI3K inhibitors are prone
to off-target side effects,[107] which affects the treatment
and patient’s quality of life. Pan class I PI3K inhibitors act
on all type I subtypes. Depending on the specific cancer
target and its status, they lack isotype specificity and have
varying degrees of toxicity. Therefore, increasing the
selectivity of PI3K isomers may result in less off-target
toxicity.

However, specific PI3K inhibitors will still produce
different adverse reactions based on the selected targets,
including diarrhea caused by PI3Ka inhibitors[108] and a
series of immune-related toxicities of PI3Kd inhibitors.
For example, idelalisib, a PI3Kd inhibitor, may induce
neutropenia and cause bacterial infection.[109-111] Addi-
tionally, corresponding inflammation and autoimmunity
are caused by the excessively active immune response of
the tissue site exposed to the external immunogen toxicity,
presenting as skin rash, colitis, liver toxicity, and
pneumonia. In a report of the PI3Kd inhibitor AMG
319,[112] it was found that AMG 319 reduced tumor-
infiltrating immunosuppressive Treg cells and enhanced
cytotoxic tumor-infiltrating CD8+ and CD4+ T cells. This
also leads to immune-mediated adverse reactions. In
addition, in the treatment with AMG 319, patients who
had not received immunosuppressive chemotherapy
previously had different andmore severe adverse reactions
than the patients with previously treated lymphoma. This
indicates that immunosuppression may reduce the sensi-
tivity of patients to PI3Kd inhibitors.

To safely use PI3K inhibitors,[4] its clinical guidelines now
include antibiotic prevention and cytomegalovirus (CMV)
monitoring.[113] Additionally, it is recommended to
regularly monitor neutropenia during early treatment
and to use growth factors as a preventive measure. Other
side effects can usually be controlled by interrupting or
reducing the dose, or by discontinuing the drug.

Another reported potential side effect of PI3Kd inhibition
is to induce genomic instability in B cells by activating
activation-induced cytidine deaminase (AID),[114] thereby
1279
promoting changes in DNA recombination. These obser-
vations raise concerns about the potential mutagenic risk
for patients treated with long-term PI3Kd inhibitors.
However, since many patients discontinue treatment due
to toxicity after short-term treatment, the clinical extent of
this biological side effect is unclear.
Development Prospects

Based on the results of the current preclinical and clinical
trials of PI3K pathway inhibitors, it is evident that PI3K
inhibitors have great therapeutic potential in NSCLC, but
their significant side effects and immunotoxicity hinder
clinical progress in this field. These toxicities may be
related to the nature and dosage of the drug. More
effective strategies need to be adopted in the future to
reduce possible toxicity problems and to improve
treatment results by overcoming potential drug resistance
mechanisms. The current research directions in this field
are summarized below.
Patient selection

At present, most of the clinical trials of PI3K inhibitors are
mainly conducted in people who have not undergone
molecular selection, which may be one of the reasons for
the unsatisfactory results.[115] Therefore, it is possible to
use precision medicine to select effective biomarkers based
on molecular biology to further stratify patients in greater
detail according to their mutation spectrum, and further
implement the individualized treatment with PI3K
inhibitors.
Improvement of selectivity

Compared with PI3Ka, PI3Kb, and PI3Kg, umbralisib is
far more selective for PI3Kd than idelalisib and duvelisib.
Moreover, it causes fewer adverse events, such as
colitis.[116] Thus, improving the selectivity of PI3K
inhibition may be one of the ways to reduce its adverse
reactions.

In addition, these inhibitors can also be directly applied to
tumors to reduce off-target toxicity. To overcome the
limitations of current PI3K inhibitors, scientists are
developing better organ targeting, and more effective
drug delivery systems, such as allosteric inhibitors,
nanoparticles, multivalent drug targeting, and pro-
tac.[117-119] It is thought that the toxicity related to
PI3K inhibitors can be reduced through effective targeted
drug delivery or local treatment.

Combination therapy

It can be seen from clinical studies that most PI3K
inhibitors have been combined with other drugs to
increase the therapeutic efficacy. The anti-tumor activity
of single-agent PI3K inhibitor is limited, so they are
combined with other treatments. These include other
targeted drugs, chemotherapy, radiotherapy, and im-
mune checkpoint blocking therapy. As it involves
multiple pharmacological strategies to achieve synergis-
tic treatment and to improve efficacy, this treatment
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model is expected to become the main focus of future
research.

The PI3K signaling pathway is widely interconnected with
many other cancer signaling pathways, including multiple
pathways in cancer development and progression, such as
RAS/mitogen-activatedproteinkinase (MAPK),EGFR,and
poly adenosine diphosphate (ADP)-ribose polymerase
(PARP),[25] with multiple convergence points, crosstalk,
and feedback loops. The inhibition of a pathway can affect
the activation or inhibition of another pathway. Therefore,
based on dose-effect and mitigating compensation, inhibit-
ing the PI3K signaling pathway and other NSCLC-related
signaling pathways may show a synergistic effect in
inhibiting tumor growth. Because the role of PI3K-targeted
drugs is mainly to inhibit cell growth, studies have shown
that by targeting the PI3Kpathway in combination therapy,
it can inhibit tumor cells from developing resistance to
radiotherapy, chemotherapy, or other targeted drugs. For
example, to improve the efficiency of PI3K-targeted drugs,
the combination of the PI3Ka inhibitor alpelisib and
cetuximab or dacomitinib can reduce cell growth in
previously resistant cells.[120,121]

Negative feedback pathways reactivate upstream signals,
and other effects make it unlikely for single-agent
inhibitors to completely block the PI3K–AKT–mTOR
pathway.[122] Compared with single-agent therapy, the
combination of rapamycin and chemotherapeutic drugs
increased synergistic inhibition of the PI3K–AKT–mTOR
pathway.[123] In addition, the combined treatment of
AZD8055 and erlotinib or MEK inhibitor trametinib can
further inhibit the tumormetastasis ability inmice.[124] On
the basis of samotolisib, the combined use of checkpoint
kinase 1 (CHK1) inhibitor and prexasertib, also produced
significantly enhanced anti-tumor activity.[125] In conclu-
sion, the combination of PI3K pathway inhibitors and
other treatments has been widely evaluated in NSCLC,
which is expected to improve the clinical benefit for
patients and reduce the incidence of drug resistance.
Dual-target therapy

Although combination therapy can solve certain problems
of individual medication, it also has problems such as
asymmetric pharmacokinetics, drug–drug interactions,
and compliance.[126] Based on this, scientists have
developed dual-target therapy. Dual-target therapy refers
to a single drug that can interact with two different
proteins to produce a synergistic effect.[127] In addition to
the aforementioned PI3K/mTOR drugs, PI3K dual-target
drug development includes PI3K/histone deacetylases
(HDACs) and PI3K/MEK.[128] HDACs are an important
family of epigenetic enzymes by catalyzing the removal of
acetyl groups from e-amino lysine residues on histones and
other proteins.[129] HDAC inhibitors (HDACi) are used in
combination with PI3K pathway inhibitors. It has shown
good anti-tumor effects in clinical studies. BEBT-908 is a
dual inhibitor of PI3K/HDAC, which can target both PI3K
and HDAC signaling pathways.[130] In human NSCLC
H2122 cells, the anti-tumor effect of BEBT-908 was
significantly higher than that of PI3K inhibitor (GDC-
0941) and HDAC inhibitor (SAHA) alone or in
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combination. Studies have shown that BEBT-908 can
effectively inhibit tumor growth by promoting ferroptosis,
and can also enhance tumor cell immunogenicity and the
effect of immune checkpoint inhibitors. MEK is a key
amplification kinase in the Ras–Raf–MEK–extracellular
signal-regulated kinase (ERK) signaling pathway, which
mediates cell growth and survival signals. The new PI3K/
MEK dual-target inhibitor ST-162 can block both PI3K/
Akt/mTOR and Ras/MEK/ERK signaling pathways.[131]

The drug inhibited tumor growth in A549 cells and A549
tumor-bearing mice in a dose-dependent manner, and its
efficacy was similar to the combined administration of
PI3K inhibitor ZSTK474 andMEK inhibitor PD-0325901
at equivalent concentrations.
Intermittent administration

There is evidence that intermittent administration of PI3K
inhibitors can be better tolerated, and can even produce a
better anti-cancer effect. For example, intermittent admin-
istration of PI3Ka/PI3Kd dual inhibitor AZD8835 can
induce an effective immune-mediated, anti-tumor response
in a syngeneic solid tumor model in mice.[132] Pulsed
administrationofcopanlisibalsoproducedaneffectiveanti-
tumor immune response inananimalmodel.[133]Therefore,
to determine the full potential of PI3K inhibitors, clinical
pharmacological characteristics, such as dose and dosing
interval, can be further studied to minimize toxicity while
maintaining efficacy.
Conclusion

Each component of the PI3K–AKT–mTOR pathway may
be changed inNSCLC, and its abnormal activationmay be
one of the mechanisms of acquired resistance to EGFR–
TKIs in patients with NSCLC and EGFR activating
mutations. At present, various PI3K pathway inhibitors
are being evaluated for efficacy and safety in NSCLC
treatment in preclinical and clinical studies, including pan
class I PI3K inhibitors and selective PI3K inhibitors, AKT
inhibitors, mTOR inhibitors, and dual PI3K–mTOR
inhibitors. At present, small-molecule inhibitors targeting
the PI3K signaling pathway have been clinically verified in
phase I and phase II clinical trials. Although they have not
produced exciting therapeutic effects, based on their
important role in the development of NSCLC, PI3K
inhibition drugs can still be further developed and applied
through strategies such as patients selection. In view of
their adverse reactions and potential drug resistance
mechanisms, and the consideration of improving drug
efficiency, it is necessary to further improve the regulatory
mechanism of PI3K in NSCLC. The development of new
biomarkers to stratify patients, the use of combination
therapy with other treatments, the dual-target therapy,
and the development of improved and more selective
inhibitors and drug delivery systems, will provide new
options for curing NSCLC in the near future.
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