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Environmental omics and molecular-biological data have been proposed to yield

improved quantitative predictions of biogeochemical processes. The abundances

of functional genes and transcripts relate to the number of cells and activity of

microorganisms. However, whether molecular-biological data can be quantitatively linked

to reaction rates remains an open question. We present an enzyme-based denitrification

model that simulates concentrations of transcription factors, functional-gene transcripts,

enzymes, and solutes. We calibrated the model using experimental data from a

well-controlled batch experiment with the denitrifier Paracoccous denitrificans. The

model accurately predicts denitrification rates and measured transcript dynamics. The

relationship between simulated transcript concentrations and reaction rates exhibits

strong non-linearity and hysteresis related to the faster dynamics of gene transcription

and substrate consumption, relative to enzyme production and decay. Hence, assuming

a unique relationship between transcript-to-gene ratios and reaction rates, as frequently

suggested, may be an erroneous simplification. Comparing model results of our

enzyme-based model to those of a classical Monod-type model reveals that both

formulations perform equally well with respect to nitrogen species, indicating only a

low benefit of integrating molecular-biological data for estimating denitrification rates.

Nonetheless, the enzyme-based model is a valuable tool to improve our mechanistic

understanding of the relationship between biomolecular quantities and reaction rates.

Furthermore, our results highlight that both enzyme kinetics (i.e., substrate limitation

and inhibition) and gene expression or enzyme dynamics are important controls on

denitrification rates.

Keywords: denitrification, biogeochemical modeling, functional genes, transcripts, enzyme-based modeling,

bayesian inference

1. INTRODUCTION

Modern high-throughput molecular-biological techniques and omics methods provide insights
into the abundance, activity, and metabolic function of microorganisms in environmental systems
(Bouchez et al., 2016; Starke et al., 2019). Because microbial transformations play a key role in
biogeochemical cycling (Kuypers et al., 2018) and contaminant degradation (Dong et al., 2019),
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reactive-transport models require an adequate quantification
of microbial dynamics. Numerous laboratory and field studies
(Bælum et al., 2008; Bowen et al., 2014; Anantharaman et al.,
2016; Wegner et al., 2019) indicate that quantifying the
abundance of genes and gene transcripts has the potential
to improve the description of microbially mediated reactions
implemented in reactive-transport models.

Transcript-to-gene ratios and relative gene expression levels
have been suggested as a direct measure of microbial activity
(Nicolaisen et al., 2008; Freitag and Prosser, 2009; Brow
et al., 2013; Monard et al., 2013; Rohe et al., 2020).
However, assuming a unique (e.g., linear) relationship neglects
important factors that modulate reaction rates such as post-
transcriptional and post-translational regulation, different time-
scales of transcript and enzyme dynamics, and substrate
limitation (Moran et al., 2013). Therefore, integrating a
mechanistic description of the aforementioned processes into
models could help to better establish a mechanistic link
between transcript concentrations and reaction rates. Most
reactive-transport models do not explicitly account for genes
or transcription and thus cannot integrate molecular-biological
datasets into quantitative validation frameworks. Addressing
this challenge and integrating omics data into reactive-transport
modeling has been proposed as a way to improve our
understanding of the dynamic behavior of biogeochemical
systems (Li et al., 2017a).

In a first approach to integrate genetic information,
genome-scale metabolic models have been coupled to reactive
transport, successfully predicting reaction rates under variable
environmental conditions without the need of calibration
(Scheibe et al., 2009). Though computationally intensive,
genome-scale metabolic networks provide a powerful approach
for cases in which reactions are dominated by a single, well-
known organism or a small group of organisms, as in the case
of uranium reduction. Other studies have focused on a single
metabolic pathway of an organism, simulating the regulatory
chain, including transcription factors, mRNA, enzymes, substrate
consumption, and growth kinetics (Koutinas et al., 2011; Bælum
et al., 2013).

Natural biogeochemical cycles, such as the nitrogen cycle,
are mediated by a diverse group of organisms, of which only a
small percentage can be cultivated. Under these circumstances,
genome-scale models andmodels focusing on the functionality of
a single microbial strain become impractical. Instead, approaches
that target metabolic pathways rather than processes at the scale
of a single cell may capture the explicit contribution of the
non-cultivatable majority within a natural microbial community.
Thus, the alternative gene-centric approach focuses on the
functionality represented by certain genes instead of specific
organisms. By using functional-gene abundances as a proxy for
biomass with a certain function, gene-centric approaches can
easily be integrated into existing biogeochemical and reactive-
transport models (Reed et al., 2014, 2015). Genomic data provide
information on metabolic potential, but not on actual microbial
activity. To account for activity, the gene-centric approach has
been further developed to predict concentrations of functional
transcripts and enzymes (Louca et al., 2016; Li et al., 2017c;

Song et al., 2017). In one of the studies, the model was validated
using metatranscriptomic and metaproteomic data (Louca et al.,
2016). However, because the approach of these authors computes
transcript and enzyme concentrations by postprocessing of
reactions rates, it only provides a partially mechanistic link
between rates, transcription, and enzyme production. Hence, this
approach lacks the explicit integration of transcript and enzyme
regulatory feedbacks into the biogeochemical model.

The functional-enzyme-based approach, by contrast,
simulates concentrations of specific enzymes based on
energetic (Li et al., 2017c) or cybernetic (Song and Liu,
2015) considerations, and enzyme concentrations directly
regulate reaction rates. None of these modeling approaches
represent the actual mechanisms of transcriptional regulation
with transcription factors, having the advantage that they do
not require special knowledge about the regulatory system.
However, the validation of the enzyme-based modeling approach
relies on quantitative enzyme data that remain challenging to
obtain, particularly for environmental samples. Conversely, the
quantification of mRNA via reverse transcription quantitative
polymerase chain reaction (RT-qPCR) is well established for
both laboratory and field setups.

While reactive-transport models that integrate molecular-
biological data are more mechanistic, they unavoidably are more
complex than traditional Monod-type formulations. Whether
the added complexity actually improves model predictability
remains understudied.

In this study, we integrate transcript data into a denitrification
reaction model by linking the expression of functional genes to
process rates. We explicitly account for transcriptional regulation
of denitrification via transcription factors, translating the current
conceptual understanding of the regulatory system in Paracoccus
denitrificans into a quantitative model. The main pathways
of nitrogen transformations—denitrification, nitrification, N-
fixation, annamox, and dissimilatory nitrate reduction to
ammonium (DNRA)—have been extensively studied due to
the relevance of reactive nitrogen compounds for ecosystem
functioning (Steffen et al., 2015), groundwater contamination
(Gutiérrez et al., 2018), eutrophication (Howarth, 2008), and
greenhouse gas emissions (Liu and Greaver, 2009). The nitrogen
cycle is thus an ideal test case for developing and testing
new, enzyme-based models informed by measurements of
functional genes and transcripts. Previous gene-centric and
enzyme-based modeling studies focused on systems with slow
dynamics (kinetics) (Li et al., 2017c; Song et al., 2017;
Chavez Rodriguez et al., 2020) or at steady state (Reed et al.,
2014; Louca et al., 2016). Here, we apply our model to
a dynamic reactive system, that is, one with shifts in the
predominant electron accepting species, and inform it with a
highly temporally resolved dataset of transcript abundances.
Previous studies have highlighted a potentially hysteretic
relationship between transcript concentrations and reaction
rates (Bælum et al., 2008; Chavez Rodriguez et al., 2020). Our
model allows us to further explore the relationship between
transcripts, enzymes, and reaction rates and develop mechanistic
interpretations of the observations. Via a comparison with a
classical Monod-type model formulation that does not integrate
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FIGURE 1 | Schematic representation of processes considered in the models. (A) Model system and processes implemented common to both the Monod-type and

enzyme-based models. (B) Simplified representation of gene expression and its link to reaction rates in the enzyme-based model. Narrow arrows represent inducing

effects, whereas lines ending in a square denote inhibition. In the model, NO−
2 instead of NO is used as activating compound for NNR since we do not simulate NO

concentrations.

transcriptional regulation, we shed light on the potential added
benefits of integrating transcript data into (denitrification)
reaction models.

2. METHODS

2.1. Conceptual Model Description
We set up a model to simulate the experiments of Qu
et al. (2015) performed in well-mixed batch reactors. Qu
et al. (2015) monitored aerobic respiration and denitrification
coupled to succinate oxidation by the denitrifying organism
P. denitrificans. Briefly, a series of batch reactors, inoculated with
P. denitrificans, prepared in an aerobic medium, were amended
with 5mM succinate and 2mM of NO−

3 . Automated headspace
gas measurements (nitrogen gases, O2) as well as aqueous-phase
measurements of nitrite and optical density (OD) facilitated
monitoring time series of concentrations driven by reaction and
growth kinetics. In addition, and partly driven by headspace
gas concentrations, cells were periodically harvested to measure
the concentrations of the functional genes narG, nirS, norB,
and nosZ. Following mRNA extraction, transcript numbers were
determined via RT-qPCR using the standard curve method. For
further details regarding the experimental procedures, we refer to
the original publication (Qu et al., 2015).

In the experiment, the contribution of the intermediates NO
and N2O to the mass balance was always less than 1‰. From this
experimental observation, we conclude that nitrite reduction was
the rate-limiting step. Therefore, we set up a simplified model of
denitrification simulating the specific experiments by assuming
a two-step process (Figure 1). Therein, the reduction of nitrite
via NO and N2O to N2 was treated as a single reaction step.
Denitrification was coupled to the oxidation of succinate as the
sole carbon source and electron donor:

7NO−
3 + C4H6O4

narG
−→ 7NO−

2 + 4CO2 + 3H2O ,
(1)

14NO−
2 + 14H+ + 3C4H6O4

nirS
−→ 7N2 + 12CO2 + 16H2O .

(2)

In the reaction equations above, the names of the functional
genes linked to the reduction of the nitrogen compounds
by P. denitrificans are given above the arrows. In the
presence of oxygen, aerobic respiration is energetically favored
over denitrification:

2C4H6O4+ 7O2 −→ 8CO2 + 6H2O . (3)

As shown in Figure 1, the presence of oxygen is assumed
to inhibit denitrification. The electron donor, succinate, was
assumed to be primarily assimilated for energy conservation by
P. denitrificans, and thus we do not consider the incorporation
of carbon into biomass during growth. Furthermore, the model
considers mass transfer between the liquid and the gas phases
via a linear driving force approximation, and the dilution of
the gas-phase concentrations by sampling (see section 5 in the
Supplementary Material).

We set up two models for comparison: (1) an enzyme-
based and (2) a standard Monod-type model. The enzyme-
based model considers transcripts and enzymes involved in
denitrification reactions as state variables. Reaction rates are
directly proportional to enzyme concentrations. The Monod-
type model is much simpler and describes denitrification rates
using the Monod equation. Therein, the regulation mechanisms
and dynamics of catalyzing enzymes are not explicitly reflected,
instead the reaction rates are assumed to be directly proportional
to the biomass of the denitrifying bacteria.
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2.2. Governing Equations
Our model represents the transcriptional regulation of
denitrification genes by simulating transcription factor
concentrations in response to oxygen and nitrogen substrates
and their effect on transcript concentrations. For comparison,
we also set up a simplified model that omits the explicit
representation of transcription factors so that transcription
directly depends on the concentrations of signaling molecules
(see section 6 in the Supplementary Material). This simplified
model can also be interpreted mechanistically (as discussed in
section 6.3 of the Supplementary Material), but the assumptions
regarding transcriptional regulation differ slightly from the ones
presented in the following section.

Several transcription factors regulate the transcription of
denitrification genes in P. denitrificans, sensing oxygen and
nitrogen oxides. The narG gene is activated by FnrP and NarR,
whereas transcription of nirS requires NNR (Gaimster et al.,
2018). The FnrP protein directly reacts with oxygen that leads
to its inactivation (Crack et al., 2016). NarR responds to nitrate
and nitrite, although the underlying mechanism is currently
unknown and the sensing might be indirect (Wood et al., 2001;
Spiro, 2017). NNR is activated by NO and deactivated by O2 (Lee
et al., 2006; Gaimster et al., 2018).

We assume that the sum of active and inactive transcription
factors remains constant throughout the experiment and
simulate all active transcription factors relative to the total
concentration. Genes that encode the transcriptional regulators
(fnrP, narR, and nnrR) have been shown to be expressed at similar
levels under aerobic and anaerobic conditions in P. denitrificans
(Giannopoulos et al., 2017), supporting our assumption. We
model the fraction of active NarR, XNarR [–], as

dXNarR

dt
=

(
a
NO−

3
NarRCNO−

3
+ a

NO−
2

NarRCNO−
2

)
(1− XNarR) − kNarRdec

XNarR , (4)

where a
NO−

3
NarR and a

NO−
2

NarR [M−1 s−1] are the rate coefficients for
activation of NarR by nitrate and nitrite, respectively, and kNarRdec
[s−1] is the dissociation constant of active NarR. The term
(1− XNarR) represents the inactive fraction of the transcription
factor. Binding of oxygen to the transcription factors is described
at equilibrium using a Hill function (Gesztelyi et al., 2012). The
active fraction of FnrP is

XFnrP =
IFnrP

p

IFnrP
p + CO2

p , (5)

with inhibition constant IFnrP [M] and Hill coefficient p [–].
Experiments have shown that NNR quickly reacts with oxygen,
but that its reaction to NO is slower (Lee et al., 2006). We
therefore model the inactivation process at equilibrium while
accounting for temporal evolution in the activation process.
Although NNR actually senses NO, we simulate its activation
by nitrite as we do not explicitly model NO concentrations in
our two-step representation of denitrification (see conceptual

model description above and Figure 1). The activation of NNR
is described as follows:

dX̂NNR

dt
= aNNRCNO−

2

(
1− X̂NNR

)
− kNNRdec X̂NNR , (6)

where X̂NNR [–] is the fraction of NNR activated by nitrite
(without accounting for inactivation by oxygen), aNNR [M−1 s−1]
is the activation rate constant and kNNRdec [s−1] is the dissociation
constant of activated NNR. Taking oxygen inhibition into
account, the active fraction of NNR XNNR [–] is given by

XNNR =
INNR

q

INNR
q + CO2

q X̂NNR , (7)

with oxygen inhibition constant INNR [M] and Hill coefficient q.
We assume that the transcription rate for gene i scales with the

fraction of operator sites where all activating transcription factors
are bound f iact (Ingalls, 2013):

ritranscription = αif
i
actB , (8)

where αi [transcripts cell−1 s−1] is the maximum transcription
rate for gene i and B is the cell density [cells L−1]. For narG and
nirS, the fractions of active operator sites are given by equations
9 and 10, respectively:

f naract =

XFnrPXNarR
KFnrPKNarR

1+ XFnrP
KFnrP

+ XNarR
KNarR

+ XFnrPXNarR
KFnrPKNarR

, (9)

f niract =
XNNR

XNNR + KNNR
, (10)

where KFnrP, KNarR and KNNR (all dimensionless) are the
half-saturation constants for transcription factor binding
to the operator site relative to the total transcription
factor concentration.

Translation of mRNA into enzymes is described by first-
order kinetics:

ritranslation = kitranslationTi , (11)

in which ktranslation [enzymes transcript−1 s−1] is the first-order
translation coefficient and Ti [transcripts L−1] is the transcript
concentration of gene i. Enzymes (E) and transcripts (T) undergo
first-order decay with decay coefficients kTdec [s−1] and kEdec
[s−1], respectively:

ridecay,T = kTdecTi , (12)

ridecay,E = kEdecEi . (13)

Dynamics of transcripts are usually fast, with transcript half-lives
of only a few minutes (Härtig and Zumft, 1999; Bernstein et al.,
2002), compared to enzyme half-lives and cell doubling times of
several hours (Blaszczyk, 1993; Maier et al., 2011). Therefore, for
transcript concentrations, we assumed a quasi-steady state (qss)
(Ingalls, 2013):

dTi

dt
= ritranscription − ridecay,T = 0 , (14)
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which yields the quasi-steady state transcript concentrations
T
qss
i [transcripts L−1]:

T
qss
i = β i

T f
i
actB , (15)

where β i
T = αi�kTdec is the number of transcripts per cell

at maximum transcription, that is when f iact equals 1. Enzyme
concentrations are assumed to be governed bymRNA-translation
as well as first-order decay:

dEi
dt

= ritranslation − ridecay,E . (16)

The translation rate constant is difficult to measure and the prior
range of this parameter is therefore essentially unconstrained.
However, we can express it in terms of parameters that are easier
to estimate by computing the quasi-steady state (qss) of enzyme
concentrations, Eqssi [enzymes L−1], given by

E
qss
i =

kitranslationβ
i
T

kEdec
f iactB . (17)

We defined βE =
kitranslationβ

i
T

kEdec
as the maximum quasi-steady

state enzyme concentration per cell, a parameter that is easier
to constrain based on literature data. We can then express the
translation rate constant as

kitranslation = kEdec
βE

β i
T

. (18)

The transformation rate of nitrogen substrate j (NO−
3 or NO−

2 )
with corresponding enzyme i (NAR or NIR) is described by
Michaelis–Menten kinetics considering kinetic inhibition of the
reaction by O2:

rj = rimax
Cj

Cj + Kj

Iireac
Iireac + CO2

, (19)

in which the maximum rate constant rimax

[
mol L−1 s−1

]
is the

theoretical rate at full substrate saturation without inhibition.
The second and third term of equation 19 describe substrate
limitation and oxygen inhibition of the enzyme, in which cj [M] is
the concentration of substrate j, Kj is the half-saturation constant
[M] of substrate j and Iireac [M] is the oxygen-inhibition constant
for the corresponding enzyme (i).

In a Monod-type model, the enzyme concentration inside a
cell is assumed to be constant and rmax is proportional to the
cell density:

rimax = νimaxB , (20)

in which νimax [mol cell−1 s−1] represents a constant, cell-specific
maximum substrate-consumption rate. In the enzyme-based
model, the transformation rate of substrate i is given by

rimax = kimaxEi , (21)

in which the turnover number kimax [s−1] is the maximum
amount of substrate that a single enzymemolecule can transform
per unit time.

In both models (enzyme-based and Monod-type), aerobic
respiration is described by a Monod rate law:

rO2 = νO2
maxB

CO2

CO2 + KO2

, (22)

with the maximum cell-specific rate ν
O2
max [mol cell−1 s−1] and

half-saturation constant K O2 [M]. P. denitrificans can utilize
both aerobic respiration and denitrification for growth. However,
typically reported growth yields for aerobic respiration are higher
than those reported for denitrification (Boogerd et al., 1984) and,
under the reported experimental conditions (Qu et al., 2015),
growth using oxygen as the electron acceptor was the dominant
process. Therefore, we assume that P. denitrificans only grows
on aerobic respiration and that denitrification steps do not result
in growth:

dB

dt
= YO2

nC4H6O4

n O2

rO2 , (23)

in which YO2 [cellsmol−1 of succinate] is the growth yield and
nC4H6O4 = 2 and nO2 = 7 are the stoichiometric coefficients of
succinate and oxygen in the energy reaction, respectively.

The flasks used in the experiment had a headspace. We
accounted for the mass transfer rates ritr of gaseous compounds
(N2 and oxygen) between the water and the gas phase.
Furthermore, we also considered dilution of the gas phase by
sampling. Details can be found in the Supplementary Material.
The dynamics of solute concentrations of oxygen and nitrogen
species are given by.

dCO2

dt
= −rO2 + rO2

tr , (24)

dCNO−
3

dt
= −rNO−

3
, (25)

dCNO−
2

dt
= rNO−

3
− rNO−

2
, (26)

dCN2

dt
=

1

2
rNO−

2
+ r N2

tr . (27)

2.3. Parameter Identification
A subset of the model parameters was fixed, either because
these parameters were known from the experimental setup, or
they could be well constrained by literature values. In total,
we estimated 14 parameters of the Monod-type model and
32 parameters of the enzyme-based model with a Bayesian
approach. Given the evidence of observed data and prior
knowledge, we obtain the posterior probability distribution
of parameter values. Following Bayes’ law, the conditional
probability density of parameters θ given the data y, p(θ | y),
is proportional to the prior probability density p(θ) of the
parameters and the likelihood of the measured data p(y | θ):

p(θ | y) ∝ p(y | θ)p(θ) . (28)
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The prior distribution constrains the parameters on knowledge
uninformed by the data, such as literature values or physical
constraints. The likelihood describes the probability density of
the measured data if the model parameters were correct. For a
perfect model, the likelihood only describes measurement errors,
but in most applications it also include the effects of conceptual
errors on meeting the data. We used the likelihood function

p(y | θ) =
∏

i,j

T(yij | µij, σij, ν) , (29)

in which T is the Student’s t-distribution with scale σij, degrees of
freedom ν, and location

µij = boxcox(cij + bi, λi) . (30)

The index i refers to the measured variable, j indicates the
measurement number, and boxcox is the Box–Cox transform
(Box and Cox, 1964). All measured data from the experiment
were Box–Cox transformed to ensure homoscedasticity of the
residuals. We added a constant background value bi to the
simulated concentration cij of oxygen and nitrite because
measured concentrations never reached zero in the experiment,
but stayed at a very low background value (<10−7M for NO−

2
and <2× 10−7M for O2). The errors σij are the sum of data
errors computed from the standard deviations of triplicate
measurements and a constant error that accounts for model
structural errors, which we chose to be an estimation parameter.
We chose a Student’s t-distribution with ν = 10 instead of a
normal distribution so that outliers do not get too much weight.

The model was implemented in the programming language
Python and the code is freely available (Störiko et al., 2021). We
solved the system of ordinary differential equations (ODEs) using
the Python package Sunode (Seyboldt, 2020), a Python wrapper
to the CVODES library (Hindmarsh et al., 2005). Obtaining
numerically stable results over a broad range of parameter values
was difficult. Therefore, the ODEwas log-transformed and solved
using a backward differentiation formula of variable order (Byrne
and Hindmarsh, 1975; Jackson and Sacks-Davis, 1980) with
small tolerances (10−12 for the absolute and relative tolerance
in the forward problem, 10−8 in the adjoint problem). Samples
from the posterior distribution were drawn using the Python
package PyMC3 (Salvatier et al., 2016) and analyzed with ArviZ
(Kumar et al., 2019).

We sampled all models with the Hamiltonian MCMC
algorithm No-U-Turn Sampler (NUTS; Hoffman and Gelman,
2014) as implemented in PyMC3, with adjusted settings for
the tuning phase (Foreman-Mackey, 2020). It uses gradient
information that we obtained by solving the adjoint sensitivity
equations. We used the R̂-criterion (Vehtari et al., 2020) that
compares the variance between different chains to the in-chain-
variance to assess convergence. The largest R̂ is 1.005 for the
Monod-type model and 1.021 for the enzyme-based model—the
values close to one indicate convergence.

Supplementary Table 2 lists fixed parameter values, prior
distributions, and statistics about the posterior distributions.
Supplementary Table 1 provides initial values of the simulations.

Enzyme concentrations were not measured in the experiment
and were only indirectly constrained through reaction rates. As
all rate laws contain the product of enzyme concentrations and
themaximum enzyme-specific turnover rate kmax, it is impossible
to estimate both kmax and βE without direct measurements of
enzyme concentrations. Therefore, we fixed βE to an arbitrary
value of 1125 enzymes cell−1 based on measured intracellular
enzyme concentrations in the literature (Maier et al., 2011). This
implies that the fitted values of kmax and the simulated enzyme
concentrations within bacterial cells have to be interpreted with
care, as they are conditioned on the arbitrary choice of βE.

3. RESULTS AND DISCUSSION

3.1. Modeled Concentration Time Series
Figure 2 shows a comparison of the simulated concentrations
of the enzyme-based and the Monod-type models with
the experimental data (Qu et al., 2015). Figure 2A shows
the concentrations of nitrogen species (nitrate, nitrite, N2)
of the models and the experiments, Figure 2B shows the
oxygen concentrations and cell densities, Figure 2C shows the
transcripts of narG and nirS, respectively, whereas Figure 2D

contains simulated enzyme concentrations for which no
measurements were available. Fitted parameter values and
their uncertainties are outlined in Supplementary Table 2, and
simulated transcription factor concentrations are shown in
Supplementary Figure 4.

Concentration times series results in Figures 2A,B are present
as several draws of the posterior distribution for the enzyme
based model and the median output for the Monod-type model.
Results for the Monod-type model exhibited a similarly narrow
spread of simulated concentrations, and thus multiple draws
were omitted. Both model formulations fit the concentration
data equally well. The excellent fit supports the validity of
our conceptual model and the underlying assumptions outlined
above. Oxygen is consumed before nitrate and nitrite are
reduced to molecular nitrogen, which confirms the inhibition of
denitrification by oxygen. The simulations predict that nitrate
is fully converted to nitrite before the onset of the second
denitrification step. Both models capture the sharp increase in
nitrite concentrations, peaking after 25 h at 2mM, followed by
a gradual decrease over 40 h, and the subsequent production
of N2 gas, which is the final product of denitrification. The
posterior distributions of solute and gas concentrations in both
models were narrow, reflecting the small measurement variance.
Even though nitrate concentrations were not measured by
Qu et al. (2015), the nitrate simulation results are indirectly
well constrained by nitrite data and the mass conservation
assumption encoded in the model equations.

At the time of highest nitrite concentrations, the measured
cell densities reached peak values and gradually decreased
(Figure 2B). Neither of themodels was able to capture the slightly
non-monotonic behavior in cell densities with a peak at 25 h
and a subsequent modest decline. The slight discrepancy between
simulated and measured cell densities could be due to several
assumptions of our model. We assumed that P. denitrificans
only grows on oxygen, even though the organism is known to
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FIGURE 2 | Simulated dynamics, 100 draws from the posterior of the enzyme-based model (solid lines) and posterior median of the Monod-type model (dashed

lines), and measurements from three experimental replicates (open symbols). (A) Nitrogen compounds, (B) oxygen and cell densities, (C) transcripts, and (D) enzymes

and maximum rates.

grow on both oxygen and nitrate (Boogerd et al., 1984), which
may explain growth beyond the time of oxygen availability.
The subsequent slight decrease in cell densities, if not a
measurement artifact, may be a toxicity effect of nitrite or
one of the non-modeled intermediates. Nitrite is known to be
toxic to P. denitrificans and other microorganisms at millimolar
concentrations (van Verseveld et al., 1977; Stouthamer, 1980;
Zhang et al., 2013). Accounting for nitrite toxicity has been
postulated as an explanation for delayed growth and increased
cell lysis of Shewanella oneidensis while reducing nitrite to
ammonium (Mellage et al., 2019). Altogether, we deemed the
misfit in cell densities not significant enough to justify making the
model more complex by introducing additional processes with
difficult-to-constrain parameters.

3.2. Transcript and Enzyme Dynamics
Overall, the enzyme-based model formulation captured
the dynamics of measured narG and nirS concentrations
(Figure 2C). Both simulated and measured narG transcript
concentrations fluctuated around a baseline value of
10−2 transcripts cell−1, and nirS levels were very low during
the oxic phase. Following a drop in oxygen levels, simulated nar
transcripts rose, followed by those of nir. The model satisfactorily
captured the peak of narG transcripts at 23 h and the following
gradual decrease to low, but detectable transcript levels at the
last measurement time point, at about 50 h. The model also
predicted the very abrupt increase of nir transcripts at 24 h.
While peak levels of measured nir transcripts at 25 h could not
be matched, the measurement uncertainty of the transcript data
at that time point was very large (2.4× 10−2 transcripts cell−1 to

5.4× 10−2 transcripts cell−1), and thus we considered these peak
values as outliers. Our assumption is supported by additional
data of a parallel experiment with the same setup, but using
butyrate instead of succinate as the carbon source, where a peak
in nir transcripts was not detected (Qu et al., 2015). Analogous
to measured data, both of the simulated transcripts remained at
concentrations above the limit of detection for a few hours after
complete denitrification.

As seen in Figure 2D, enzyme concentrations were subject
to considerable uncertainty—an expected result, as there are no
data to constrain them. However, the maximum cell-specific
turnover rate of NIR rNIRmax, given by the product of enzyme
concentrations and the maximum enzyme specific turnover
rate, was well constrained, provided that substrate was being
consumed. The solute data that we used for conditioning could
apparently provide sufficient information about reaction rates to
estimate the maximum rate.

We also set up a model version with a more simplified
description of transcriptional regulation, for comparison. The
model, described in the Supplementary Material, yielded similar
results (Supplementary Figure 6) to those outlined in Figure 2.
However, the simplified model formulation was unable to
capture the sudden increase in nirS transcripts (at t = 24 h).
Therefore, we opted for the more complex transcription factor
based formulation.

3.3. Posterior Parameter Uncertainty
Figure 3 shows prior and posterior distributions of selected
parameters. In our application, most posterior parameter
distributions were much narrower than the prior ranges
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FIGURE 3 | Selected parameter distributions. (A) Kernel density estimates of

the marginal distributions of selected parameters (marginal distributions of all

parameters can be found in the Supplementary Material). Densities are cut

off at the 94% highest density intervals, circular markers indicate the mean.

Parameters k
NO−

2
max , t

E
1/2, INNR and a

NO−
3

NarR are not present in the Monod-type

model such that the posterior is only shown for the enzyme-based formulation.

Posterior distributions of YO2
are similar in both model formulations and cannot

be distinguished in the plot. (B) Pairwise joint posterior distributions of

parameters with strong correlation.

(Figure 3A), indicating that they were strongly constrained
by the available data (e.g., YO2 ). Where applicable, the
Monod-type and enzyme-based models mostly resulted in
similar parameter distributions. However, the estimated enzyme
inhibition constants INARreac and INIRreac were smaller in the Monod-
type model compared to the enzyme-based model because
the Monod-type model compensates the lacking regulation
of enzyme levels with a stronger inhibition of enzymes by
oxygen. Some parameters exhibit considerable spread even after
conditioning to the data, partly ranging over several orders of
magnitude. This holds mainly for parameters that are related to
transcription factor, transcript and enzyme concentrations such

as transcription factor activation rate constants (e.g., a
NO−

3
NarR) or

the enzyme half-life tE1/2.
In some cases, part of the spread can be attributed to the

correlation among the conditional parameters, as shown in
Figure 3B for selected examples. Supplementary Figures 4, 5 of
the Supplementary Material contain all correlation coefficients
of the posterior distributions. Figure 3B illustrates that the

enzyme half-life tE1/2 strongly correlates with the “efficiency” of

NIR enzymes expressed by k
NO−

2
max . The enzyme half-life influences

the concentration of the enzymes. Because the total reaction rate
depends on the product of the enzyme concentration with the
efficiency of a single enzyme, changing the enzyme half-life can be
compensated by also changing the enzyme efficiency. Thus, if we
had enzyme data, we could significantly decrease the uncertainty
in enzyme half-lives and the enzyme-specific maximum turnover

rate k
NO−

2
max of nitrite.

A strong correlation can also be observed between the
Monod parameters related to aerobic respiration (Figure 3B),
which has been previously reported (Liu and Zachara, 2001).
Reparameterization alleviated the correlation between ν

O2
max

and KO2 . The parameter ν
O2
max is the cell-specific respiration

rate at the limit of the substrate concentration approaching
infinity. Instead, we used the cell-specific respiration rate at a
fixed concentration ν

O2
fix as a parameter (see Section 4 in the

Supplementary Material). νO2
fix andKO2 were less correlated than

before the reparametrization, but the correlation of ν
O2
fix with the

growth yield was larger.

3.4. Relationship Between Reaction Rates
and Transcript Concentrations
It has been previously suggested to use transcript concentrations
as a proxy for reaction rates (Nicolaisen et al., 2008; Freitag and
Prosser, 2009; Brow et al., 2013; Achermann et al., 2020; Rohe
et al., 2020). To test if such a relationship would be a valid
assumption, we plot the simulated transcript concentrations and
corresponding reaction rates against each other in Figures 4A,D.
Cell-specific rates were calculated by applying the rate laws to
the simulated concentrations and normalizing the result by the
cell densities. Measured transcript concentrations plotted against
the reaction rates based on the Monod-type model are shown
for comparison.

Transcript concentrations of nar and nir are upregulated
before rates increase (Figures 4A,D). Between 10 h to 25 h, nar
transcripts show a positive, but non-linear correlation with
reaction rates, before the rates drop to zero once nitrate is
depleted. Nitrite reduction rates, in contrast, only start increasing
when nir transcript levels have nearly reached their maximum
(Figure 4D). Rates continue to increase when nir transcript
levels start to drop such that rates and transcript levels are
anti-correlated around 40 h, just before reaction rates drop
abruptly upon substrate depletion. After the rapid drop in
reaction rates, both transcripts remain present for several hours.
We also looked at the relationship of enzyme concentrations
with denitrification rates (Figures 4B,E). Enzyme concentrations
are not well constrained by the data and their posterior
uncertainty propagates to the relationship with reaction rates.
We therefore plotted the product of enzyme concentrations

and their “efficiency” k
NO−

2
max , corresponding to the maximum

potential reaction rate, without accounting for enzyme inhibition
or substrate limitation (Figures 4C,F). Themaximum rate of NIR
is well constrained and shows an almost linear relationship with
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FIGURE 4 | Cell-specific substrate turnover rates plotted against concentrations of the corresponding transcripts (A,D) or enzymes (B,E) and the maximum specific

rate (C,F) linked to the reaction. The plot shows several draws from the posterior (colored lines). Measured transcript data are plotted against rates based on the

Monod model (dark gray lines and rectangles).

actual reaction rates up to the point where nitrite depletion cuts
the rate (Figure 4F). The rate of nitrite reduction is essentially
not limited by oxygen inhibition or substrate limitation. The
maximum rate is thus the determining factor such that an
increase in enzyme concentrations directly increases the rate. The
relationship of NAR maximum rates and actual nitrate reduction
rates (Figure 4C) is more complicated. The initial increase is
strongly non-linear and the remaining posterior spread of the
maximum rate leads to uncertainty in the scaling factor. Both
findings can be explained by the initial inhibition of NAR
enzymes by oxygen: NAR enzymes are produced while oxygen
is still present so that rmax increases, but the actual rate does not,
driven by the weaker inhibition of enzyme production relative to
that of the enzymatic catalysis. The posterior uncertainty of the
relationship is due to correlation between the oxygen inhibition
parameter and the maximum rate. Different combinations of the
parameters can yield the same reaction rate and an unambiguous
assignment is not possible for a case when the data only constrain
the effective rate.

Our results show that under the dynamic conditions of the
experiment, transcript concentrations are not a good predictor
of reaction rates. The complicated relationships are mainly
caused by the asynchronism and different time scales of substrate
dynamics, transcript and enzyme production, and decay. Under
environmental conditions, changes in concentrations of redox-
active species may be much slower than in the laboratory
experiment simulated in this study. In groundwater, for example,
the typical time scales are on the order of several months
(Arora et al., 2013, 2016). If changes in redox-active species
are slower than the enzyme dynamics (acting on the order of
days), we would expect a better correlation between transcript
and enzyme concentrations and reaction rates, potentially

allowing for further simplifications of model formulations.
However, many environments in which nitrogen cycling plays
a crucial role are very dynamic. For example, rapid water-
content driven changes in the redox state of soils (Pronk
et al., 2020) or diurnal fluctuations in river biogeochemistry
(Kunz et al., 2017) can control nitrogen turnover. The lack
of obvious correlations between transcripts of functional genes
and reaction rates observed in our modeling results are likely
representative for such dynamic environments. A non-linear,
hysteretic relationship between transcript concentrations and
reaction rates has also been found in a gene-centric model
of pesticide degradation (Chavez Rodriguez et al., 2020).
Interestingly, this is the case although pesticide degradation acts
on much longer time scales than denitrification in this study and
the observed relationship between rates and transcripts shows
different patterns than the ones presented in Figure 4 (e.g.,
direction of the hysteresis). This highlights the need to assess the
relationship between gene expression and rates for each reaction
system individually. Nevertheless, models that explicitly simulate
transcript concentrations, as presented in this study, can help to
understand the relationship between gene expression and rates
and extrapolate it.

If enzyme concentrations were at quasi-steady state, the
enzyme-basedmodel could be simplified, reducing the number of
state variables and parameters. To test if this assumption is valid,
we ran the fully transient model version as shown in Figure 2)
and computed the quasi-steady state concentrations based on
the fully transient results. If the quasi-steady state assumption
were valid, the two concentrations should cluster along the 1:1-
line. As evident from Figure 5, this is not the case—enzyme
concentrations exhibit a strongly hysteretic relationship and
remain much lower than the corresponding quasi-steady state
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FIGURE 5 | Quasi-steady enzyme state concentrations [enzymes L−1] plotted

against the concentrations simulated by the fully transient model. Although the

exact relationship varies between different draws from the posterior (indicated

by several lines), all of them are characterized by hysteresis.

concentrations. Enzyme dynamics, as measured by estimated
enzyme half-lives, are considerably slower than substrate
dynamics such that the substrate stimulus is too short for enzyme
concentrations to reach their quasi-steady state value.

3.5. Overall Model Performance
Our parsimonious enzyme-based model describes expressional
patterns well and simulates denitrification rates very accurately.
The model quantitatively links concentrations of functional
transcripts to turnover rates. In reproducing the solute-
concentration data of Qu et al. (2015), however, the Monod-
type model is as good as the enzyme-based model. Small
data errors lead to narrow posterior distributions of the
solute concentrations in both models, whereas the much more
uncertain transcript data do not help to further constrain
them. While the enzyme-based model can be calibrated using
more types of data than the Monod-type model, it also
requires estimating more parameters, which appear to be weakly
constrained. The strength of the enzyme-based model lies in
improving our mechanistic understanding in a quantitative
way. For example, it helps to decompose the contributions of
transcriptional regulation and enzyme inhibition to the down-
regulation of denitrification rates by oxygen. It confirms that
the conceptual model of transcriptional regulation of narG and
nirS through FnrP, NarR, and NNR can also explain expressional
patterns quantitatively. Finally, the quantitative model helps
to understand the non-linear relationship between rates and
transcript or enzyme concentrations. It can be used to generate

hypotheses about the behavior in other systems and develop
sampling strategies for these quantities.

Transcription-factor regulation and enzyme dynamics need to
be explicitly described as these processes take place at similar
or even larger time scales than the actual enzymatic reactions
and the corresponding substrate dynamics. The relation between
transcript concentrations and reaction rates exhibits a strong
hysteresis. Enzyme concentrations show a better correlation
with reaction rates at early times but are uncorrelated at later
times due to substrate limitations. Thus, enzyme kinetics and
the abundance of enzymes present likewise have an impact on
reaction rates and need to be taken into account.

3.6. Transferability to Environmental
Systems
While the experimental conditions during the experiment
we simulated are not representative for many environments
(high succinate concentrations, single organism), the controlled
conditions allowed us to set up a detailed and mechanistic
model of the denitrification reactions. The presented model
equations hereafter can be integrated in a model that better
represents natural environments, for example, by accounting for
transport or carbon limitation. Representing all denitrifiers by
a single organism in the model certainly does not account for
all interactions that occur in natural microbial communities.
Considering a single pool of denitrifiers in quantitative reaction
models, however, is a common practice to keep the simulations
computationally and conceptually tractable (Kinzelbach et al.,
1991; Sanz-Prat et al., 2015; Yan et al., 2016). In addition,
P. denitrificans is a denitrifying organism that is actually
present in natural environments like soils (Nokhal and Schlegel,
1983). The exact mechanism of transcriptional regulation is
not the same in all denitrifiers, but some basic principles
are similar in various studied organisms (Gaimster et al.,
2018). Further, the exact pattern of gene expressional dynamics
does not matter for reaction rates because they are smoothed
out by the much slower enzyme dynamics. A simplified
representation of the transcriptional regulation as we present
in the Supplementary Material might describe the behavior
of a diverse microbial community sufficiently well, where
the effective expressional patterns would be some smoothed
average of the individual patterns produced by different
regulation mechanisms.

An alternative approach to modeling transcriptional
regulation that does not require exact knowledge of the
underlying mechanism has been presented previously by Song
et al. (2017). The latter authors applied a cybernetic approach
(Song and Liu, 2015) that relies on the principle of return-
on-investment: Microorganisms will transcribe those genes
that maximize their metabolic “profits” (though it is often
unclear how to express that in quantitative terms). Compared
to the simulation results of the enzyme-based denitrification
model presented earlier (Song et al., 2017), we can observe
some key differences. While transcript concentrations respond
relatively quickly to changes in substrate concentrations,
Song et al. (2017) predict a long delay in the response of
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transcripts. At the same time, enzyme concentrations respond to
transcripts quickly in their model. While this is one possibility
to explain the metabolic lag they observed, it is not necessary
to ascribe the delay to slow transcription dynamics. Transcript
dynamics in their model are not constrained by data so the
actual lag could also be due to delayed translation. Differences
between the model outcomes might be attributed to the
different environmental systems. The laboratory system that
we simulated exhibited faster kinetics and was more dynamic
than the sediment that Song et al. (2017) analyzed (complete
denitrification within 2 days with the pronounced accumulation
of reactive intermediates, compared to a week). In contrast to the
aforementioned study (Song et al., 2017), our simulations and
transcript data support an immediate transcriptional response
to denitrifying conditions, justifying the omission of a resource
pool which first builds up before transcription starts in the
model formulation.

The authors of the experimental data used here measured
biomass in cell densities, which we also chose as state variable.
In the natural environment, functional biomass is difficult to
measure and a different approach is needed. A gene-centric
approach that uses gene concentrations as proxies for functional
biomass (Reed et al., 2014; Pagel et al., 2016) could be readily
integrated into our model. Gene-centric approaches have been
mostly applied to marine environments and their application
to soils or groundwater might need extensions to account for
relic DNA, which has been shown to represent as much as 40%
(Carini et al., 2016).

3.7. Implications for Biogeochemical
Modeling
We informed our model with highly resolved time series
of all solute concentrations in a controlled experiment.
Under these conditions, the quantitative prediction of reaction
rates was not improved by integrating transcript data. Since
substrate and product concentrations are easier to obtain
than transcript concentrations, quantitative rate predictions
can be more effectively improved by additional chemical
measurements than by integrating transcript concentrations.
By contrast, transcript data can support the identification
of key reactions, particularly if intermediate products have
low concentrations and cannot be detected. In addition,
transcript-based models can fill a key gap in our predictive
capabilities within natural systems where the difficulty in
acquiring cell density information impedes the validation of
biomass-explicit models.

The advancement of enzyme-based models requires
appropriate data for evaluating models and testing hypotheses.
Datasets with quantitative information about functional
genes, transcripts and enzymes could help to find accurate
and parsimonious descriptions of transcript and enzyme
dynamics. Measuring enzyme concentrations (e.g., by targeted
quantification of functional enzymes, Li et al., 2017b) seems
more promising than transcript concentrations as they more
closely relate to actual turnover rates. However, measuring

specific proteins in environmental samples may be restricted
by major challenges, such as the efficient extraction of proteins
from environmental samples, hindering accurate quantification
and limiting the wider application of functional enzyme
measurements (Starke et al., 2019).

We are convinced that further improvements of
enzyme-based models in environmental systems can be
achieved by integrating data from experiments carried out
under different environmental conditions, expanding the
sensitivity range of simulated processes and parameters.
While batch experiments with high cell densities and
nutrient concentrations usually exhibit fast dynamics
there is a need to condition models to data from less
dynamic systems such as chemostats and flow-through
columns, which may more closely relate to natural
environmental conditions.
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