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Abstract: Congenital heart defects (CHDs) are the most prevalent and serious birth defect, occurring
in 1% of all live births. Pregestational maternal diabetes is a known risk factor for the development of
CHDs, elevating the risk in the child by more than four-fold. As the prevalence of diabetes rapidly
rises among women of childbearing age, there is a need to investigate the mechanisms and potential
preventative strategies for these defects. In experimental animal models of pregestational diabetes
induced-CHDs, upwards of 50% of offspring display congenital malformations of the heart, including
septal, valvular, and outflow tract defects. Specifically, the imbalance of nitric oxide (NO) and reactive
oxygen species (ROS) signaling is a major driver of the development of CHDs in offspring of mice with
pregestational diabetes. NO from endothelial nitric oxide synthase (eNOS) is crucial to cardiogenesis,
regulating various cellular and molecular processes. In fact, deficiency in eNOS results in CHDs and
coronary artery malformation. Embryonic hearts from diabetic dams exhibit eNOS uncoupling and
oxidative stress. Maternal treatment with sapropterin, a cofactor of eNOS, and antioxidants such as
N-acetylcysteine, vitamin E, and glutathione as well as maternal exercise have been shown to improve
eNOS function, reduce oxidative stress, and lower the incidence CHDs in the offspring of mice with
pregestational diabetes. This review summarizes recent data on pregestational diabetes-induced
CHDs, and offers insights into the important roles of NO and ROS in embryonic heart development
and pathogenesis of CHDs in maternal diabetes.
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1. Introduction

Congenital heart defects (CHDs) are the most common structural birth defect, occurring in 1–5%
of live births [1–3]. Congenital heart disease is the leading cause of pediatric deaths in developed
nations [4]. Pregestational diabetes is an important risk factor of CHDs [5]. While good glycemic
control in diabetic mothers lowers the risk, the incidence of CHDs in their children is still higher than
in the general population [6]. Congenital malformations in the offspring of women with pregestational
diabetes include defects of the limb, neural tube, and musculoskeletal systems. However, the
predominant malformations are CHDs, which represent about 40% of the total malformations [7,8].
Currently, 40% of women with diabetes are of reproductive age [9]. The rapid increase of young adults
with diabetes and prediabetes is alarming, and warrants further research to broaden our understanding
of the pathogenesis of congenital cardiovascular malformations and their prevention.

To understand pathogenesis of CHDs in maternal diabetes, various experimental approaches
have been employed. In animal models, diabetes can be induced via many techniques, including
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diet, drugs, surgery, or genetic alterations. A common, established method for the generation of a
type 1 diabetes (T1D) model in rodents is streptozotocin (STZ) administration [10,11]. This chemical
agent is a glucose analogue, which is taken up by pancreatic β-cells via the glucose transporter 2
(GLUT2). STZ within the cell causes DNA damage, oxidative stress, and ultimately results in β-cell
death [12]. This depletion of pancreatic β-cells and thereby insulin supply recapitulates T1D in humans.
Animal studies analyzing heart development in this model of pregestational maternal diabetes indicate
that reactive oxygen species (ROS) are critical players in mediating maladaptive heart development,
leading to CHDs [13–25]. Oxidative stress, brought on by hyperglycemia, is not conducive to the
development of cardiac progenitors as it results in the oxidation and inactivation of many molecules
and enzymes necessary for cardiogenesis. Emerging data suggests a protective role of endothelial
nitric oxide synthase (eNOS)-derived nitric oxide (NO) in reducing the incidence of the pathogenesis
of diabetes-related CHDs. In this review, we examine the etiology and epidemiology of pregestational
diabetes-induced CHDs and summarize numerous rodent studies looking at this link, while focusing
on the pathophysiological role of ROS and eNOS uncoupling.

2. Congenital Heart Defects

2.1. Epidemiology and Classification

It is estimated that 257,000 Canadians and about 2 million Americans are living with a CHD [26,27].
Approximately 40,000 infants are diagnosed with a CHD each year in the US, and a quarter of these
patients will need invasive treatment in the first year of life [3]. CHDs arise from perturbations in
complex cellular and molecular processes underlying embryonic heart development. Adverse genetic
and environmental factors can impede normal cardiogenesis and increase the likelihood of CHDs.
Several types of malformations can result from missteps during this process. Defects of the septum,
such as a ventricular septal defect (VSD) permits mixing of de-oxygenated and oxygenated blood.
Major malformations such as transposition of the great arteries (TGA) can involve multiple structures
of the heart [2]. Outflow tract defects such as persistent truncus arteriosus (PTA) and malformations
in the valves of the heart can also arise from improper cardiogenesis. These defects compromise the
function of the cardiovascular system by reducing the ability of the heart to adequately perfuse the
body with oxygenated blood.

The International Classification of Diseases (ICD-10) classifies 25 distinct types of anatomical or
hemodynamic CHDs [3]. CHDs can be categorized based on severity of the morphological lesions and
functional consequences. Conventionally, CHDs are grouped into three categories: mild, moderate, and
severe. The majority of CHD cases can be considered mild. The cardiac defects in these patients would
be largely asymptomatic, often undergoing spontaneous resolution [28]. Moderate CHDs are more
complex and require expert care, but are less intensive than the severe cases. Severe CHDs include the
univentricular heart, heterotaxy, conotruncal defects, and atrioventricular canal defects, affecting one
third of all patients with cardiac anomalies [29]. Expert cardiologic care and intervention are required
for these patients in the first year of life. Accordingly, survival rate is dependent on the severity of
the disease. This rate is estimated to be 98% for patients with a mild CHD, whereas it is only 56% for
patients with a severe CHD [30]. Surgical procedures to correct congenital malformations of the heart
do not always have high efficacy [31]. Individuals with CHDs commonly require multiple operations
and drug therapy, and are at an elevated risk for arrhythmias, bacterial endocarditis, and heart failure,
placing a large burden on the health care system [32]. Patients often have extracardiac co-morbidities,
such as neurological deficits, which affect quality of life [33]. The prevalence of neurodevelopmental
disabilities in the population of patients with CHDs ranges from 10% to over 50% depending on
the severity of the lesion and whether pediatric surgery was required [34]. The spectrum of these
abnormalities includes intellectual disability, autism spectrum disorder, and deficits in language,
motor, and social skills [35]. In fact, attention deficit hyperactivity disorder is three to four times more
prevalent in children with a CHD [36]. CHD-related hospitalizations in the US have steadily risen,
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with a financial burden of $6.1 billion per annum [37]. Therefore, it is vital that research be conducted
into how these malformations develop to be able to identify potential preventative interventions.

2.2. Risk Factors Associated with CHDs

Risk factors associated with CHDs include genetic and nongenetic factors. While chromosome
abnormalities and genetic mutations account for 15% of reported cases, nongenetic or environmental
factors are associated with the majority of CHDs seen in the clinic [38]. Genetic factors include
mutations in key transcription factors, such as TBX5, NKX2.5, that govern heart development, and
chromosomal abnormalities, such as trisomy 21 [39,40]. Nongenetic factors are various environmental
insults during pregnancy that compromise developmental pathways in the embryo. The nongenetic
risk factors can include maternal diabetes, smoking, nicotine exposure, alcohol consumption, obesity,
chlamydia or rubella infections, preeclampsia, and high altitude [41–49]. For instance, there was an
exposure–response relationship between increasing body mass index in pregnant women and CHD
incidence in their children. In fact, children of severely obese women were at a 1.94 times greater risk
of having tetralogy of Fallot [44]. Pregestational diabetes is another risk factor for congenital heart
disease [50], and has been observed to increase the risk of CHDs in human populations by more than
four-fold [5–8,51–53].

3. Pregestational Diabetes and CHDs

3.1. Increasing Prevalence of Pregestational Diabetes

Currently, an estimated 451 million people are living with diabetes, and the incidence of this
condition is increasing at a rate of 10 million people per year. It is projected that by the year 2040,
approximately 693 million people will be affected [54]. In Canada, more than 11 million people are
living with diabetes or prediabetes. Type 1 diabetes (T1D) is characterized by autoimmune destruction
of pancreatic β-cells, resulting in a lack of insulin production; whereas type 2 diabetes (T2D) is the
result of insulin resistance and usually has a later onset, but is much more prevalent [55]. The incidence
of both T1D and T2D is increasing in youth aged 10–19 years [56,57]. In fact, T2D among the adolescent
population in the US has increased 31% between 2001 and 2009, with prediabetes rising from 9% to
23% [3]. Importantly, 40% of women with diabetes are of reproductive age [9], and the incidence of T2D
is rapidly increasing in this population [54]. It is estimated that 1 in 5 women are overweight/obese
during pregnancy [58]. In the U.S alone, there was a 37% increase in the number of deliveries affected
by pregestational or prepregnancy diabetes between 2000 and 2010 [59]. A study of trends in delivery
hospitalizations between 1994 and 2004 found a diabetes diagnosis in 4.3 out of 100 deliveries, of which
T2D saw the largest increase (367%) in diagnoses during this time period [60]. Other studies have
shown an increase in pregnancies complicated with T1D and T2D by 44% and 90%, respectively in a
15 year period between 1998 and 2013 [61].

3.2. CHDs and Fetal Heart Abnormalities Associated with Pregestational Diabetes

A spectrum of cardiac defects is present in the offspring of women with pregestational diabetes, and
ranges from minor structural malformations, such as atrial septal defect (ASD), to major morphological
abnormalities, including tetralogy of Fallot [5,62,63]. In a national population-based pregnancy cohort
in England, Wales, and Northern Ireland, similar rates of congenital malformations were reported
between T1D and T2D, 4.8% and 4.3%, respectively [64]. In addition, it was found that 40% of
infants born to diabetic mothers have hypertrophic cardiomyopathy, and case reports indicate that
fetal death and stillbirth results from this condition in diabetic pregnancy [62,65–68]. It has also
been demonstrated that diabetic pregnancy results in reduced fetal cardiac diastolic function [69], as
well as altered heart rate variability and fetal acidaemia [70]. During development, a higher fetal
heart rate has been reported by cardiotocographic analysis from the first to the third trimester in
pregnancies complicated with pregestational diabetes [71,72]. Accordingly, offspring of these women
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also have an altered QRS complex [73]. In addition to modifying CHD risk and cardiac function,
emerging longitudinal data suggests that adult metabolic and cardiovascular disorders are also in-part
attributable to physiological insults in fetal life [74,75]. Adverse uterine environments, including
maternal obesity, diabetes, undernutrition, and stress, can compromise embryonic development,
reprogramming the epigenetic landscape [76]. These adverse outcomes are largely dependent on
glycemic control during the first seven weeks of pregnancy, therefore, effective interventions must be
able to protect this early developmental period.

The main focus of healthcare management is to maintain glycemic control, predominantly through
the use of medications such as insulin and metformin. These drugs are not teratogenic, but their
long-term effects on children’s health are not well understood. Current pharmacologic therapies have
shortcomings that reduce their potential to prevent adverse fetal outcomes. For example, patient
compliance and maintenance are major factors that can impact efficacy and glycaemic control in
pregnant women with diabetes [77]. In addition, pregnancy can exacerbate and complicate diabetes
management, usually requiring higher dosing of medication. As prevalence of diabetes is rapidly
rising in low- to middle-income countries, there is also concern for adequate access to prenatal care
and antidiabetic drugs [78]. Even with access to healthcare and medications, studies have found that
glycemic control alone does not completely eliminate the risk for adverse events, and CHD incidence
in the offspring of diabetic women has remained unchanged, showing little improvement [79–82].
Thus research must be conducted to find alternate interventions that support current treatment practices,
while remaining safe and accessible. To this date, the underlying molecular mechanisms of diabetic
teratogenesis are not fully understood. Signaling pathways such as Notch, Wnt, transforming growth
factor-beta (TGFβ) and hypoxia-inducing factor (HIF1α) have been implicated in the pathogenesis
of CHDs in maternal diabetes. Oxidative damage is largely believed to be at the root of cellular
and molecular changes leading to the development of CHDs. Additionally, eNOS-derived NO is
an important signaling molecule in early embryonic heart development. eNOS dysfunction and
uncoupling also contribute to oxidative stress and CHD pathogenesis.

4. Embryonic Heart Development: Role of eNOS

4.1. Heart Morphogenesis

The heart is the first fully functional organ to form during embryogenesis, and its development is
orchestrated by an interplay of conserved transcription factors that control growth, morphogenesis,
and contractility [83]. Cardiac development involves the harmonic combination of three pools of
progenitor cells, that when present in a specific spatial and temporal orientation together, form a
self-excitable, four-chambered vascular pump [84]. Heart development commences at week 3 of
human embryogenesis, corresponding to embryonic day 7.5 (E7.5) in the mouse, with the formation of
a cardiac crescent and subsequent heart tube from cells of the anterior lateral mesoderm [85]. This first
wave of cardiac progenitors has been termed the first heart field (FHF), forming a concentric inner
layer of endocardial cells and outer layer of myocardial cells separated with extracellular matrix,
also known as cardiac jelly [86]. The FHF-derived heart tube specifically contributes to parts of the
atria and the left ventricle of the mature heart. The primitive heart tube is elongated at its poles
by the addition of proliferative cells coming from the adjacent splanchnic pharyngeal mesoderm.
This consecutive wave of myoblasts has been termed the second heart field (SHF), and contributes to
the rightward looping morphogenesis of the tube, whereby primitive chambers of the heart can be
distinguished [87]. These cells elongate the heart tube by migrating to its arterial and venous poles,
progressively adding new myocardium and endocardium to the outflow and inflow tracts, respectively.
Chamber development by ballooning, muscularization and fusion of endocardial cushions, ventricular
myocardialization and septation, outflow tract and cardiac valve development are completed thereafter,
with the addition of cardiac neural crest cells (CNCs) migrating from the dorsal neural tube [88].
Recently, single-cell RNA sequencing to map the transcriptome of the developing human heart revealed
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that cardiomyocytes exhibit differential gene expression signatures with chamber-specific clusters as
early as 5 weeks into embryogenesis [89]. A number of conserved transcription factors govern the
complex process of cardiac development. Mutations in GATA4, NKX2.5 and TBX5, and MEF2 are
associated with CHDs in humans [90–93]. Specific spatiotemporal interaction and crosstalk between
these factors are essential to control cardiogenic gene programs driving normal heart development [94].
Cardiac development is therefore a complex spatiotemporal process, and a misstep in this orchestration
could lead to a CHD.

4.2. Nitric Oxide Signaling

NO was initially discovered in the vascular endothelium as an endothelium-derived relaxing
factor (EDRF) by Furchgott and Zawadzki in 1980 [95]. NO is a lipophilic, small, gaseous molecule
that has numerous roles in biological signaling processes and, most notably, serves as a potent
vasodilator that regulates vascular function and blood pressure [96,97]. NO production within the
cell is accomplished by the enzyme nitric oxide synthase (NOS), which catalyzes the conversion of
L-arginine into nitric oxide through a NADPH-dependent reaction. Three isoforms of this enzyme,
neuronal (nNOS, NOS1), cytokine-inducible (iNOS, NOS2), and endothelial (eNOS, NOS3) are
distinctly expressed in mammalian cells and produce NO in a tissue-specific manner [98]. nNOS is
constitutively expressed in neurons of the central and peripheral nervous system, whereas iNOS is
expressed in cells of the immune system and produces high levels of nitric oxide associated with
inflammatory processes. eNOS is membrane-bound and calcium-sensitive, expressed in endothelial and
myocardial cells, located on chromosome 7 in humans [99]. They are homodimeric, haem-containing
globular proteins, with an N-terminal oxygenase domain and a C-terminal reductase domain, which
are linked by a calmodulin-binding sequence. The dimer produces NO in the coupled state and
requires Ca2+/calmodulin, flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and
tetrahydrobiopterin (BH4) as cofactors [98]. Calcium-activated calmodulin initiates the election
transfer to produce NO, which, when produced, acts on soluble guanylyl cyclase to catalyze the
formation of the second messenger, cyclic guanosine monophosphate (cGMP). Downstream targets
of cGMP include protein kinases (PKGs), ion channels, and cyclic nucleotide phosphodiesterases
(PDEs) [100]. Activation or inhibition of protein function via S-nitrosylation is also a downstream effect
of NO. Interestingly, eNOS can be itself S-nitrosylated, reducing its activity [101]. Phosphorylation
of eNOS at serine-1177 by Akt (protein kinase B) activates the enzyme, which itself is active when
phosphorylated. NO production via this PI3K/Akt/eNOS pathway represents a highly regulated
biological process involved in endothelial cell permeability, vascular smooth muscle relaxation, calcium
handling, immune regulation, and neurotransmission [97,102].

4.3. Tetrahydrobiopterin and eNOS Coupling

The pteridine (6R) 5,6,7,8-tetrahydrobiopterin (BH4) is an antioxidant and cofactor for many
metabolic enzymes involved in the production of neurotransmitters and NO. As a cofactor, its
heterocyclic ring structure functions to facilitate complex chemical reactions in a wide variety of
biological processes [103]. BH4 is essential for NOS-mediated NO synthesis, by all three isoforms, and
serves both biochemical and structural functions [103]. It is required for eNOS homo-dimer stabilization
and is an allosteric modulator of l-arginine binding to the active site [104]. BH4 participates in the
biochemical formation of NO from O2 by donating an electron for the conversion of l-arginine to
l-citrulline [105]. It “couples” the heme reduction to NO synthesis and acts as a sequential one-electron
reductant and oxidant [98].

BH4 production, either through de novo synthesis or recycling, promotes eNOS function,
generating NO [106]. In fact, diminished levels of BH4 or depletion of l-arginine can uncouple
the eNOS dimer, rendering it incapable of producing NO, instead generating oxygen-derived free
radicals [107]. Similarly, in states of oxidative stress, this process is insulted at many levels, sustaining
the oxidative environment and leading to cellular dysfunction. The production of ROS is often
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amplified because of a positive-feedback loop; ROS generates more ROS. For example, ROS causes
the release of zinc from GTP cyclohydrase 1 (GTPCH-1), a rate-limiting enzyme in BH4 synthesis,
rendering it less functional [108]. Consequently, the intracellular levels of BH4 decline, and eNOS is
left without a cofactor, triggering its uncoupling and superoxide production. This superoxide anion
participates in a rapid reaction with low levels of NO in the cell and forms the peroxynitrite anion
(ONOO−) (Figure 1) [109]. This species is normally in equilibrium with peroxynitrous acid (ONOOH),
which can decay and form ONOOH•, another reactive radical. Proteins are especially vulnerable to
modification by the peroxynitrite system, as it incurs covalent changes to the amino acid residues
cysteine, methionine, tryptophan, and tyrosine [110]. ONOO− specifically inactivates GTPCH-1,
decreasing de novo BH4 synthesis, and the additional oxidative stress furthers the oxidation of BH4
into BH2 [108]. BH2 is unable to couple eNOS, and competes with BH4 for eNOS binding, exacerbating
the superoxide production. Mice lacking GTPCH-1 in the endothelium display significantly lower
BH4 levels associated with eNOS uncoupling and increased ROS production, resulting in impairment
of vasodilation [106].
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Figure 1. Endothelial nitric oxide (eNOS) uncoupling in states of oxidative stress. The functional eNOS
dimer, producing nitric oxide, is seen on the left. eNOS dysfunction, on the right, occurs in states of
oxidative stress, where BH4 is oxidized, eNOS is undimerized and uncoupled. In this state, nitric oxide
is no longer produced and instead superoxide radical is generated. The salvage and de novo BH4
biosynthesis pathways are actively producing BH4 in normal conditions, but are impaired by oxidative
stress, specifically derived from eNOS uncoupling.

Another enzyme inactivated by O2
•− and ONOO− is dihydrofolate reductase (DHFR), responsible

for the recycling of dihydrobiopterin (BH2) back to BH4 (Figure 1) [105,111]. Experiments done in
Escherichia Coli (E. coli) demonstrate peroxynitrite-induced alterations to the catalytic site of DHFR,
resulting in functional compromise [112]. Therefore, both the salvage and de novo synthesis pathways
are crippled due to ROS, furthering the oxidative environment [113]. The relationship between eNOS
function and diabetes has been well established. Endothelial dysfunction is a common consequence of
diabetes and is mediated by oxidative stress-induced eNOS uncoupling [114–116]. Previous studies
indicate that dissolution of the eNOS dimer also occurs in aging vessels and in cardiovascular disease
states, such as hypertension, ischemia-reperfusion injury, and heart failure [117–119]. Treatment
with BH4 has been shown to recouple eNOS and partially improve vascular endothelial function in
diabetes [103,120]. Clinical studies also show the benefits of BH4 therapy in improving endothelial
dysfunction, vasodilation, and lowering blood pressure in clinical settings of hypertension and
hypercholesterolemia [121,122]. However, acute intracoronary infusion of BH4 to patients with
coronary disease showed no significant improvement in coronary vascular reactivity or microvascular
endothelial function in the heart [123]. Additionally, oral BH4 treatment for 2 to 6 weeks augments
total biopterin levels in patients awaiting for coronary bypass surgery, but has no net effects on vascular
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redox state or endothelial function due to rapid oxidation of BH4 [124]. Thus, the type of cardiovascular
disease that benefits from BH4 therapy remains to be investigated.

4.4. Role of eNOS in Heart Development

During embryogenesis, eNOS is expressed in the developing heart, and its expression has
been shown to be vital for embryonic heart development [102,125]. In mice, expression of the
synthase starts at E9.5 in the endothelium and cardiomyocyte precursors of the heart tube, and
peaks at E13.5, after which it begins to decline, but remains detectable at birth and into postnatal
development [102]. The lung, liver, gastrointestinal tract, reproductive organs, and brain all express
eNOS during their organogenesis [126]. In vitro incubation of NOS inhibitors to embryonic stem
cell-derived cardiomyocytes inhibited their maturation [126]. Interestingly, mouse embryonic stem
cells exogenously treated with a NO donor or transfected with NOS promoted their differentiation into
cardiomyocytes, inducing the expression of cardiac-specific genes [127]. Induced pluripotent stem
cells and mouse E14.5 ventricular tissues in which eNOS are deficient show consistent transcriptome
profiles, and particularly an up-regulation of glucose metabolism genes [128]. Gata4, a transcription
factor needed for cardiomyocyte specification and heart development, can modulate and increase
the expression of eNOS by binding to its promoter region [129]. The importance of eNOS in heart
development has been showcased through the spectrum of cardiovascular anomalies seen in eNOS−/−

mice. Embryonic deletion of nNOS or iNOS displays normal cardiac phenotypes, however eNOS-null
mice have a high rate of CHDs in the offspring. These mice have increased postnatal mortality, impaired
heart function, and significant elevations in embryonic apoptosis in the heart [125]. In addition, they
have valvular malformations, including bicuspid aortic valves (30–40% incidence) and underdeveloped
mitral and tricuspid valves, which have significant regurgitation during systole along with aortic valve
sclerosis and calcification [130–132].

During embryonic development, eNOS-null mice have less Snail+ mesenchymal cells in the
endocardial cushions, suggesting impaired endocardial-to-mesenchymal transition (EndMT). This was
coupled with significantly lower mRNA levels of genes involved in valve formation, such as Tgf-β
and Bmp2 [131]. Accordingly, patients with bicuspid aortic valve disease had lower eNOS protein
expression in aortic endothelial cells compared with tricuspid aortic valves patient specimens [133].
eNOS-derived NO regulates cell growth and protects early cardiac progenitors against apoptosis [125].
This is accomplished through S-nitrosylation and inactivation of caspase-3 [134]. Additionally, shear
stress-induced NO production and up-regulation of superoxide dismutase reduce the incidence of
endothelial cell death via inhibiting caspase-3 activity [135]. eNOS is also required for cardiomyocyte
proliferation, as well as VEGF expression to form the capillary network supplying the muscle [136].
In fact, eNOS intimately controls coronary artery development in mice, as loss of this enzyme results in
coronary artery hypoplasia and spontaneous postnatal myocardial infarction [137]. Key transcription
factors that control epithelial-to-mesenchymal transition (EMT) and vasculogenesis are downregulated
in this model, including Gata4, Wt1, VEGF, bFGF, and erythropoietin, all of which are rescued by
eNOS overexpression, restoring normal vasculature [137]. Overall, eNOS and NO are critical for the
morphogenesis of all major components of the developing heart, and research characterizing their
functions has been previously summarized by our group in a more extensive review [102].

5. Oxidative Stress and Diabetes

5.1. The Anatomy of Reactive Oxygen Species

ROS can exist as neutral molecules, ions, or radicals, such as hydrogen peroxide (H2O2), the
superoxide anion (O2

•−), or the hydroxyl radical (•OH), respectively [138]. They are produced in
subcellular compartments and microdomains as part of cellular metabolic activity. Their biological
effects, physiological or pathological, depend on their spatiotemporal characteristics, including
the local levels, duration of their release, and interactions between ROS in different subcellular
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compartments [138,139]. Superoxide is considered a primary ROS and can either be generated from
a metabolic process or by activation of oxygen by irradiation. Superoxide cannot readily cross
plasma membranes, therefore having local, transient effects. The superoxide anion can react with
nitric oxide, forming the highly reactive peroxynitrite [140]. This anion can also be dismutated
into hydrogen peroxide (H2O2) by superoxide dismutase (SOD). Notably, H2O2 is diffusible across
membranes via peroxiporins, a type of aquaporin, to achieve its biological effects in different subcellular
compartments [141,142]. While basal physiological level of H2O2 is required for redox signaling,
excess production of H2O2 in the cell is detrimental as it can easily be converted into hydroxyl
radical •OH [143,144]. H2O2 also serves as an endothelium-derived hyperpolarizing factor (EDHF),
mediates flow-induced dilation in human coronary arterioles, and contributes to the maintenance of
vascular homeostasis, along with other vasodilating factors such as prostacyclin, and NO [145]. In the
endothelium, H2O2 is produced from dismutation of superoxide anion generated from several sources
including mitochondrial electron transport chain, NADPH oxidase, xanthine oxidase, and importantly
eNOS. Thus, eNOS in the endothelium produces not only NO (more pronounced in large conduit
vessels), but also H2O2 (predominantly in resistance arteries) to regulate vascular function [145].

Closely linked with the generation of free radicals are redox-active metals. An iron redox couple is
associated with the redox state of the cell, and is kept under strict physiological control. In conditions of
excessive stress, and excess O2

•− release, free iron released from enzymes takes part in Fenton’s reaction
and generates secondary ROS, hydroxyl radicals (Figure 2) [146]. Elevated concentrations of ROS can
react with proteins, lipids, carbohydrates, and nucleic acids causing nonspecific damage and permanent
functional changes. Hydroxyl radicals produced in close proximity to DNA or RNA can react, resulting
in mutations or modifications [147]. Over 20 different types of RNA base damage have been identified,
8-hydroxyguanosine (8-OHG) being the most prevalent oxidized base (Figure 2) [148]. The hydroxyl
radical reacts with the guanine to form C8-OH adduct radical, as it is highly reactive. Next, 8-OHG is
generated from the loss of an electron (e−) and proton (H+) [148]. The hydroxyl radicals can also react
with polyunsaturated fatty acid residues of phospholipids, the main component of the cell membrane,
which are highly sensitive to oxidation to result in lipid peroxidation (Figure 2) [149]. Along with
mitochondrial ROS production, intracellular sources of ROS include peroxisomes, lysosomes, and
enzymes such as NADPH oxidase, xanthine oxidase, and cytochrome p450 [138].

5.2. Oxidative Stress Induced by Hyperglycemia

Maternal health and environmental factors have both short-term and long-term consequences for
the offspring [150]. Hyperglycemia in the mother alters the environment in which embryos develop
because glucose, among other metabolic molecules, can pass freely through the placental barrier. In this
altered fetal environment, oxidative stress can result from multiple pathways (Figure 3). Excess glucose
can be freely taken up by embryonic heart through glucose transporter 1 (GLUT1), the predominant
GLUT transporter in the developing heart [151]. The developing heart is sensitive to changes in glucose
availability, and early cardiac progenitors mainly rely on glycolysis for energy production. In fact,
GLUT1 expression is upregulated in the embryonic heart in experimental models of maternal diabetes,
facilitating the glucose overload [76]. However, as cardiomyocytes terminally differentiate they switch
to mitochondrial oxidative metabolism pathways [152], and the insulin-sensitive glucose transporter
GLUT4 becomes the predominant form postnatally [153].
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(H2O2) and oxygen. (B) H2O2 is then converted to secondary ROS, being hydroxyl radical (•OH)
by Fenton’s reaction. (C) Hydroxyl radicals are capable of promoting the oxidation of guanosine to
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residues of phospholipids, which are highly sensitive to oxidation, resulting in lipid peroxidation.
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acetylglucosamine (UDP-GlcNAc), which leads to impairment of endothelial nitric oxide synthase 
(eNOS) function by O-GlcNAc modification of eNOS at serine 1177, the site of phosphorylation by 
Akt activation. Oxidative stress also causes eNOS to undimerize and produce superoxide, which 
reacts with NO to potentiate oxidative and nitrosative stress. Additionally, advanced glycation end-
products (AGEs), though binding to receptors of AGEs (RAGE) induce carbonyl stress and promote 
ROS. Dysfunctional eNOS and oxidative stress alter gene expression, cell proliferation, survival, and 
inhibit epithelial-to-mesenchymal transition (EMT), leading to CHDs, which can be ameliorated by 
SOD1 overexpression, and maternal treatment with N-acetylcysteine (NAC) and sapropterin (BH4). 

High levels of glucose promote glycolysis, and electron carriers such as NADH and FADH2 are 
increasingly produced, depleted, and reproduced through cycles of glycolysis and oxidative 
phosphorylation within the mitochondria (Figure 3). These molecules act as electron sources for the 
mitochondrial electron transport chain, and higher levels of electrons flowing through this chain will 
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oxidative phosphorylation process, electrons can react with oxygen, forming radicals [140]. The end 
result of high glucose is an overproduction of electron donors and generation of reactive oxygen 
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Figure 3. Possible mechanisms of hyperglycemia-induced cellular oxidative damage in the fetal
heart. Excess glucose increases the rate of glycolytic metabolic pathways, overproducing electron
donors that increase mitochondrial reactive oxygen species (ROS) production. Coupled with impaired
antioxidant defenses including lower levels of superoxide dismutase 1 (SOD), glutathione peroxidase
(GPX) and reduced glutathione (GSH), this leads to oxidative stress in diabetes. Glycolysis intermediate
fructose-6-phosphate also feeds into the hexosamine pathway to produce UDP-N-acetylglucosamine
(UDP-GlcNAc), which leads to impairment of endothelial nitric oxide synthase (eNOS) function by
O-GlcNAc modification of eNOS at serine 1177, the site of phosphorylation by Akt activation. Oxidative
stress also causes eNOS to undimerize and produce superoxide, which reacts with NO to potentiate
oxidative and nitrosative stress. Additionally, advanced glycation end-products (AGEs), though binding
to receptors of AGEs (RAGE) induce carbonyl stress and promote ROS. Dysfunctional eNOS and
oxidative stress alter gene expression, cell proliferation, survival, and inhibit epithelial-to-mesenchymal
transition (EMT), leading to CHDs, which can be ameliorated by SOD1 overexpression, and maternal
treatment with N-acetylcysteine (NAC) and sapropterin (BH4).

High levels of glucose promote glycolysis, and electron carriers such as NADH and FADH2

are increasingly produced, depleted, and reproduced through cycles of glycolysis and oxidative
phosphorylation within the mitochondria (Figure 3). These molecules act as electron sources for the
mitochondrial electron transport chain, and higher levels of electrons flowing through this chain will
lead to increased oxygen consumption and ATP formation [154]. At several points during the oxidative
phosphorylation process, electrons can react with oxygen, forming radicals [140]. The end result of
high glucose is an overproduction of electron donors and generation of reactive oxygen species (ROS)
such as superoxide and hydrogen peroxide [154]. This notion is supported by experiments showing
that overexpression of uncoupling protein-1 (UCP-1) abolished the proton electrochemical gradient
driving oxidative phosphorylation and prevented hyperglycemia-induced ROS production [155].

Moreover, mitochondrial ROS can stimulate the production of cytosolic ROS through several
mechanisms. Hydrogen peroxide can lead to the activation of cellular Src kinase, which promotes
NADPH oxidase activity, producing superoxide [156]. These reactive molecules can damage DNA and
proteins critical for organogenesis [157]. Usually, under conditions of normal NADH to NAD+ ratio,
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the production of ROS is relatively low and is reduced by endogenous antioxidants such as superoxide
dismutase (SOD), catalase, and glutathione peroxidase [158,159]. High-glucose environments during
development disrupt intracellular redox homeostasis by stimulating ROS production, to exceed levels
that can appropriately be managed by endogenous antioxidants. Oxidative stress is also potentiated by
attenuated glutathione synthesis in diabetic conditions [160]. Further, increased abundance of glucose
and glycolysis intermediates stimulate other metabolic pathways that can lead to cellular damage.
For example, the hexosamine pathway produces UDP-N-acetylglucosamine (UDP-GlcNAc) from
fructose-6-phosphate [161]. This molecule is involved in O-linked N-acetylglucosamine modification
of proteins, inhibiting their functional capacity. Furthermore, advanced glycation end-products (AGEs)
are produced by the advanced glycation and oxidation of proteins, lipids, and nucleic acids, and
are thought to play a role in the development of diabetic complications. AGEs activate RAGE (the
receptors for AGEs) signaling and cause carbonyl stress, leading to activation of NF-kB, inflammatory
response, ROS production, and endothelial dysfunction [162,163]. Overall, the abundance of ROS
and the depletion of antioxidants lead to lipid peroxidation, as well as damage to nucleic acids and
proteins [164]. In diabetic pregnancies, eNOS dysfunction and oxidative stress/damage ultimately
alters gene expression, cell proliferation, survival, and inhibits EMT, resulting in CHDs in the offspring
(Figure 3).

6. Involvement of eNOS Uncoupling and ROS in Pregestational Diabetes-Induced CHDs

6.1. Experimental Models of CHDs Induced by Hyperglycemia and Pregestational Diabetes

Hyperglycemia has been recognized as a teratogen causing embryopathy associated with neural
tube defects and CHDs [165,166]. To simulate CHDs in humans due to pregestational diabetes,
both ex vivo and in vivo animal models have been employed. Whole embryo culture of rodents
allows direct observation of the growth and development of embryos outside the maternal uterus
for up to 5 days. Additionally, culture conditions can be easily manipulated, for example using high
glucose concentrations to mimic hyperglycemia. Although the rodent whole embryo culture was
initially described about 60 years ago, because of these advantages, it is still being used to study
organogenesis [167]. Chick embryo culture has also been used to study the effects of hyperglycemia
on heart development. Exposure of neural crest cells to high glucose in vivo results in double-outlet
right ventricle (DORV) and ventricular septal defect (VSD) [166]. However, the in vivo rodent models
induced by either streptozotocin (STZ) with various administration regimens or high-fat diet plus
low-dose STZ to simulate type 1 or 2 diabetes, respectively, are the most commonly used and clinically
relevant models of maternal diabetes. We have employed a mouse model of pregestational diabetes
induced by STZ, which produced a wide spectrum of CHDs in the offspring, including ASD, VSD,
atrioventricular septal defect (ASVD), DORV, tetralogy of Fallot, transposition of great arteries (TGA),
and hypoplastic left heart syndrome (HLHS) [15–18]. Some of the fetuses exhibit coronary artery
malformations with reduced coronary artery diameter and abundance, resembling hypoplastic coronary
artery disease (HCAD) in humans [16,17]. Studies using these in vivo rodent models to examine the
roles of NO and ROS are summarized in Table 1.
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Table 1. ROS and eNOS involvement in rodent studies on pregestational diabetes-induced congenital heart defects.

Rodent Strain/Type
of Diabetes

Treatment/Genetic
Modification

eNOS/ROS
Involvement

Altered Fetal Heart Signaling Pathways/Cellular Processes by
Maternal Diabetes Spectrum of CHDs in Offspring References

Swiss albino mice
STZ 75 mg/kg IP × 3 N/A eNOS and ROS ↓ eNOS, ↑ VEGF

↓ NO release, ↑ apoptosis, cell blebbing, and aggregation * N/A [13]

C57BL/6
STZ 75 mg/kg IP × 3 N/A eNOS and ROS ↑ ROS, ↓ Notch1/eNOS pathway VSD [14]

Sapropterin eNOS and ROS eNOS uncoupling
↓ proliferation, ↓ SHF contribution, ↓ cardiac valve remodeling

ASD, VSD, AVSD, DORV, PTA, Valve
Thickening, Thin ventricles [15]C57BL/6

STZ 50 mg/kg IP × 5
Exercise eNOS and ROS ↓ eNOS phosphorylation

↓ proliferation, ↓Wt1 expression
ASD, VSD, AVSD, DORV, HLHS, HRHS,
Coronary artery malformation [16]

↓ proliferation, ↓ Epicardial EMT Coronary artery malformation [17]C57BL/6
STZ 75 mg/kg IP × 3 N-acetylcysteine ROS

↓ proliferation, ↑ apoptosis ASD, VSD, AVSD, DORV, TGA, TOF [18]
SD Rats
STZ 40 mg/kg IV × 1 Vitamin E ROS N/A VSD, DORV, PTA, PDA [19]

FVB
STZ 100 mg/kg IV × 1

Vitamin E and
Glutathione ROS ↑ apoptosis, ↓ CNC migration PTA [20]

ROS ↓Wnt/β-catenin signaling
↓ proliferation, ↑ apoptosis VSD [21]

ROS ↓ TGFb/Smad signaling
↓ proliferation ** N/A [22]

SOD-1
overexpression

ROS ↓ proliferation and ↑ apoptosis † N/A [23]

C57BL/6
STZ 75 mg/kg IP × 2

Ask1 knockout ROS ↑ ASK1/JNK signaling
↑ ER stress, ↓proliferation, ↑ apoptosis VSD, PTA, OFT defects [24]

SD Rats, HFD +
STZ 65 mg/kg IP × 1 N/A ROS ↑ lipid droplets, abnormal mitochondrial structure & membrane

potential N/A [25]

SD Rats
STZ 40 mg/kg IV × 1 N/A N/A ↑ apoptosis VSD, AVSD, DORV, DILV [168]

N/A N/A ↓ proliferation, ↑ apoptosis, ↓migration, ↓ differentiation,
↑ O-glycan biosynthesis, ↓ lysosome activity † N/A [169]

Swiss albino mice
STZ 75 mg/kg IP × 3 N/A N/A ↓ proliferation, ↑ apoptosis, swollen mitochondria,

↓myofilaments, ↓ adherence junctions VSD, PTA [170]

C57BL/6
STZ 50 mg/kg IP × 5 N/A N/A N/A VSD [171]

SD Rats
STZ 35 mg/kg IP × 1 N/A N/A ↑ apoptosis, ↑mitosis ↑ heart size, ↓ cardiac function [172]

FVB Mice
STZ 100 mg/kg IP × 2 N/A N/A ↑ Hif1α/VEGF signaling

↓ proliferation, ↑ apoptosis VSD, ↓myocardial volume [173]

Abbreviations: N/A, not available; IP, Intraperitoneal; IV, intravenous; SD, Sprague-Dawley; STZ, Streptozotocin; HFD, high fat diet; SHF, Second heart field; CNC, Cardiac neural crest;
ASD, atrial septal defect; VSD, ventricular septal defect; AVSD, Atrioventricular septal defect; PTA, persistent truncus arteriosus; PDA, patent ductus arteriosus; DORV, double-outlet left
ventricle; DILV, double-inlet left ventricle; OFT, outflow tract; TOF, tetralogy of Fallot; HLHS and HRHS, hypoplastic left and right heart syndrome, respectively; ↑ indicates an elevation,
↓ indicates a reduction. * in vitro, ** ex vivo, † gene ontology analysis.
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6.2. eNOS Uncoupling and CHDs in Pregestational Diabetes

The molecular mechanisms by which hyperglycemia causes CHDs are complex and may involve
multiple signaling pathways. Interestingly, eNOS expression and NO levels are reduced in fetal
hearts of offspring of diabetic dams [13]. The dysfunctional eNOS induced by high glucose stress is
a result of reduced chromatin accessibility at the Nos3 locus and decreased eNOS phosphorylation
of serine 1177 by the protein kinase Akt [14,174]. Furthermore, lower NO levels are associated with
higher Jarid2 expression and its enhanced interaction with the Notch1 locus, leading to decreased
Notch1 expression and a higher incidence of VSDs in offspring of maternal diabetes [14]. Notably,
pregestational diabetes lowers fetal BH4 levels, and induces eNOS uncoupling, elevated superoxide
generation, as well as altered cardiac gene expression of Gata4, Gata5, Nkx2.5, Tbx5, and Bmp10 in the
fetal heart [15]. Moreover, mRNA levels of GTPCH1 and DHFR, enzymes involved in BH4 synthesis,
were also significantly reduced at E12.5 in the fetal heart of offspring from diabetic dams, compared
with control [15]. To elucidate the role of eNOS uncoupling in the pathogenesis of CHDs, diabetic
dams were treated with sapropterin (Kuvan®), an orally active synthetic form of BH4. Our results
showed that oral sapropterin treatment in the diabetic dams recouples eNOS and lowers ROS levels
in fetal hearts. Further, impaired cardiac gene expression and cell proliferation induced by maternal
diabetes were normalized with sapropterin treatment. Most strikingly, the incidence of CHDs was
lowered from 59% to 27%, and major abnormalities such as AVSD and DORV were absent in the
sapropterin-treated group [15]. The study shows a pivotal role of eNOS uncoupling in the pathogenesis
of CHDs in diabetic pregnancies (Table 1).

6.3. Role of ROS in Pathogenesis of CHDs in Pregestational Diabetes

Elevated ROS levels and oxidative damage have been proposed to contribute to diabetic
complications [165,175]. Ex vivo cultures of rat embryos under high-glucose conditions show
glutathione depletion, excessive ROS production, growth retardation, and severe malformations after
exposure to high glucose [176,177]. In a U-substrain of Sprague-Dawley rats at Uppsala University,
Sweden, pregestational diabetes induced by STZ resulted in craniofacial and skeletal malformations
in the offspring [165]. Additionally, the rat offspring of maternal diabetes also show a variety of
CHDs including DORV, persistent truncus arteriosus, VSD, teratology of Fallot, and pharyngeal
arch artery defects [19,168]. Furthermore, maternal treatment with antioxidants such as butylated
hydroxytoluene and vitamin C and E reduced the rate of craniofacial and skeletal malformations, while
treatment with vitamin E decreased the rate and severity of CHDs in rats, suggesting the involvement of
ROS [19,178–180]. Microarray analysis shows that genes involved in apoptosis, proliferation, migration,
and differentiation in fetal hearts at E13.5 and E15.5 are differentially expressed in embryos of diabetic
pregnancy [169]. These changes in gene expression and downregulation of Pax3 are associated with
cardiac malformation such as persistent truncus arteriosus and VSD [170]. Using reporter mice linked
to Pax3 expression, defective cardiac neural crest cell migration and outflow tract defects were found in
embryos of maternal diabetes/hyperglycemia, and reduced by antioxidant treatment with glutathione
ethyl ester or vitamin E [20].

Subsequent studies from us and others demonstrated that both ROS and oxidative stress are
elevated in the fetal heart of maternal diabetes. Notably, inhibition of ROS using oral treatment of
antioxidant N-acetylcysteine or by transgenic overexpression of superoxide dismutase 1 (SOD1) lowers
fetal heart ROS levels and reduces the incidence of CHDs and coronary artery malformations induced by
pregestational diabetes [17,18,21,22]. Interestingly, intravenous administration of miRNA-containing
exosomes isolated from diabetic dams to control dams at E8.5 or E11.5 is sufficient to induce VSDs in
fetuses [171]. Further, expression of genes and miRNAs critical to heart morphogenesis is regulated by
ROS in the fetal heart of maternal diabetes since the changes were normalized by N-acetylcysteine
treatment or overexpression of SOD1 [17,18,23]. Additionally, cell apoptosis and endoplasmic
reticulum (ER) stress are involved in CHD pathogenesis in maternal diabetes as deficiency of apoptosis
signal-regulating kinase 1 (ASK1) lowers apoptosis, ER stress, and incidence of CHDs in offspring of
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pregestational diabetes [24]. Together, these studies support a critical role of ROS in the pathogenesis
of CHDs in pregestational diabetes in rodents (Table 1).

It should be noted that maternal supplementation with antioxidants vitamin E and C during
pregnancy in general population shows no overall benefit or harm for the prevention of stillbirth,
neonatal death, poor fetal growth, preterm birth, or pre-eclampsia [181,182]. In fact, some studies
show that high maternal vitamin E intake by diet or supplements even increases the risk of CHDs in
children [183]. These results are consistent with a recent meta-analysis showing no effect of vitamin
E and C supplementation on the cardiovascular outcomes including myocardial infarction, stroke,
total death, and cardiac death in adults [184]. The failure to translate preclinical paradigms into
clinical settings underscores our limited knowledge on ROS biology, particularly the subcellular
compartmentation of ROS sources and antioxidant systems, which may dictate their final effect.
However, whether N-acetylcysteine or BH4 affects the incidence of CHDs of children in pregestational
diabetes patients remains to be investigated.

Additionally, AGEs represent another mechanism implicated in hyperglycemia-induced
malformations. Specifically in the rat embryo, 3-deoxyglucasone, a precursor in the formation of
AGEs was demonstrated to be increased in high-glucose compared with low-glucose conditions.
The increased level of 3-deoxyglucasone was associated with an increased rate of embryonic
malformations [185]. Furthermore, maternal diabetes in rats increased the accumulation of AGEs
such as Nε(carboxymethyl)lysine (CML) in areas susceptible to diabetes-induced CHDs, including the
outflow tract of the heart and the aortic arch [186]. These studies suggest that AGEs are associated
with congenital malformations, although their definitive role in the pathogenesis of CHDs remains to
be determined.

7. Maternal Exercise Reduces Incidence of CHDs from Pregestational Diabetes

Clinical studies suggest an overall healthy lifestyle with regular exercise before and during
pregnancy is important to ensure a healthy outcome of the newborns [187]. Exercise has a number of
benefits including, but not limited to, improvements of metabolism, cardiovascular health, cognition,
fertility, bone health, immune response, and even slowing down aging [188]. Exercise during gestation
lowers the risk of gestational diabetes mellitus and improves offspring health [189]. A joint Society
of Obstetricians and Gynaecologists of Canada (SOGC)/Canadian Society for Exercise Physiology
(CSEP) clinical practice guideline recommends 150 min of moderate-intensity exercise per week
during pregnancy to achieve clinically meaningful health benefits and reductions in pregnancy
complications [190]. Remarkably, maternal voluntary exercise for 3 months before conception has
recently been shown to lower the incidence of VSDs in offspring of old mothers, suggesting maternal
exercise reduces the risk of CHDs associated with maternal age [191]. Using a STZ diabetes mouse
model, we examined the effects of maternal exercise on pathogenesis of CHDs induced by pregestational
diabetes [16]. Our results show that maternal exercise reduces ROS levels and oxidative stress and
improves eNOS phosphorylation in the fetal hearts of offspring from mice with diabetes. Most notably,
maternal exercise lowered the incidence of CHDs and coronary artery malformation by 58% [16]. Few
other studies have examined changes in heart development associated with maternal exercise. There is
evidence that exercise during pregnancy may influence the maturation of cardiac autonomic control
and increase right ventricular cardiac output in children [192,193], and improve NO bioavailability
and vascular function in the fetus of pigs [194].

Although several exercise-mediated adaptations have been identified that may play a role in
modulating cardioprotective response, the mechanism by which maternal exercise alters fetal heart
development remains unclear. Exercise has been demonstrated to influence gene expression and
activate pathways that alter angiogenesis, proliferation, and cellular metabolism [188]. Peroxisome
proliferator-activated receptors-gamma (PPARγ) coactivator-1a (PGC-1α) is a master regulator of
energy metabolism. In the heart, PGC-1α is the major coactivator for transcription factors PPARα and
PPARγ, which regulate cardiac metabolism [195]. The PPARβ/δ isoform has been demonstrated to
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protect cardiomyocytes against apoptosis induced by oxidative stress, and is known to be induced
by exercise in skeletal muscle [196]. Through activation of other transcription factors, PGC-1α also
stimulates mitochondrial biogenesis and promotes the expression of electron transport chain proteins.
PGC-1α is upregulated with exercise and has been shown to regulate mitochondrial antioxidant
defense in vascular endothelial cells [196]. Laker et al. found that maternal exercise modified the
methylation status of the PGC-1α promoter and increased its gene expression in the offspring [197].
In future studies, it would be worthwhile to evaluate the involvement of PGC-1α in mediating the
effects observed in our model of pregestational diabetes.

In adults, exercise elevates ROS production, which paradoxically leads to improved redox
capacity through upregulation of antioxidant enzymes in cardiac and skeletal muscle [198,199].
In fact, exercise-induced resistance to ischemia-reperfusion injury is mediated by such adaptations to
antioxidant defenses [200]. Promotion of NO signaling through exercise is also known to contribute
to this protective mechanism [201]. During exercise, the β3-adrenergic receptor is stimulated, and
its activation increases eNOS activity and NO bioavailability [202]. Activation and phosphorylation
of eNOS-Ser1177 in the heart is mediated by Akt activation. As Akt activation has been shown to
promote cardiomyocyte proliferation and expansion of cardiac progenitors [203], this pathway may
also have contributed to protection against CHD pathogenesis observed in our model [16]. As of now,
fetal adaptations in response to maternal exercise has not been well characterized. Our results suggest
that maternal exercise may improve the capacity to maintain redox balance in the fetal heart. Results
from recent studies support this notion, showing that maternal exercise resulted in increased eNOS
and extracellular SOD expression in vascular smooth muscle cells, increased mitochondrial enzymatic
activity, and decreased ROS in fetal cardiovascular tissues [204,205].

All in all, maternal exercise may protect against abnormal heart development through multiple
mechanisms. For example, exercise has been shown to decrease the expression of transcription factor
C/EBPβ in the heart, leading to the upregulation of cardiac factors Gata4, Tbx5, and Nkx2.5 to promote
cell proliferation, differentiation, and physiological hypertrophy in adults [206]. There is also emerging
interest in epigenetic regulation of gene expression and micro-RNAs (miRNA) involved in heart
development. Specifically, miR-1/miR-133 clusters in the heart are regulated by myocyte-enhancer factor
2 (Mef2) and Nkx2.5 and are involved in regulation of cell proliferation, apoptosis, and differentiation
during heart development. Some of these miRNAs are upregulated with exercise [207]. The exact role
of eNOS and ROS signaling in the exercise-induced benefits remains to be determined, and there are
many exciting directions for possible future studies.

8. Conclusions

It is clear that the diabetes epidemic poses a major threat to both high- and low-income countries
alike, given the alarming rate at which prevalence is rising globally [54]. CHDs are an important
consequence of pregestational diabetes, causing significant morbidity, mortality, and burden on
healthcare costs. The teratogenic potential of maternal hyperglycemia has been well documented
for generations, and research thus far has uncovered perturbations to ROS and NO homeostasis to
be major drivers of this phenomenon. Cardiogenesis is a highly complex process governed by a
multitude of factors that are sensitive to oxidative damage, including eNOS, the enzyme that produces
NO. Unfortunately, clinical evidence suggests that insulin treatment and glycemic control alone does
not completely eliminate the risk of CHDs in the children of women with pregestational diabetes.
Animal studies have identified several antioxidants to significantly protect against CHDs induced by
maternal diabetes. Factors such as BH4, which bridges the homeostasis of both ROS and NO, show
promise to be potential treatment in the prevention of CHDs during maternal diabetes. Additionally,
lifestyle modifications such as maternal exercise, which reduces ROS and increases eNOS activity, may
be a simple yet effective intervention to supplement pharmacological therapy and minimize risks
of birth defects in mothers with diabetes. In conclusion, although great strides have been made in
understanding the pathogenesis of CHDs, a significant paucity in human data exists, limiting the
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advancement of clinical treatment. Moving forward, further translational research is needed in order
to evaluate the efficacy of such interventions in human populations.
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