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Abstract

Even though fine-root turnover is a highly studied topic, it is often poorly understood as a result of uncertainties inherent in
its sampling, e.g., quantifying spatial and temporal variability. While many methods exist to quantify fine-root turnover, use
of minirhizotrons has increased over the last two decades, making sensor errors another source of uncertainty. Currently, no
standardized methodology exists to test and compare minirhizotron camera capability, imagery, and performance. This
paper presents a reproducible, laboratory-based method by which minirhizotron cameras can be tested and validated in a
traceable manner. The performance of camera characteristics was identified and test criteria were developed: we quantified
the precision of camera location for successive images, estimated the trueness and precision of each camera’s ability to
quantify root diameter and root color, and also assessed the influence of heat dissipation introduced by the minirhizotron
cameras and electrical components. We report detailed and defensible metrology analyses that examine the performance of
two commercially available minirhizotron cameras. These cameras performed differently with regard to the various test
criteria and uncertainty analyses. We recommend a defensible metrology approach to quantify the performance of
minirhizotron camera characteristics and determine sensor-related measurement uncertainties prior to field use. This
approach is also extensible to other digital imagery technologies. In turn, these approaches facilitate a greater
understanding of measurement uncertainties (signal-to-noise ratio) inherent in the camera performance and allow such
uncertainties to be quantified and mitigated so that estimates of fine-root turnover can be more confidently quantified.
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Introduction

The growth, senescence, and mortality of fine-roots, collectively

referred to as fine-root turnover is key to estimate belowground

nutrient and carbon cycling and ecosystem productivity [1,2].

Production of fine-roots accounts for a third of the Earth’s annual

net primary production [3], supporting the notion that fine-root

mortality returns more carbon and nitrogen to the soil than

litterfall [1,4]. Unlike aboveground primary production, fine-root

production has only been measured at a limited number of sites

and over relatively short timescales, in part, because of short-

comings associated with sampling methods [5–7]. Currently, there

is no standardized method or ‘best community practice’ for

evaluating fine-root turnover [8], even though a number of

approaches have been used in the past. For example, radiocarbon
14C measurements of fine-roots, although fundamentally sound in

theory, provide estimates of mean carbon age based on modeled

results that are often under question [9]. Methods such as

sequential soil coring and ingrowth cores are reliable for

quantifying the stocks of root biomass but embody large spatial

and temporal uncertainties when assessing fine-root turnover as a

result of sampling at different locations at each sampling event

[8,10,11]. Moreover, root production and mortality of the same

root size, and in some cases, species, cannot be observed

successively as these methods are based on destructive sampling

[12–14]. Today, the minirhizotron is the only nondestructive, in-
situ sampling method for quantification of fine-root turnover at

fine temporal scales.

The first rhizotron was a large, underground room constructed

with glass walls allowing for observations of root growth and decay

[15]. Cost and area of disturbance in the installation of these large

rhizotrons was prohibitive, resulting in a modified approach: the

minirhizotron, i.e., buried cameras installed within transparent

tubes that emerged in the 1980s [16]. Minirhizotrons are more

cost effective, cause less disturbance, and allow for the analyses of

successive root images to assess fine-root turnover through time

[16,17], from many species across multiple ecosystems [2,8,18].

Like all sampling methods, uncertainties in the minirhizotron

approach have been identified. For example, Hendrick and

Pregitzer [19] indicated fine-root production and mortality can

be underestimated due to the time between sampling (i.e., imaging
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of fine-roots) intervals. Villordon et al. [20] noted that a scanner-

based minirhizotron grossly underestimated adventitious root

quantity when compared to root quantity as measured by other

methods. The limitations of minirhizotron cameras may also

hinder accurate and precise estimates of fine-root stocks, turnover

and biomass [21]. And even though measurement limitations such

as these and others exist (e.g., uncertainties in automated image

analysis), minirhizotrons represent a robust and practical approach

for quantification of fine-root turnover [22]. Here, we argue that

the performance of minirhizotron cameras must be quantified in a

reproducible and traceable manner to best quantify fine-root

standing stock and turnover, and the processes they inform.

Some minirhizotron camera performances have been previously

assessed [22,23], yet a direct comparison of performance between

different commercially available minirhizotrons has not been

made. Standardized calibration methods and ‘best community

practices’ for quantifying measurement uncertainties of many

environmental sensors (e.g., resistance thermometers, pyran-

ometers, etc.) exist, but such is not the case for minirhizotron

cameras and their digital imagery. The absence of establishing

such criteria from both the scientific community as well as

standards-holding bodies hinder advances in design, deployment

and data collection of minirhizotrons. The objectives of this paper

are to present a reproducible, statistically traceable and defensible,

steady-state approach for quantifying uncertainty and comparing

key characteristics of minirhizotron camera performance (i.e.,
digital imagery). We present measurement uncertainties for an

array of performance metrics for two minirhizotron cameras. We

also test for sources of human error and the potential for biases

due to heating of the soil environment.

Table 1. Metrology terms and definitions.

Variable Definition (is the-)

Accuracy closeness of agreement between a measured quantity value and a

true quantity value of a measurand; the concept ‘measurement

Accuracy’ is not a quantity and is not given a numerical quantity

Value

Precision closeness of agreement between indications or measured quantity

values obtained by replicate measurements on the same or similar

objects under specified conditions; the ‘specified conditions’ can

be, for example, repeatability conditions of measurement etc.

Relative uncertainty standard measurement uncertainty divided by the absolute value of

the measured quantity value

Repeatability condition condition of measurement, out of a set of conditions that includes

the same measurement procedure, same operators, same

measuring system, same operating conditions and same location,

and replicate measurements on the same or similar objects over a

short period of time

Reproducibility condition condition of measurement, out of a set of conditions that includes

different locations, operators, measurement systems, and

replicate measurements on the same or similar objects

Resolution smallest change in a quantity being measured that causes a

perceptible change in the corresponding indication

Resolvable limit minimum distance at which neighboring objects of the same

intensity are resolved as two objects [28,29]

Sensitivity quotient of the change in an indication of a measuring system and

the corresponding change in a value of a quantity being measured

Standard uncertainty measurement uncertainty expressed as a standard deviation

Trueness closeness of agreement between the average of an infinite number

of replicate measured quantity values and a reference quantity

Value

Type A evaluation evaluation of a component of measurement uncertainty by a

statistical analysis of measured quantity values obtained under

defined measurement conditions, e.g., repeatability condition

Type B evaluation evaluation of a component of measurement uncertainty determined

by means other than a Type A evaluation

All definitions are provided by JGCM [27] standards-holding body unless otherwise specified.
doi:10.1371/journal.pone.0112362.t001
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Materials and Methods

Selected Minirhizotrons
To our knowledge only three companies commercially pro-

duced minirhizotrons at the time of our study; i) Bartz Technology

Corporation, Carpinteria, CA, USA, ii) CID-BioScience Inc.,

Camas, WA, USA, and iii) RhizoSystems LLC, Idyllwild, CA,

USA. Minirhizotrons from two of the companies: the CI-600 In-

Situ Root Imager (CID-BioScience), and the Automated Mini-

rhizotron version A (AMR-A; RhizoSystems LLC) were used in

developing a steady-state, laboratory approach to compare key

functions of minirhizotron cameras and to quantify associated

uncertainties. The AMR-A and CI-600 employ fundamentally

different but common technologies for root imaging. The AMR-A

is a fully automated, programmable instrument that uses a digital

microscopic camera, and operates in a closed, sealed system [24].

The CI-600 is a manually controlled minirhizotron that relies

upon scanner-based digital technology, and operates as an open

system [25]. Choosing to analyze the performance of two different

minirhizotrons also reflects the current range (albeit two) of

technologies used.

Quantification of Measurement Uncertainty
We assessed four key functions of minirhizotron cameras and

propose methods to quantify and reduce associated uncertainties.

We follow a traceable and statistically defensible approach

(presented below) to quantify measurement uncertainty as

proposed by the Joint Committee for Guides in Metrology [26].

Definitions of metrological terms used here are also consistent with

the Standards-holding body (Table 1). The first step in calculating

a measurement’s uncertainty is to identify all input quantities, Xi,

on which Y (the measurand) depends:

Y~f X1,X2,:::,Xnð Þ: ð1Þ

Because the measurement uncertainty of a measurand is a

function of the uncertainty of its input quantities, the function f

should contain every known, not necessarily quantifiable, source of

measurement uncertainty, including all corrections and correction

factors, unit conversions, etc. The standard uncertainty of each

input quantity is quantified by two different uncertainty evaluation

‘‘Types’’. Type A evaluation of uncertainty is based on first-hand

statistical analyses and quantifies the distribution of n independent

observations taken under controlled, often steady-state, conditions.

Type B evaluation assumes a priori distribution for data and is not

based on first-hand statistical analyses. In many cases, Type B

uncertainties are taken directly from calibration specifications,

typically provided by a manufacturer, or are arrived at using best

scientific judgment. Here, we give a mathematical overview of a

typical Type A evaluation. First, the mean of n independent

observations is calculated:

x~x~
1

n

Xn

i{1

xi: ð2Þ

Second, the experimental standard deviation is calculated:

s xið Þ~
1

n{1

Xn

i{1

xi{xð Þ2
 !1

2

: ð3Þ

The standard uncertainty of the input quantity xi can either be

the experimental standard deviation of the sample if quantifying

the expected variance of an individual observation or the standard

deviation of the mean (standard error) if quantifying the expected

variance of a mean, such that,

u xið Þ~
s xið Þ

n
1
2

: ð4Þ

Each individual source of uncertainty (represented here by the

standard deviation of the mean) then propagates to a final,

combined uncertainty,

uc yð Þ~
XN

i{1

Lf

Lxi

� �2

u2 xið Þz
 

2
XN{1

i~1

XN

j~1z1

Lf

Lxi

� �
Lf

Lxj

� �
r xi,xj

� �
u xið Þu xj

� �!1
2

ð5Þ

where,
Lf

Lxi

is the partial derivative of the function, f , with respect

to the input quantity, xi; r xi,xj

� �
is the correlation coefficient

computed by dividing the covariance, u xi,xj

� �
, of the respective

input terms by the product of their individual uncertainties,

r xi,xj

� �
~

u xi,xj

� �
u xið Þu xj

� � : ð6Þ

When input quantities are uncorrelated, the second term of Eq.

(5) can be dismissed. However, for the case where the input

quantities share a correlation of +1, Eq. (5) decreases to the linear

sum of terms,

uc yð Þ~
XN

i~1

Lf

Lxi

� �
u xið Þ: ð7Þ

It is common practice to expand the combined uncertainty to a

larger confidence level, usually 95%. To do so, the function (Eq.

(5)) is estimated by a normal distribution with an effective degrees

of freedom, veff yð Þ, attained by the Welch-Satterthwaite formula,

veff yð Þ~ u4
c yð ÞXN

i~1

u4
i yð Þ
vi

, ð8Þ

where, ui yð Þ~ Lf

Lxi

� �
u xið Þ represents the individual, partial

uncertainties of the combined uncertainty, and vi~n{1, repre-

sents the degrees of freedom of each input variable. The expanded
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uncertainty at 95% confidence, U95 yð Þ, is then obtained by,

U95 yð Þ~k95uc yð Þ, ð9Þ

where, k95 is the coverage factor (found in Table G.2 of [26]). It

should be noted that deriving an expanded uncertainty using the

Welch-Satterthwaite formula assumes input quantities are uncor-

related and independent. While this assumption typically holds

true when measuring in-situ phenomena, it is widely applied for

steady-state calibrations using repeated measures which further

assumes the conditions of instrument uncertainty under in-situ and

steady-state conditions remain the same. Currently, there is no

metrological or statistical alternative to using the Welch-

Satterthwaite formula that is accepted by the standards-holding

body, and addressing this issue is an active area of research

[30,31]. The reader should also note that unless otherwise

specified, all uncertainties presented in this manuscript are given

in expanded form at 95% confidence. Data and uncertainty

analyses for all procedures described in this manuscript are

provided in Data S1.

Assessing the Spatial Uncertainty of Camera Positioning
Repeated images of the same area provide a measure of how

well the same root (stocks) and their turnover (a time delta) can be

estimated [32]. In all minirhizotrons, the camera moves within an

access tube to image the belowground environment. Hence, the

ability to assess the spatial variability or precision of a moving

camera to repeatedly image the same area is potentially a large

source of uncertainty. In some cases, researchers have engraved

marks onto minirhizotron tubes or utilized automatic indexing

post-manufacture to quantify and possibly account for spatial

uncertainties of camera location between sequential sampling

times [22]. The minirhizotron tubes of the AMR-A and CI-600,

however, did not include reference marks. The AMR-A camera

has the ability to ‘auto-index’ image locations [24], and once the

AMR-A completes a full pre-programmed scan of the tube the

camera returns to a ‘home’ position located at the top of the

minirhizotron tube. One method to assess the spatial variance

would be to examine the AMR-A camera’s auto indexed position

for subsequent scans, however, at the time of this study,

RhizoSystems LLC’s Root View software did not record or

archive such information. Because it is a manual minirhizotron,

auto indexing was not available in the CI-600.

Here, we quantify the spatial uncertainty among a set of

sequential images from each instrument. A stationary target

(Kodak TL-5003 imaging test chart, Eastman Kodak Co.,

Rochester, NY, USA) was secured to an arbitrary location on

the outside of each minirhizotron tube. The target was scanned

thirty times (n~30, noted throughout the remainder of the text as

‘‘test’’) at manufacturer-specified default settings (Table 2). In

total, five tests were completed independently, three with the

AMR-A (tests A1, A2, and A3), and two with the CI-600 (tests C1

and C2; Table 3).

To quantify the reproducibility of the AMR-A camera, two tests

were conducted under conditions where the camera was

programmed to return to its ‘home’ position, i.e., the manufactur-

er’s reference location, between subsequent scans of the target. For

best results the manufacturer recommends the camera returns to

within 620 mm of its ‘home’ position among subsequent scans,

thereby managing the reproducibility. The first test (A1) comprised

scans where the radial (around the tube) and vertical (along the

tube) distances between the camera’s actual position and its ‘home’

position exceeded 620 mm among subsequent scans. The second

test (A2) comprised scans where the radial and vertical distances

between the camera’s actual position and its ‘home’ position were

#620 mm among subsequent scans.

To quantify the repeatability of the AMR-A’s camera position,

the A3 test was conducted such that the camera was prepro-

grammed to image a 1 cm2 area starting at predetermined x

(radial) and y (vertical) coordinates within the tube. Between

subsequent scans, the camera was not programmed to return to its

‘home’ position. This test was designed to assess the variability of

the camera’s location independent of sending the camera to its

‘home’ position among subsequent scans.

Under field conditions, the CI-600 is manually installed into its

tube. Hence, the C1 test simulated field conditions where

measurements would be prone to human error through the

removal and replacement of the camera by the operator (i.e.,

reproducibility). This test consisted of i) aligning the CI-600’s

reference dots with a fixed location at the tube’s inlet, as

recommended by the manufacturer [25], ii) placing the CI-600

camera inside the minirhizotron tube, iii) pushing it to a

predetermined depth of the tube (target location) where the

camera ‘‘locked’’ into place via its attached placement rod (the

camera was pushed to the same depth for all scans), iv) allowing

the camera to complete a full, ,360u radial scan, and then rotate

back to ,0u from its starting position (an automated process

among subsequent scans [25]), and v) removing the CI-600

camera from the tube; this method was repeated thirty times. The

C2 test followed the same method as C1 with the exception that

thirty successive images were taken under identical and stable

conditions without removing the CI-600 from the tube (i.e.,
repeatability). Test C2 was intended to quantify the spatial

uncertainty of the camera free of external factors such as the

influence of human error introduced in estimating reproducibility

via test C1.

Because the image size of each minirhizotron camera is different

(Table 2), two different sized targets of the Kodak TL-5003 test

chart, a crosshair and a line-segment, were imaged by the CI-600

and AMR-A cameras, respectively. This ensured that the entire

target was captured within an individual image rather than a

mosaic of images, thus eliminating another potential source of

uncertainty.

The Interactive Data Language (IDL) v8.1 (Exelis Visual

Information Solutions, Inc., Boulder, CO, USA) was used to

assess each image in grayscale format, and using the thresholding
and contouring functions [33], discern pixels that comprise the

target of interest from background pixels. To do so, the pixel

intensity (0 (black) to 255 (white)) threshold was initially set to 253

and the pixels that comprised intensities less than this threshold

test were then outlined with the contour function. Contouring was

used here to ensure that only one outline for the entire black

colored target was identified, i.e., pixels not part of the target were

excluded, and that only the coordinates of the pixels that included

the target were identified. We then tallied the number of contours

that were returned. If more than one contour was identified, the

threshold value was lowered by one and the process was repeated

until only one contour was identified in each image, i.e., dynamic

thresholding. Once the final threshold was determined (in this

case, it was lowered by a total of 3, thus determining the final

threshold of 250), the x and y coordinates of each pixel comprising

the target from all images (i.e., those with intensities less than the

final threshold value) were outputted to separate data files and

labeled by the test and image number.

We then quantified the central position of the respective object’s

location in each image by calculating the mean x and y

coordinates of those pixels passing the threshold test. This was

completed using Perl (v5.10, www.perl.org). By computing the
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object’s central location in sequential images (at time one, time

two, time n), we were then able to determine the difference in this

central location among images and hence, determine the ability of

the sensor to repetitively sample the same point(s) in space. We

present the spatial uncertainty of the camera via one standard

deviation (SD), because in this case, we think it is more informative

to do so in the context of the sample variance, rather than the

variance of the sample mean, i.e., standard error. The standard

deviation can then be used in part to compute the expected spatial

uncertainty of the camera (for an individual scan) relative to the

camera’s ‘‘true’’ location.

Digital Imaging Performance
Evaluating Camera Sensitivity. Accurately quantifying the

size of fine-roots may be limited by camera sensitivity and

pixelation inherent in digital imagery. The pixelation process

averages the signals across a given area, which subsequently

decreases the overall sensitivity of a given technology, and can

cause large uncertainties when fine-roots are imaged with cameras

comprising low resolution, i.e., large pixels [34]. To assess the

cameras’ abilities to quantify root diameter, we determined the

sensitivity of each minirhizotron camera, quantified measurement

trueness over a range of known diameters, and computed the

precision of such measurements.

Individual, black line segment widths of a truncated fan pattern

(Kodak TL-5003 imaging test chart) were measured at the thirteen

designated points (Table 4) by a Model 1602 Filar Micrometer

(Los Angeles Scientific Instrument Company, Los Angeles, CA,

USA), traceable to National Institute of Standards and Technol-

ogy’s (NIST) standards (NIST Test# 821/253660-94) at Applied

Image Inc. (Rochester, NY, USA). These measurements were used

to calibrate the minirhizotron measurements.

Each minirhizotron camera imaged the truncated fan pattern

under steady-state conditions (i.e., no camera removal) and

operated with the highest manufacturer recommended resolution.

For the AMR-A this was ,212 pixels (p) mm21 with pixel sizes of

Table 2. Specifications and manufacturer recommended default settings of each minirhizotron

Specification/Settings CI-600 AMR-A

Tube length (cm) 182.0 (Others available) 156.8 (including handle and fin)

Tube diameter (cm) 6.4 10.8

Tube circumference (cm) 20.1 33.9

Operating range (uC) Dependent on laptop 212 to 45

Power requirements Powered by laptop 5A @ 120 VAC

Removable camera Yes No

Operations On site; field technician Remotely; automated

Image dimensions (cm) 21.6619.6 0.22660.301

aresolution (ı̀m) 42.3642.3 (,24 pixels (p) mm21) 4.764.7 (,212 p mm21)

Pixels/image 2.3566107 3.076105

Images/full-tube scan 8 (with 182.0 cm tube) 3.29286104

Software CI-600 Root Scanner v.3.1.22 Root View v3.0.0.7

bDefault camera settings Brightness = 0; (50%) Camera Exposure = 8; (60%)

Contrast = 0; (50%) LED camera lights = 192; (100%)

Threshold = 0; (50%) Dwell time = 100 ms

amanufacturer recommended resolutions (B Meyer, CID-BioScience Inc., pers. comm.; M Taggart RhizoSystems, LLC, pers. comm.)
bsettings provided with percentage relative to the maximum range of the particular setting [24,25]
doi:10.1371/journal.pone.0112362.t002

Table 3. Description of camera position tests.

Test Condition of measurement Description

A1 Reproducibility AMR-A: Camera homed between subsequent scans;

deviation from home location was greater than the

manufacturer recommended 20 mm

A2 Reproducibility AMR-A: Camera homed between subsequent scans;

deviation from home location was equal to or less than

the manufacturer recommended 20 mm

A3 Repeatability AMR-A: Camera not homed between subsequent scans

C1 Reproducibility CI-600: Removal and replacement of camera

C2 Repeatability CI-600: No removal and replacement of camera

Each test had n = 30.
doi:10.1371/journal.pone.0112362.t003
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4.764.7 mm [24], and for the CI-600, this was ,24 p mm21 with

pixel sizes of 42.3642.3 mm [25]. Each minirhizotron camera

operated inside a larger opaque tube to mimic underground

conditions and eliminate exposure to extraneous sources of light.

The resultant images were saved in bitmap (*.bmp) format to

avoid data compression.

We assessed the minirhizotron images using IDL. The

intensities and coordinates of each pixel residing within the

thirteen rows perpendicular to the truncated fan pattern (i.e., those

points measured by the NIST traceable micrometer) were

outputted to a *.csv file. Data were then normalized with respect

to the neighboring maxima. We followed the Rayleigh Criterion to

quantify the resolvable limit (sensitivity) of each minirhizotron

(Figure 1). This criterion can be thought of as defining the

minimum distance between two objects that can be individually

resolved by a camera [28,29]. More specifically, we also define this

minimum distance when a contrast of 26.4% exists between two

neighboring maxima with identical magnitudes [35]. In the case of

pixelated images, magnitudes relates to pixel intensities (signals).

Pixel intensity graphs (Figure 1) were generated via Microsoft

Excel 2010 (Microsoft Inc., Redmond, VA, USA) to assess

sensitivity and quantify the Rayleigh Criterion.

Quantifying Root Diameter. Measurement trueness was

quantified through a number of steps. First, pixel intensity data

(outputted by IDL) of the six widest lines measured by the

micrometer (Table 4) were ingested into a Perl script. These six

points were chosen because they did not reside near the resolvable

limit of either minirhizotron camera. Thus, we standardized the

approach to make robust comparisons between both minirhizo-

tron cameras. Second, we used two separate test methods to

estimate trueness of line thickness; we tallied the number of

successive pixels with intensities less than i) the threshold of 250 (as

determined by the camera positioning tests), and ii) half of the

maximum intensity of an individual group of successive, black

pixels. The latter follows the Full Width at Half Maximum

(FWHM) approach, a common method used in optics [28]. The

maximum intensity value for FWHM was independently calcu-

lated for each group of successive, black pixels. Successive, black

pixels from each test were tallied separately, thus quantifying the

width of a black line-segment in two different manners. Third, the

mean line segment widths of all the black line segments at each of

the six points were calculated in units of microns following Eq. (2).

Fourth, the standard errors of these six mean line thicknesses were

calculated following Eq. (3) and (4). Mean data from each of the

minirhizotrons were then fit to a calibration curve against those

values quantified by the micrometer.

Uncertainty estimates for uncorrected and corrected (i.e., those

data not fit and fit to the calibration curve, respectively) data were

estimated and compared. In both cases, input data were

considered uncorrelated and independent. Combined uncertain-

ties were derived following Eq. (5). Sources of quantifiable

uncertainties of each minirhizotron dataset included: i) uncertainty

of the micrometer measurements (Type B uncertainties taken from

calibration specifications), ii) measurement trueness (uncorrected

or corrected), and iii) the precision of the minirhizotron

measurements. The average of the computed standard errors

over the entire measurement range was used to calculate the

precision of each camera’s ability to quantify root diameter.

Individual uncertainties were summed in quadrature following Eq.

(5), and resulting combined uncertainties were then expanded

following Eq. (8) and (9).

Assumptions. It should be noted that two assumptions were

made when determining the resolvable limit of each camera and

their ability to quantify root diameter. First, we assumed each

camera operated using a constant focal length, such that the focal

point was always positioned at the outer edge of the respective

minirhizotron tube, i.e., where the truncated fan pattern was

secured, and not at some distance d (mm) away from the outer

edge of the tube. Second, it was assumed that the measured widths

of the line segments (two-dimensional objects) were representative

of root diameters (three dimensional objects; see [23]). We cannot

discount the possibility that these assumptions may lead to

additional uncertainties. Regardless, the presented approach is

reproducible, statistically traceable, and serves as a guideline for

future researchers to build upon.

Table 4. Line widths and expanded uncertainties as
measured by the NIST traceable micrometer.

Line Width (mm) ±U95 (mm)

409.63 2.22

348.21 1.64

303.53 1.64

268.48 1.64

242.62 1.64

194.06 1.64

161.95 1.38

120.27 1.38

100.15 1.38

73.81 1.38

57.99 1.38

43.66 1.38

39.29 1.38

doi:10.1371/journal.pone.0112362.t004

Figure 1. Conceptual diagram depicting the resolution of two
objects (smooth contours) with equal intensities at varying
distances. The dashed lines denote two conceptual objects of equal
intensity, and the shaded, gray area represents what the camera
resolves; (a) fully resolvable, (b) just resolvable (Rayleigh Criterion), and
(c) unresolvable, i.e., both objects are resolved as a single object.
doi:10.1371/journal.pone.0112362.g001
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Quantifying Root Color. Overestimation of fine-root life-

span and subsequent underestimation of fine-root turnover are

possible if fine-roots are only classified as dead once they disappear

from the view of the minirhizotron camera [10]. To address this

problem, some researchers quantify the age and/or health of fine-

roots as a function of color. However, the color nomenclature used

by researchers to define root health is unstandardized and

ambiguous. For example, the terms white [10,36–38] and/or

cream [32] are used to designate living and/or new roots, brown
[32,36–38], or woody [32] to describe dying/aging roots, dark to

describe older roots [10], and dark brown, very dark brown [39] or

black to describe dead roots [32,37,39]. Interestingly, the term

brown is used to describe the colors orange and/or dark yellow
imaged at low luminance [40]. In a recent paper, Dannoura et al.
[36] quantified root-color changes via digital imagery to discern

between living and dying/dead roots, but did not provide an

estimate of the imager’s ability to quantify color with a known

trueness and precision. The color space vectors outputted by

digital cameras, e.g., RGB, are device-dependent, do not usually

adhere to the fundamentals of Colorimetry [41], and the spectral

response to color among a population of cameras can vary greatly

[42]. In other words, the same root stock may appear brown when

imaged by camera A, cream colored when imaged by camera B,

and dark brown when imaged by camera C. ‘‘True’’ root colors

cannot be known and comparisons cannot be made using device-

dependent imagery (and qualitative color terms). To our

knowledge no researchers have identified device-independent

color space, e.g., CIE XYZ, CIE L*a*b*, etc., thresholds for

digital imagery to discern among new/living, dying/aging, or dead

roots, nor have they provided color space uncertainty estimates.

JCGM [26] notes that any measurement is not complete

without a supplementary uncertainty estimate; this is especially

true for color measurements, as many factors, such as the lighting

and the geometry of measurement, can influence the uncertainty

of its measurement [43]. Here, we present an uncertainty analysis

of color quantification of the two minirhizotron cameras and also

stress the importance of monitoring root age and/or health in a

quantitative manner via a device-independent color space.

In many cases, spectral reflectance of a sample is quantified by

concurrently measuring signals of a sample and a standard under

identical measurement conditions [44]. For this study, however,

spectral reflectance of the samples and the standards were

quantified independently, as this is becoming a more common

approach (Gary Reif, Applied Image Inc., Personal Comm. 2014).

A Color Test Chart (QA-69-P-RM, Applied Image Inc.)

containing eight color patches was measured by a NIST traceable

X-Rite eXact densitometer (X-Rite Inc., Grand Rapids, MI, USA)

at Applied Image Inc. This densitometer directly measured

reflectance of the sample over a spectrum of 400 to 700 nm l at

10 nm increments while operating with International Commission

on Illumination (CIE) [45] Illuminant D50, 0/45u geometry of

measurement, and the CIE 1931 2u standard observer. This was

completed five separate times for each of the color patches to

inform uncertainty of the reflectance measurements. In total, five

datasets of n = 31 (reflectance data from 400–700 nm l at 10 nm

increments) for each of the eight colors were generated. The five

datasets of reflectance data for each color patch were then

averaged together at each wavelength. Although the CIE [45]

recommend that data should be captured at or interpolated to 5 or

1 nm increments to avoid uncertainties due to gaps, research

shows that the increase of uncertainty in reflectance data when

capturing data at 10 nm increments is likely trivial compared to

data captured at 5 or 1 nm [46]. Moreover, interpolating to these

increments can actually lead to larger uncertainties (than the

10 nm data) depending on the interpolation scheme (e.g., linear,

Lagrange). Therefore, we chose not to interpolate the reflectance

data. Following recommendations from the CIE [45] and the

American Society for Testing and Materials (ASTM) [47],

reflectance data were then converted to the CIE 1931 XYZ color

space with the following equations,

Tc~k
X

l

RiSitc,iDl, ð10Þ

where, Tc represents the tristiumulus values: X ,Y , and Z; tc

represents the color matching functions: x, y, and z associated

with the appropriate tristiumulus value, R represents reflectance, S

is the relative spectral power distribution of the illuminant, i is the

individual wavelength, and Dl represents the wavelength interval.

The variable k is a normalizing constant defined by:

k~
100P

l

SiyiDl
: ð11Þ

Resulting tristiumulus values were then converted to x and y

chromaticity coordinates via:

x~
X

XzYzZ
, ð12Þ

and

y~
Y

XzYzZ
: ð13Þ

Tristiumulus values and resulting chromaticity coordinates were

then used to characterize (calibrate) the minirhizotron data.

Each minirhizotron was characterized independently. The

Color Scanner Test Chart was secured to the outside of the

respective minirhizotron tube, and the minirhizotron was placed

inside of a larger opaque tube to eliminate ambient light. The

Color Scanner Test Chart was imaged once while each

minirhizotron operated at manufacturer-specified default settings

(Table 2). The images captured at default settings were then

analyzed for over-saturation (over-exposure). If the colors imaged

by the minirhizotron were over-exposed, we adjusted the camera

settings and reimaged the chart until the influence of saturation

was mitigated. We utilized bitmap (*.bmp) format for all the

images to avoid data compression. After the optimal camera

settings were derived, the Color Scanner Test Chart was imaged

five separate times by each minirhizotron camera. Images were

uploaded to Adobe Photoshop (Adobe Systems, San Jose,

California, USA) to inform the respective device-dependent color

space used by each camera. The digital color space of images from

both minirhizotrons could not be verified. As such, the individual

vector intensities of each of the eight colors imaged by the two

minirhizotrons were assumed to be standard RGB (sRGB), and

were analyzed using IDL. Pixels residing along the boundaries of

each color patch were discarded from the analysis to avoid

inadvertent quantification of merged colors. Standard RGB data

from each minirhizotron were then characterized (calibrated) to

the CIE XYZ data of the densitometer following a linear

transformation [48]:
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X1~a11R1za12G1za13B1,

X2~a11R2za12G2za13B2,

X3~a11R3za12G3za13B3,

ð14Þ

where, Xi is a tristiumulus value of an individual color patch

(converted from spectral reflectance data measured by the

densitometer), Ri, Gi, and Bi are the values outputted by the

minirhizotron camera for the same color patch, and a11, a12, and

a13 are empirical coefficients. The same calculations were carried

out for Y and Z, for a total of nine equations. Three colors: white,

amber (a mixture of orange and yellow), and yellow, were used for

the linear transformation (Table 5). These colors were chosen as

they best represent the region of expected root colors relative to

the other five colors of the test chart. The resultant tristiumulus

values were then converted to chromatic coordinates following Eq.

(12) and (13).

Color space characterization, especially for applications relying

on digital imagery (RGB), is an active area of research. Various

techniques to characterize RGB to a CIE color space have been

investigated [48–50]. As cautioned by these studies, the use of a

linear calibration using only three colors will cause large

uncertainties when attempting to characterize other colors via

the derived coefficients a11, a12, and a13. Here, we acknowledge

this issue; however, one goal of this study was to develop a method

of traceable, standard, and defensible means to estimate the

uncertainties in minirhizotron imagery. The extent of our

characterization was limited by the number of colors on our test

chart, and thus a characterization that includes the many possible

combinations of tristiumulus values and higher order polynomial

modeling was beyond the scope of this investigation.

An uncertainty analysis for color is estimated following the

JCGM [26], Early and Nadal [44], the CIE [45], and Sándor et al.
[46]. Uncertainty estimates of the spectral reflectance data (as

measured by the densitometer) were provided as relative values by

Applied Image Inc. and are considered Type B uncertainties.

Because the spectral reflectance data are the rawest form of data

obtained from the densitometer, we assumed that the correspond-

ing uncertainty values provided by Applied Image Inc. encom-

passed any correlations among the signals of the standard and the

sample, and are corrected for any systematic uncertainties

inherent in reflectance data (as mentioned in [44]). Correlations

among wavelengths and among tristiumulus values were quanti-

fied following Eq. (5), and the equations in [44]. Combined

uncertainties of each tristiumulus value, Tc, and each chromaticity

coordinate, vc, respectively, were derived via,

uc Tcð Þ~
XN

i{1

LTc

LRi

� �2

u2 Rið Þz
 

2
XN{1

i~1

XN

j~1z1

LTc

LRi

� �
LTc

LRj

� �
r Ri,Rj

� �
u Rið Þu Rj

� �!1
2

,

ð15Þ

and,

uc vcð Þ~

Lvc

LX

� �2

u2 Xð Þz Lvc

LY

� �2

u2 Yð Þz Lvc

LZ

� �2

u2 Zð Þ

z2
Lvc

LX

� �
Lvc

LY

� �
r X ,Yð Þu Xð Þu Yð Þ
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� �
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LZ

� �
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� �
Lvc

LZ

� �
r Y ,Zð Þu Yð Þu Zð Þ

0
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1
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1
2

,ð16Þ

We present uncertainty estimates of uncharacterized (i.e., sRGB

vectors), and characterized (i.e., x and y chromaticity coordinates)

in expanded form. The act of characterizing from sRGB to the

chromatic coordinates is a calibration procedure, and thus, we

cannot display uncharacterized minirhizotron data in the form of

x and y chromatic coordinates.

Estimating Heat Dissipation
It is well known that temperature controls many enzymatically-

driven metabolic processes in the soils [51–53]. Artificial changes

in soil temperature could, in turn, change plant and microbial

responses. For example, a meta-analysis by Rustad et al. [54]

concluded that nearly all soil warming experiments increased soil

respiration, N mineralization, and plant productivity. The AMR-

A operates as a closed system and uses the ground as a heat sink

[24], which may impact fine-root turnover. To assess the potential

impact of heat additions to the soil environment, we measured the

soil temperatures surrounding the installation of the AMR-A. We

did not measure the soil temperatures around the CI-600 as it is

not a closed system and we assumed its scanner-based imager

dissipated a negligible amount of heat to the surrounding

environment during the time it takes the CI-600 to complete a

full-tube scan (i.e., roughly thirty-minutes).

The AMR-A was placed into a 118 cm (L) x 30 cm (ID) QUIK-

TUBE (part number 6922, QUIKRETE, Atlanta, GA, USA) and

the area between the exterior of AMR-A’s tube and interior of the

QUIK-TUBE was filled with dry, QUIKRETE, All-Purpose sand

(part number 1152). Dry sand was chosen because of its uniformity

Table 5. Mean chromaticity coordinates (and expanded uncertainties) converted from reflectance data measured by the
densitometer.

Color x ±U95(x) y ±U95(y)

Yellow 0.463 0.001 0.494 0.001

Amber 0.424 0.001 0.397 0.001

White 0.349 0.001 0.363 0.002

doi:10.1371/journal.pone.0112362.t005
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and low specific heat capacity, thus ensuring that our approach

quantified a ‘‘worst case’’ scenario with regard to temperature

increase due to heat dissipation from the AMR-A. A pair of holes

was drilled at three different levels, and on opposing sides of the

QUIK-TUBE. The location of these holes coincided with the

AMR-A camera’s home position (top), mid-level of the AMR-A’s

tube (middle) and the lowest possible camera scanning level

achieved by the AMR-A (bottom; Figure 2). One four-Wire

Platinum Resistance Thermometer (100 V PRT; Thermometrics

Inc., Northridge, CA, USA) was inserted into each hole, thus

allowing each PRT to reside perpendicular to the AMR-A’s tube.

At each level, the tip of one PRT was positioned 0.5 cm away

from the edge of the AMR-A tube. This suite of 6 PRTs remained

fixed for this entire heat dissipation test (A through F in Figure 2).

We then positioned another suite of 6 PRTs at the same locations

and in the same manner, but inserted them at constant distances of

7.0, 3.0, and 2.0 cm from the AMR-A’s tube during three

sequential tests, respectively. We then mounted two PRTs 0.5 cm

from the AMR-A’s tube at heights of 10 and 30 cm above the

surface of the sand to measure temperature changes of ambient air

near the AMR-A’s electrical components and motor. Prior to

testing, all PRTs were calibrated against NIST’s standards (i.e., the

triple point of mercury and water, and melting point of gallium)

and uncertainty analyses were generated following JCGM [26].

Data from these fourteen, calibrated, PRTs were acquired with a

datalogger (CR3000, Campbell Scientific Inc., Logan, UT, USA)

at 0.1 Hz. Before testing began the QUIK-TUBE and AMR-A

were collectively tilted at an angle of 60# from horizontal (plane)

to mimic the angle minirhizotrons are usually installed in the field

[22]. This allowed our setup to mimic the dynamics of heat flow

similar to those encountered in the field.

Three, individual, full-tube scans were conducted over a ten-day

period. During testing, the AMR-A operated with manufacturer-

specified, default camera settings (Table 2). Upon completion of

each full-tube scan, the camera of the AMR-A was programmed to

return to its home position and was powered down. We allowed

for the thermal mass of the sand/tube assembly to equilibrate with

ambient conditions for a minimum of 48 hours between each test

scans. Mean, ambient lab temperature was 23.2160.21uC (mean

6 1 SD).

Temperature data were split into three different groups, one for

each test. Temperature change at each location was quantified

relative to the temperature of the respective PRT at the start time

of each full-tube scan.

Results and Discussion

A Caveat
Because we did not test a population of minirhizotron cameras,

we cannot rule out that our findings are a function of camera-

specific characteristics. We did, however, receive assurances from

the manufacturers that the tested cameras were representative of a

larger population. Two separate CI-600 In-Situ Root Imagers

were used during testing. Both experienced mechanical failures

that required replacement or manufacturer repair.

Spatial Uncertainties of Camera Positioning
Both the repeatability and reproducibility of the AMR-A

camera’s position were significantly better than that of the CI-

600 (Table 6). Regarding reproducibility, the radial and vertical

uncertainties of the CI-600 camera (test C1) were two to three
orders of magnitude larger than the radial and vertical uncertain-

ties of the AMR-A’s camera (i.e., A1, and A2). The larger spatial

uncertainty of the CI-600’s camera position for test C1 is most

likely a result of the extraction and replacement of the camera

between subsequent scans, a task that mimics how the CI-600 is

actually used in the field. The discrepancies of spatial uncertainties

for tests A1 and A2 are most likely due to the camera’s ability to

consistently return to the home position between subsequent scans.

In regards to repeatability, the differences between the spatial

camera uncertainty of tests A3 and C2 were not as large as those of

the reproducibility tests. However, the uncertainties quantified

during test C2 were still larger in the radial and vertical

dimensions when compared to test A3 (see Table 6). The

differences in spatial uncertainties between these two cameras

were most likely a result of the operational characteristics of the

minirhizotrons, i.e., automated vs. manual camera positioning.

That said, we also interpret the large difference between the spatial

uncertainties of camera location during tests C1 and C2, is due to

the CI-600’s removal and replacement from the tube. In other

words, the influence of human sources of error is evident in test

C1, and the potential magnitude of this error can be quite large.

When human interaction was completely removed from testing

(i.e., C2) results improved (Table 6).

Human operation and interaction with the technology is an

essential aspect of the CI-600 performance. The CI-600 camera

needs to be physically moved among field-deployed tubes and

moved to different depths of a tube during sampling. Although

such an approach can be beneficial in terms of cost, it leads to

additional uncertainties. In working with the C1-600, precautions

were taken to minimize misalignments of the camera with respect

to a reference point at the tube’s inlet, as recommended by CID-

BioSience Inc. [25]. We assume that our carefully controlled

laboratory conditions would result in performance superior to

those obtained under field conditions.

An underlying goal was to provide a traceable method to assure

the same area of roots is imaged across successive sampling

intervals. One solution is creating reference points along the tube

via indexed marks or etchings [32,55]. Given the large spatial

uncertainties in the CI-600 camera found in this study (Table 6),

the CI-600 is currently incapable of imaging the same area of root

stocks at sequential sampling intervals without the use of etchings

or reference points along the tube. Providing such indexed

etchings to all minirhizotron tubes, including the AMR-A,

provides the ability to assess the instrument’s spatial uncertainty

a posteri, as well as manage any changes that occur over time, e.g.,
mechanical wear. Etchings on the tube would also aid in the

alignment of neighboring images when producing a larger

ensemble of images, however, estimating the uncertainties of

combining neighboring images into a larger mosaic were outside

the scope of this study.

Digital Imaging Performance
Camera Sensitivity. The AMR-A was capable of resolving

smaller objects than the CI-600. The CI-600 was able to resolve

line widths at 100.1561.38 mm, but was unable to resolve line

widths at 73.8161.38 mm. Since the minirhizotron cameras were

calibrated at points, we cannot state (empirically) the exact

location where the CI-600 reached its resolvable limit, however,

we empirically bound its resolvable limit between 72.43 and

101.53 mm. Vamerali et al. [56] found that at least two pixels are

needed to resolve the diameter of an object. Thus, it is reasonable

to conclude that the resolvable limit of the CI-600’s camera is

84.6 mm, i.e., the width of two of its pixels. The ARM-A camera’s

resolvable limit was unable to be empirically quantified because

the camera was able to resolve the narrowest line widths,

39.2961.38 mm, of the truncated fan pattern. Provided the same
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reasoning as above, we conclude that the resolvable limit of the

AMR-A is 9.4 mm.

Although fine-root diameters can be resolved with two pixels,

this does not guarantee that fine-roots of 84.6 mm (CI-600), and

9.4 mm (AMR-A) will be resolvable in the field with varying

environmental conditions, root orientations, and potential camera

photocell degradation. This is also true if the object is not aligned

with the pixels themselves. Zobel [23] states that, ideally, pixel size

should be 25% of the diameter of the smallest root being imaged.

When we follow Zobel’s [23] research and incorporate our

findings, the conservative resolvable limits of the CI-600 and

AMR-A for operational use in the field would be 169.2 mm and

18.8 mm, respectively (with the given instrument settings used in

this study, Table 2). As noted previously, Villordon et al. [20],

underestimated root quantity using a scanner based minirhizotron

(i.e., the CI-600). Given the CI-600 settings that the researchers

utilized (i.e., 78 dots (d) cm21 or ,8 p mm21, with pixel sizes of

1276127 mm), the resolvable limit using the Rayleigh Criterion

would be 254 mm. Applying Zobel’s [23] findings (above) to the

research of Villordon et al. [20] would result in fine-roots with

diameters ,508 mm to go virtually undetected; this may provide

insight as to why root quantity was underestimated, and stresses

the importance of knowing the limits of digital imagery prior to

field use.

Neighboring Objects of Different Sizes. Mean, fine-root

diameters have been estimated globally as 220, 440, and 580 mm

for grasses, shrubs, and trees, respectively [57], while the range of

fine-root diameters are often defined as 0–3000 mm [8,34,58,59],

Figure 2. Experimental design to determine heat dissipation. A cross-section schematic of the experimental design used to assess heat
dissipation (not to scale) for the AMR-A. The three depths: Top, Middle, and Bottom, correspond to depths of 5, 48, and 86 cm below the sand surface,
respectively. The locations of the PRTs residing 0.5 cm from the minirhizotron are denoted by letters A through F, and correspond to the results
shown in Figure 5. The LED lights reside on the body of the camera. The 60u angle refers to the overall installation relative to the horizontal (plane).
doi:10.1371/journal.pone.0112362.g002
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and fungal hyphae diameters range from ,2–80 mm [60]. Given

that fine-root diameters can be quite small, argues that the

resolvable limit should be reported for such studies. This is the first

study to report a defensible and traceable means to determine the

resolvable limit of current, commercially available, minirhizotron

cameras.

Interestingly, we found a change in the cameras’ responses to

contrast. The signals of the black line segments became

progressively more saturated as the test lines became narrowed.

In other words, the signals of the black line segments became

larger, i.e., moving away from the lower end of the 0–255 intensity

range, and the contrast between the black and white line segments

decreased. At a line width of 409.6362.22 mm the mean pixel

intensities were 133.0262.39 and 121.5161.02, as imaged by the

CI-600 and AMR-A, respectively. At a line width of

194.0661.64 mm the mean pixel intensities were 146.2063.53

and 139.2561.41, as imaged by the CI-600 and AMR-A. We

interpret the change in the cameras’ abilities to consistently detect

contrast to i) the backscattering of light caused by the increased

area of white background surrounding the truncated fan pattern as

it narrowed, and the ii) signal averaging inherent in the pixelation

process. It may also be a result of the analysis software’s ability (in

this case, IDL) to convert color images to grayscale. Our finding

poses a challenge, as it suggests that the two cameras have

difficultly resolving neighboring objects of different sizes, i.e., they

may have difficulty resolving and quantifying neighboring fine-

roots with different colors or brightness, or when there is a range of

root diameters.

Root Diameter Measurements. Prior to calibration both

minirhizotrons exhibited measurement bias when quantifying root

diameter. Using the 250 threshold method, the AMR-A overes-

timated (i.e., a positive bias) root diameter by an average of

32.0363.06 mm (Figure 3a), while the CI-600 overestimated by an

average of 117.16613.97 mm (Figure 3c). Using the FWHM

method, the AMR-A underestimated (i.e., a negative bias) root

diameter by an average of 15.51612.50 mm (Figure 3b), while the

CI-600 underestimated, on average, by 12.4767.68 mm (Fig-

ure 3d). At first glance it may seem that using the FWHM method

yielded better results because the absolute bias is smaller than that

of the 250 method. Interestingly, however, using the FWHM

method, the AMR-A camera grossly underestimated approxi-

mately 6% (i.e., 6 of 101) of the samples and skewed the dataset;

the result of which was reflected not only in the average systematic

bias of -15.51 mm, but also in the large standard error of

612.50 mm. However, these same 6 samples (line widths) were not

significantly different than the other 95 samples when using the

signal threshold of 250. The results of the FWHM test suggest a

skewed distribution and a potential systematic bias if the products

are used for turnover and below ground productivity estimates. If

the degree of systematic bias is constant, then the delta calculation

of root growth and/or senescence between sequential images in

time will be small. If the bias is not constant, the contributing

uncertainties will be difficult to quantify over time.

The ability of each minirhizotron camera to quantify root

diameter was greatly improved after calibration. The systematic

biases of both cameras were corrected and resultant expanded

uncertainties for both minirhizotron cameras using either analysis

method reduced to within 617.00 mm of the estimated ‘‘truth’’.

The largest fraction of the expanded uncertainty for the calibrated

data resulted from the reproducibility of the cameras’ abilities to

quantify root diameter. Calibration can correct bias, but it cannot

mitigate the estimate of uncertainty in the form of repeatability

and/or reproducibility (see inset plots of Figure 3).

Root Color Measurements. When compared to one

another, both minirhizotrons exhibited significant differences in

quantifying the sRGB vector intensities of each of the eight colors

(Table 7, Table 8). At first, we operated using the manufacturer-

specified default settings, and three of the color patches: magenta,

yellow, and amber, imaged by the AMR-A were over-exposed and

all sRGB vectors were 255, i.e., the highest possible pixel intensity.

To mitigate over-saturation, the exposure of the camera was

adjusted. We empirically determined that the AMR-A was capable

of quantifying all eight colors (within reason) when operating at a

lower camera exposure of 12, (i.e., not the recommended, default

exposure; Table 7). Moreover, many of the AMR-A images were

also prone to areas of overexposure in the top left corner of each

image, regardless of which exposure was used. The CI-600 also

exhibited signs of over-saturation while operating at default

settings. Specifically, the R vectors of magenta, yellow, and amber,

all registered 255 (Table 8). Although we were aware of this over-

saturation, all color characterization tests of the CI-600 were

completed using default settings because the CI-600 encountered

systematic communication problems with its software during

testing, and we were unable to alter the settings.

Both minirhizotron cameras had the ability to repeatedly image

the same color with a high degree of precision. The largest

estimate of AMR-A imprecision was at 0.127, which was at the B

vector of the yellow color patch. In terms of relative uncertainty,

this result equates to ,0.7%, i.e., the signal-to-noise ratio is

99.3:0.7% (standard error at 95% confidence level). The largest

estimate of imprecision in the CI-600, was 0.06% of the signal,

which was found at the R vector of the blue color patch. Thus, the

signal-to-noise ratio when imaging the eight colors of the specified

target was better with the CI-600. But because we did not test over

a range of exposures, different lighting etc., we cannot be

conclusive if this result is consistent across all colors, or if this is

indicative of a population of sensors, but if it is important to the

end-user, it should be examined further.

A noted difference among the device-dependent color vectors

imaged by the AMR-A and CI-600 was expected. Characterizing

the device-dependent sRGB color spaces to the device-indepen-

dent chromaticity coordinates provided a means by which root

colors can be quantified and compared among a group of

minirhizotrons with a known accuracy (Table 9; Figure 4). Given

the results found here and elsewhere [42,48–50], we recommend

that minirhizotron cameras be characterized prior to field

deployment with a traceable color test target using the approach

presented here and by others [26,44,45]. We note that the linear

characterization used here may result in different response

functions when tested with different cameras (photocells) over a

broader color spectrum. The use of colorimetric cameras, and/or

Table 6. Precision of minirhizotron camera location for each
sampling method; values are provided as one standard
deviation.

Precision

Test Radial (degrees) Vertical (mm)

A1 0.12 24.87

A2 0.01 4.32

A3 0.01 38.37

C1 13.72 1942.23

C2 0.22 84.06

doi:10.1371/journal.pone.0112362.t006
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a higher order, non-linear characterization, as well as character-

izing with a test card comprised of hundreds of colors should be

explored further [48–50]. The resultant coefficients from charac-

terizations should be applied to minirhizotron cameras prior to

any type of color analysis. This will allow for traceable

quantification of color and will also facilitate estimation of root

age and health. We recommend that minirhizotron cameras’ are

also periodically validated while in the field, as this will aid in

quantifying color drift of the camera and photocell degradation

over time. Such a task can be completed by installing a color test

chart within the minirhizotron tube, preferably at the bottom as to

avoid direct interaction with sunlight, and imaging the chart on a

periodic basis. Lastly, and possibly most importantly, the natural

variation in species-specific relationships between root color and

health are likely large, and quite possibly the same magnitude or

larger than the variation in color exhibited by these technologies.

Only once species and site specific tests are conducted relating root

health to chromaticity, do we advise that the classification of root

age and or health be defined by chromaticity coordinates. In all

cases, however, we highly discourage classifying root age and or

health by qualitative, loose nomenclature, such as white, brown,

cream, or black. This method should also be extended to other

camera-based phenological measures and the like.

Heat Dissipation Estimates
When operational, the AMR-A increased temperatures in the

environment immediately adjacent to its tube, and away from the

tube to a distance of 7.0 cm at all measured depths. These

temperature increases, however, were not uniform in time or

space. The maximum and mean ambient air temperature

increases near the AMR-A’s motor (located 10 cm above the

sand surface) were 6.74 uC and 3.2960.05 uC, respectively.

Similarly, the maximum and mean ambient air temperature

increases near the AMR-A’s electrical components (located 30 cm

above the sand surface) were 9.36 uC and 7.560.05 uC,

respectively. The largest temperature increases in the sand were

found at shallower depths (i.e., closest to the surface; top level),

above (Figure 2), and at a distance of 0.5 cm from the AMR-A’s

tube (Figure 5). Specifically, the maximum and mean sand

temperature increases at this location (point A), were 3.25 uC
and 1.8160.02 uC, respectively. The smallest temperature change

occurred at the bottom level, below the AMR-A, and at a distance

of 7.0 cm (not shown in Figure 5). The maximum temperature

increase at this location was 0.22 uC. However, the mean

temperature change at this location was negligible.

The increases in temperatures were not transient, and occurred

well before the camera passed a monitored area. Sand temper-

atures began increasing prior to the camera’s passing at PRT

locations, and continued to increase for a short period of time after

the camera passed. Once reaching their maxima, temperatures

persisted above pre-scan values for extended periods of time. For

instance, sand temperatures at distances of 0.5 cm away from the

AMR-A’s tube remained above ambient levels for approximately

28, 23, and 15 hours once maximum temperature change

occurred at the top, middle and bottom levels, respectively

(Figure 5).

Figure 3. Line widths as measured by both minirhizotrons. Estimated line widths as determined by both minirhizotrons cameras against
those of the NIST traceable micrometer. Results of the AMR-A are shown in (a) using the 250 pixel intensity threshold (n~101), and (b) using the
FWHM threshold (n~101). Results of the CI-600 are shown in (c) using the 250 pixel intensity threshold (n~114), and (d) using the FWHM threshold
(n~120). A 1:1 line is shown on each graph. Inset plots are provided at the 194.0661.64 mm calibration point to emphasize the magnitude of random
uncertainty and show that calibration can correct for bias, but not random uncertainty. Error bars are given as 62 SE for uncalibrated data and
6U95(y) for calibrated data.
doi:10.1371/journal.pone.0112362.g003
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The motor, camera’s LED lights, and electrical components of

the AMR-A were the major sources of heat. The camera’s LED

lights, which were attached to the roving camera, were a

continuous heat source within the tube. The motor and

electronics, which were stationary, were a source of constant heat

at the top of the tube. We assumed internal chimney effects within

the minirhizotron tube also caused heat to convect to the highest

section of tube. Hence, we infer that even if the camera was

programmed to image a small and specific region (i.e., not a full

tube scan), temperatures generated by the camera’s LED lights

would rise within the tube, conduct through the AMR-A’s tube

and warm the surrounding soil.

Clearly, dry sand has a more similar heat capacity to soil than to

air, and stores heat similar to that found in soil warming

experiments [54], which are designed to alter the soil microclimate

in the surrounding rhizosphere. In moist soils, the AMR-A would

likely increase the soil vapor pressure and enhance the evaporation

of the soil water content around the tube. Given the long

operational time it takes the AMR-A to image an entire tube

(duration of 25.0860.43 hours observed during testing; mean 61

SD), and output of heat from the instrument to the soil, it will

likely alter the soil properties, respiration, and likely the

measurement of representative root mass (and fine-root turnover)

if measurements are conducted frequently, i.e., daily, weekly,

monthly or longer pending the ecosystem type.

Conclusions

Currently, minirhizotrons represent the best non-destructive

method for measuring in-situ fine-root production, mortality, and

turnover. The spatial heterogeneity of fine-root turnover however

is typically large [61–63], difficult to quantify [64–66], and

becomes a sample size problem [32,67–69]. Determining seasonal

and interannual variability, and long term trends, is a product of

matching one’s ability to detect a phenomenon with the spatial

and temporal signal-to-noise of the phenomenon, in this case fine-

root turnover. This is a particularly difficult task because we expect

the behavior of fine-roots to change non-linearly in time and space

with changes in climate, species composition, nutrient and water

availabillty, etc. As we have shown here, if uncalibrated

minirhizotrons are used to estimate standing stocks, the risk of

improper quantification of fine-root turnover, combined with the

amount of undectable roots using scanner-based technologies,

have large implications to understand allocation patterns. Know-

ing the uncertainties of measurements a priori is becoming

increasingly important as more and more Bayesian and data

assimilation approaches are being used in modeling these

processes.

Without a traceable and reproducible approach to quantify the

measurement uncertainty of minirhizotron camera performance,

the signal-to-noise ratio cannot be properly quantified. Once this

ratio is quantified, root measurements made by minirhizotrons will

be better understood and have increased scientific utilty. Being

Table 7. Mean sRGB values (and expanded uncertainties) as measured by the AMR-A.

Color R ±2SE (R) G ±2SE (G) B ±2SE (B)

Cyan 0 N/A 107.529 0.059 244.23 0.026

Magenta 206.423 0.035 123.219 0.048 200.561 0.041

Yellow 232.684 0.022 251.412 0.019 17.079 0.127

Amber 231.734 0.024 234.742 0.011 202.499 0.033

Red 130.17 0.048 0 N/A 0 N/A

Green 0 N/A 89.485 0.061 23.089 0.089

Blue 0 N/A 0 N/A 193.347 0.054

White 245.703 0.025 255 N/A 255 N/A

Expanded uncertainties represent the repeatability of the camera for the specific color patch. Uncertainties for values at the limits of the sRGB spectrum are not
provided. n~40,805 per color patch.
doi:10.1371/journal.pone.0112362.t007

Table 8. Mean sRGB values (and expanded uncertainties) as measured by the CI-600.

Color R ±2SE (R) G ±2SE (G) B ±2SE (B)

Cyan 90.406 0.026 179.614 0.013 217.403 0.013

Magenta 255 N/A 167.971 0.012 200.864 0.011

Yellow 255 N/A 249.617 0.013 177.415 0.019

Amber 255 N/A 232.644 0.025 214.657 0.033

Red 231.103 0.015 95.250 0.027 95.827 0.029

Green 87.799 0.024 171.210 0.011 119.531 0.015

Blue 78.508 0.047 128.516 0.024 188.291 0.014

White 255 N/A 255 N/A 255 N/A

Expanded uncertainties represent the repeatability of the camera for the specific color patch. Uncertainties for values at the limits of the sRGB spectrum are not
provided. n~33,836 per color patch.
doi:10.1371/journal.pone.0112362.t008
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able to understand and reduce measurement uncertainties in

minirhizotrons is key to monitoring root turnover over time and

space with minirhizotrons.

Prior to this study no uniform and reproducible method for

quantifying and comparing minirhizotron performance existed in

the literature. To address this issue, we identified essential,

objective, test parameters to assess the minirhizotron cameras’

signal-to-noise ratio. We were able to quantify and compare the

capabilities of manual and fully automated minirhizotrons to

repeatedly image a test target in space, quantify root size and

color, and dissipate heat. Because we estimated the signal-to-noise

ratio these data can be used as a benchmark to generate sample

size requirements given the expected signal-to-noise of fine-root

turnover or other ecological processes.

Each minirhizotron camera tested has tradeoffs inherent in their

hardware and operating procedures. This included the unavoid-

able presence of human error in the removal and replacement of

the manual minirhizotron camera (CI-600), or the unintended

heating of the soil environment (AMR-A). The potential heating

effects associated with the AMR-A should, however, be weighed

against the much greater sensitivity and repeatability afforded by a

fully automated microscopic camera. Additionally, the benefit-to-

cost ratio of using a portable camera that can be moved among

multiple minirhizotron tubes, such as the CI-600, should be

weighed against utilizing a non-portable camera, such as the

AMR-A. Regardless, our results suggest that effects of the known,

random and systematic uncertainties need to be taken into account

when interpreting minirhizotron images and represent an oppor-

tunity for new technological advances to increase our knowledge of

belowground processes.

In final recommendations; i) one should consider adopting

standardized calibration methods (i.e., JCGM [26], CIE [45]) of

minirhizotron cameras prior to field deployment, and ii) we

suggest that known, traceable targets be used in the calibration

process and buried with the minirhizotron tubes. Imaging these

targets before and after a full-tube scan would help inform the

current state of camera health, as the size and color of the targets

Figure 4. Characterized CIE chromaticity coordinates. CIE
chromaticity coordinates of the (a) three characterization points relative
to the entire chromaticity coordinate space (as denoted by the
horseshoe shaped outline), (b) a zoomed version of the same data in
(a) that also depicts the expanded uncertainties of the three
characterization points. Error bars are given as 6U95(y): This figure is
presented in addition to Table 9 to demonstrate the spatial (color-
space) limitations of the linear characterization performed in this
analysis. The overlaid color gamut is for illustrative purposes only.
doi:10.1371/journal.pone.0112362.g004
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can be quantified over time and help post correct fine-root data for

any optical drift inherent in the camera.

Lastly, the approaches used here are not just germane to

minirhizotrons, but to all digital imaging devices used in the

scientific process. Approaches and findings presented here have

large relevance to other applications, for example, digital

microscopy, phenological cameras, digital biodiversity archives,

forensics, and others that also intentionally employ device-

dependent color imaging.

Supporting Information

Data S1 Data and uncertainty analyses for the proce-
dures described in this manuscript.
(ZIP)
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