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Abstract 

Purpose: 1,25-dihydroxyvitamin D3 may regulate adipogenesis in adipocytes in-vitro, but little is known about pos-
sible molecular mechanisms related to the inhibitory effect of 1,25-dihydroxyvitamin D3 on adipogenesis in humans҆ 
adipose tissue.

Methodology: In this study, human adipose-derived mesenchymal stem cells (hASCs) were cultured for 14 days in 
adipogenic differentiation media containing concentrations of 1,25-dihydroxyvitamin D3  (10−10–10−8 M). The extent 
of adipogenic differentiation in ASCs was assessed by Oil Red O staining and quantitative polymerase chain reaction 
(PCR) to determine expression levels of key adipogenic markers.

Results: Our results showed that vitamin D receptor (VDR), as a mediator of most actions of 1,25-dihydroxyvitamin 
D3, glucose trasporter-4 (GLUT4),and fatty acid binding protein-4 (FABP4) was expressed in vitamin D-treated hASCs. 
However, the protein level of these markers was lower than the control group. Treatment of human preadipocytes 
with 1,25-dihydroxyvitamin D3 significantly altered expression of adipogenic markers and triglyceride accumulation 
in a dose-dependent manner. 1,25-dihydroxyvitamin D3 at concentration of  10−8 M enhanced expression of sterol 
regulatory element-binding protein-1c (SREBP1c), CCAAT-enhancer-binding protein-β (C/EBPβ), a mitotic clonal 
expansion, peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FASN), a marker of de novo 
lipogenesis,and lipoprotein lipase (LPL).

Conclusion: Our findings revealed that 1,25-dihydroxyvitamin D3 may provoke adipocyte development in critical 
periods of adipogenesis at concentration of  10−8 M, thereby leading to a greater risk of obesity in adulthood and an 
augmented risk of obesity-related diseases including diabetes, cardiovascular diseases, and some cancers.
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Introduction
Obesity characterized by accumulation of exorbitant 
triglyceride in adipose tissue depending on hypertro-
phy and/or hyperplasia of adipocytes is one of the main 

public health concerns and it has been known as a key 
risk factor for progression of metabolic syndrome, type 
2 diabetes mellitus, cardiovascular disease, cancer ,and 
reduction of life expectancy [1, 2]. Therefore, obesity is 
considered as a concern for the patients, policy-makers, 
and third-party payers [3, 4].

Vitamin D is one of the fat-soluble vitamins with 
exogenous and endogenous source in body. Ultravio-
let B (UVB) irradiation in the skin leads to the increase 
in the level of vitamin D in body through conversion of 
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7-dehydrocholestrol into cholecalciferol (vitamin D3). 
Diet can provide the body’s requirement for vitamin D 
as well. For activating vitamin D thoroughly, it should 
be hydroxylated twice. Under reaction with 25-hyrodxy-
lases, previtamin D is turned into 25-hidroxyvitamin 
D3 (25(OH)D), as circulating form of vitamin D. Then, 
1,25-dihydroxy-vitamin D (1,25(OH)2D) as a bioactive 
form of vitamin D metabolite and activator of vitamin 
D receptor (VDR) is obtained from 25(OH)D through 
action of 1α-hydroxylase [5].

Convincing data have indicated a relationship between 
obesity and vitamin D [6–8]. Besides, the conventional 
role of vitamin D in systemic calcium homeostasis and 
bone metabolism, vitamin D endocrine system has vari-
ous extra skeletal targets including adipocytes [6–8]. 
Interestingly, 1,25-dihydroxyvitamin D3 binds to VDR, 
acting as a pleiotropic endocrine hormone and influ-
encing proliferation, differentiation, apoptosis, and gene 
expression.

Interaction of 1,25(OH)2D with nuclear VDR is 
responsible for transcription regulation of many genes, 
involving in regulation of cell proliferation and differen-
tiation, immune function ,and metabolism in different 
types of cells [9, 10]. There is a large body of literature 
regarding provoking action of 1,25-dihydroxyvitamin D3 
at low concentrations and its prohibiting and stimulating 
actions in differentiation and apoptosis, respectively at 
high concentrations [10–12]. Additionally, it seems that 
25(OH) D could be involved in adipogenic differentiation 
of human preadipocytes, most likely through its conver-
sion into 1,25(OH)2D [13].

Expression of VDR in adipocytes is the keystone for 
action of 1,25-dihydroxyvitamin D3 in adipose tis-
sue and energy homeostasis [6–8, 14–16]. The previous 
studies have indicated expression of the genes encoding 
the enzymes converting or catalyzing vitamin D includ-
ing cytochrome P450 enzymes of CYP27B1, CYP2R1, 
and CYP24 in adipocytes. Thus, local synthesis along 
with degradation of biologically active form of vitamin 
D could be happened in adipocytes [17–19]. Moreover, 
many vitamin D metabolizing enzymes are also expressed 
in adipose tissue [5].

Mouse model studies have shown that in the high-
fat diet, VDR-knockout (VDR−/−) mice were prone to 
weight-gain resistance [19, 20]. It seems that overexpres-
sion of human VDR in adipocytes leads to a decrease 
in the energy expenditure and an increase in the body 
weight [9, 10]. Although, 1,25-dihydroxyvitamin D3 
modulates adipogenic differentiation at several stages, 
there are significant variations in different cell types [20, 
21].

It is assumed that expression of the main adipogenic 
genes related to early and late stages of differentiation 

including peroxisome proliferator-activated receptor-
gamma (PPARγ), CCAAT-enhancer-binding protein-α 
(C/EBPα), lipoprotein lipase (LPL), and adipocyte pro-
tein 2 (aP2) is blocked by 1,25-dihydroxyvitamin D3, 
dose-dependently [20–25]. Additionally, 1,25-dihy-
droxyvitamin D3 has been shown to suppress adipocyte 
differentiation in the early stages by inhibiting CCAAT-
enhancer-binding protein-β (C/EBPβ) expression, indi-
rectly downregulating PPARγ and C/EBPα expression in 
3T3-L1 cells [26]. Furthermore, the presence of vitamin 
D response element in the promoter region of Insig-2 
has highlighted another novel mechanism regarding the 
inhibitory effects of 1,25-dihydroxyvitamin D3 [27].

There is limited evidence on mesenchymal stem cells 
derived from human adipose and the mechanisms by 
which, 1,25-dihydroxyvitamin D3 influences adipogene-
sis and energy balance. Therefore, in the present research, 
the mechanisms underlying outcome of 1,25-dihydroxy-
vitamin D3 action on expression of adipogenic genes in 
mesenchymal stem cells derived from human adipose 
were investigated.

Materials and methods
Cell culture and differentiation
Human adipose-derived mesenchymal stem cells 
(hASCs) were obtained from Human Cell Bank of the 
Iranian Biological Resource Center Laboratory (Teh-
ran, Iran). The hASCs were obtained from subcutane-
ous abdominal adipose tissue of 5 premenopausal female 
donors with a mean age of 37 years old (with an age 
range from 28 to 39 years old) and a mean body mass 
index(BMI) of 26.2 [range: 24.5–29.3] through optional 
liposuction procedures. None of the volunteers had any 
type of endocrine disorders and none of them were tak-
ing any medication or had a family history of metabolic 
syndrome.

The hASCs were characterized based on their plas-
tic and fibroblast-like morphology, capability to form 
colony-forming units (CFUs), expression of cell surface 
markers (cluster of differentiation(CD) antigens includ-
ing  CD44+,  CD90+,  CD105+,  CD166+,  CD34-,  CD45-, 
and  CD11b-) ,and the ability to differentiate into either 
osteoblasts or adipocytes as described previously [28].

Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with fetal bovine serum (FBS) 10%, glu-
tamine 2%, 100 IU/ml of penicillin,and 100 IU/ml of 
streptomycin was used as a growth medium, which was 
incubated at 37°C and under 5% humidified  CO2,and 
then was replaced every 2 days. For induction of differ-
entiation into mature adipocytes 48 h post-confluence, 
the cells from passages of 4–5 were washed thoroughly 
using phosphate-buffered saline (PBS) and were seeded 
at seeding density of 5.04231 cells/ml. An amount of cells 
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was pre-optimized in adipocyte differentiation medium 
(Gibco, UK) containing 0.5mM 3-isobutyl-3-methylx-
anthine (IBMX), 1mM dexamethasone, and 5mg/ml of 
human insulin. At the time of induction of differentiation 
of mesenchymal pre-adipocytes, 1,25-dihydroxyvitamin 
D3 was diluted in ethanol (vehicle) to obtain appropri-
ate concentrations of  10−10 and  10−8 M, which were 
added to the medium and then, was kept for 14 days. 
Wells were divided into three experimental groups with 
at least three parallel wells in each group: (1)  10−10 M of 
1,25-dihydroxyvitamin D3 with induction; (2)  10−8 M of 
1,25-dihydroxyvitamin D3 with induction; (3) and con-
trol with induction. After a week, medium was replaced 
with an adipocyte maintenance medium (Gibco, UK) and 
it was cultured for another 7 days. Treatment compounds 
were added at same concentrations when medium was 
changed. All of these mixtures were also exchanged in 
the control wells. Cells were harvested to assess the genes 
related to adipogenesis at 1and 3 h and on 1, 3, 6, and 
14 days during differentiation. Unless otherwise noted, 
all the chemical materials were purchased from Sigma-
Aldrich Company (USA).

RNA isolation and quantitative real‑time PCR
Total RNA was isolated from the treated differentiating 
cells as described at several time points using the TRIzol 
reagent (Sigma-Aldrich Company, USA) according to the 
manufacturer’s instruction, then RNA was reverse tran-
scribed into cDNA using the SuperScript II Reverse Tran-
scriptase Kit (Invitrogen Company, USA) following the 
manufacturer’s protocol. Quantitative polymerase chain 
reaction (qPCR) analysis was performed using the Ste-
pOnePlus Real-Time PCR System (Applied Biosystems 
Company, USA) and SYBR Premix Ex Taq II, Tli RNaseH 
Plus reagent (Takara Company, Japan). Primer pairs were 
designed for PPARγ, C/EBPα, C/EBPβ, SREBP1c, FASN, 
LPL, and Insulin induced gene 2 (INSIG2) using the 
Primer-BLAST software (national center for biotechnol-
ogy information (NCBI), USA). The mRNA levels were 
normalized to glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) and fold changes in gene expression were 
calculated by the  2−ΔΔCt method. The primer pairs for each 
gene target are presented in Table 1.

Oil Red O staining
Following 6 or 14 days of culture, adipocytes were 
washed three times using ice cold PBS and were fixed 
using paraformaldehyde 4% for 30 min. After fixation, 
cells were washed three times and were stained with Oil 
Red O solution (ORO) for 15 min at room temperature. 
Again, cells were washed three times by PBS to remove 
unbound staining in order to detect neutral lipid vacu-
oles. ORO-stained adipocytes were observed under a 

microscope (Olympus Company, Tokyo, Japan) and digi-
tal images were captured at 100× of magnification.

Protein assay
For determining protein concentration, the plated cells 
were lysed in buffer containing 50mM Tris, 150mM 
sodium chloride (NaCl), IGEPAL 1%, 5mM ethyl-
enediaminetetraacetic acid (EDTA) (Sigma-Aldrich 
Company,USA), and protease inhibitor cocktail (Roche 
Diagnostics, Laval, QC, Canada) and were centrifuged 
for collection of lysate. Then, enzyme-linked immuno-
sorbent assay (ELISA) kits (ZellBio GmbH, Ulm, Ger-
many) were used for assessment of FABP4, GLUT4, and 
VDR proteins in the tissue using spectrophotometer 
(Epoch Model, BioTek, Vermont, USA) on days 6 and 14 
by intra-assay coefficients of variation (CVs) of 5.5, 5.8, 
6.1, and 5.9, respectively.

Statistical analysis
Data were expressed as mean ± standard deviation (SD). 
The mRNA expressions were determined by analysis 
of variance (ANOVA) and the Repeated-Measures test 
using SPSS software version 25 for Windows (standard 
version; SPSS Inc., Chicago, IL, USA) and GraphPad 
software (GraphPad Prism 8.01 Software) was applied to 
draw the graphs. Kruskal-Wallis test along with Dunn’s 
test was used to compare level of protein expressions 

Table 1 The name and sequence of the primers, the sizes, and 
annealing temperatures for each pair

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; PPARγ: Peroxisome 
proliferator-activated receptor-gamma; C/EBPα: CCAAT-enhancer-binding 
protein-alpha; C/EBPβ: CCAAT-enhancer-binding protein- beta; SREBP1c: Sterol 
regulatory element-binding protein-1c; INSIG2: Insulin induced gene-2; FASN: 
Fatty acid synthase; LPL: lipoprotein lipase

Gene Size (bp) Sequence (5′→3′) Annealing 
temperature 
(°C)

GAPDH 113 F:CAT GAG AAG TAT GAC AAC AGCCT 
R:AGT CCT TCC ACG ATA CCA AAGT 

58

PPARƔ 80 F:CAG AAA TGC CTT GCA GTG GG
R:AAC AGC TTC TCC TTC TCG GC

59

CEBPα 94 F:TAT AGG CTG GGC TTC CCC TT
R:AGC TTT CTG GTG TGA CTC GG

60

CEBPβ 154 F:TTT GTC CAA ACC AAC CGC AC
R:GCA TCA ACT TCG AAA CCG GC

59

SREBP1c 117 F:TCT CAG TCC CCT GGT CTC TG
R:ATA GGC AGC TTC TCC GCA TC

59

INSIG2 114 F:AGT GGT CCA GTG TAA TGC GG
R:TGG ATA GTG CAG CCA GTG TG

60

LPL 137 F:GCT CAG GAG CAT TAC CCA GTGTC 
R:GCT CCA AGG CTG TAT CCC AAGA 

63

FASN 107 F:ATT CTG CCA TAA GCC CTG TC
R:CTG TGT ACT CCT TCC CTT CTTG 

57
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between the groups. Two-tailed p-values of <0.05 were 
considered as statistically significant.

Results
Morphology of hASCs and lipid accumulation were 
depicted through differentiation (Fig. 1).

In human mesenchymal stem cells,  10−10 M 
1,25‑dihydroxyvitamin D3 inhibited adipogenesis While 
 10−8 M 1,25‑dihydroxyvitamin D3 had stimulating effect
For investigating molecular mechanism of 1,25-Dihy-
droxyvitamin D3, qPCR was carried out for C/EBPα, 
C/EBPβ, FASN, LPL, PPARγ, SREBP1c ,and INSIG2 
throughout differentiation. The anti-lipogenic outcome 
of 1,25-Dihydroxyvitamin D3 through adipogenesis was 
accompanied by alterations in the expression of adipo-
genic markers involved in metabolism of adipose tis-
sue. Results showed upregulation of PPARγ (Fig. 2a), as 
the master transcriptional regulator of adipogenesis, 
through treatment with 1,25-Dihydroxyvitamin D3 at a 
concentration of  10−8M on day 6 (P=0.015). Moreover, 
mRNA expression of PPARγ did not change significantly 
throughout differentiation by treatment with 1,25-Dihy-
droxyvitamin D3 at a concentration of  10−10 M. Expres-
sion of C/EBPα (P=0.01) was downregulated during 
treatment with 1,25-Dihydroxyvitamin D3  (1010  M) on 
day 3. However, expression of C/EBPα mRNA was aug-
mented (P=0.044) during differentiation by treatment 
with 1,25-Dihydroxyvitamin D3 at a concentration of 
 10−8M, (Fig. 2b) on day 6.

After observing a peak on day 6 (P=0.003), mRNA 
expression of C/EBPβ was significantly downregulated 

by treatment with 1,25-Dihydroxyvitamin D3 at a con-
centration of  10−8M on day 14 (P=0.008) and there was 
a fluctuation in C/EBPβ mRNA expression by treatment 
with 1,25-Dihydroxyvitamin D3 at a concentration of 
 10−10M along with downregulation on day 6 (P<0.001) 
throughout differentiation (Fig. 2c).

10−8 M of 1,25‑dihydroxyvitamin D3 augmented 
expression of lipogenic enzymes
During adipogenic differentiation, mRNA expres-
sion of FASN, as a marker of de novo lipogenesis did 
not change significantly by treatment with 1,25-Dihy-
droxyvitamin D3 at a concentration of  10−10 M. Expres-
sion of FASN (P=0.049) was upregulated by treatment 
with 1,25-Dihydroxyvitamin D3 at a concentration of 
 10−8  M on day 6 (Fig.  3(a)). There was no change in 
mRNA expression of LPL, as a late marker of adipogen-
esis, throughout treatment with 1,25-Dihydroxyvitamin 
D3 at a concentration of  10−10  M. On the other hand, 
mRNA expression of LPL was augmented (P=0.044) 
through treatment with 1,25-Dihydroxyvitamin D3 
at a concentration of  10−8 M with a peak observed on 
day 3 (Fig. 3b). Upregulation of PPARγ expression was 
accompanied by overexpression of SREBP1c mRNA by 
treatment with 1,25-Dihydroxyvitamin D3 at a con-
centration of  10−8 M on day 3 (P<0.001). A fluctuation 
in mRNA expression of SREBP1c was observed with 
a downregulation by treatment with 1,25-Dihydroxy-
vitamin D3 at a concentration of  10−10  M , on day 
6 (P<0.001) (Fig.  4a). Since, 1,25-Dihydroxyvitamin 
D3 upregulated expression of PPAR-γ and SREBP-1, 
expression of INSIG2, as a moderator of PPAR-γ and 

Fig. 1 Oil Red O staining of human adipose-derived mesenchymal stem cells. Phase contrast image of adipocytes were taken by microscope 
(Olympus, Tokyo, Japan) and digital images were captured at ×100 magnification. Following 14 days of treatment with 1,25(OH)2D3 showed a 
significant decreased in relative lipid vacuole staining compared with control group
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SREBP-1c was also investigated. Following an over-
expression of INSIG2 on day 3, mRNA expression of 
INSIG2 was significantly downregulated by treatment 
with 1,25-Dihydroxyvitamin D3 at a concentration of 
 10−10  M on day 6. Overexpression of INSIG2 mRNA 
was observed in the group treated with 1,25 Dihy-
droxyvitamin D3 at a concentration of  10-8M on day 6 
(P=0.022) (Fig. 4(b)).

VDR, GLUT4, and FABP4 proteins were expressed in human 
adipose‑derived mesenchymal stem cells
For understanding the important role of VDR regarding 
modification of adipogenesis by 1,25-Dihydroxyvitamin 
D3, expression of VDR protein in hASCs was investigated 
at specific time intervals after differentiation process was 
initiated. Results showed that protein level of VDR was 
lower than that of the control group during differen-
tiation process (Table 2). Following 14 days of treatment 

Fig. 2 1,25(OH)2D3 differentially regulates the mRNA expression of adipogenic marker genes during adipogenesis. mRNA expression of PPARγ (a), 
C/EBPα (b) and C/EBPβ (c) in 1,25(OH)2D3  (10−8 M or  10−10 M) groups during adipogenic differentiation. The relative qPCR values were corrected 
to GAPDH expression levels and normalized with respect to controls on each time. The mRNA levels are expressed as the fold increase relative to 
the control, and values given are the mean ± SD with 95% CIs for three independent plates. *P < 0.05  (10−8 M 1,25(OH)2D3), **P < 0.05  (10−10 M 
1,25(OH)2D3) vs. control

Fig. 3 1,25(OH)2D3 increased mRNA expression of FASN and LPL in newly-differentiated adipocytes at high concentrations. mRNA expression of 
FASN (a) and LPL (b) in 1,25(OH)2D3 groups during adipogenic differentiation.The relative qPCR values were corrected to GAPDH expression levels 
and normalized with respect to controls on each time. The mRNA levels are expressed as the fold increase relative to the control, and values given 
are the mean ± SD with 95% CIs for three independent plates. *p < 0.05  (10−8 M 1,25(OH)2D3 vs. control)
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with 1,25-Dihydroxyvitamin D3, protein level of GLUT4 
and FABP4 was also less than that of the control group 
(Table 2).

Discussion
Our results provided unique insights into molecular 
modifications at each phase influencing adipogenesis in 
human mesenchymal stem cells by 1,25-Dihydroxyvita-
min D3 treatment.

Most of our knowledge about adipocyte biology and 
adipogenesis has been achieved through cell culture 
model systems. The main types of cell model are human 
or animal-isolated cells directly obtained from stromal 
vascular adipose tissues [29, 30], multipotent fibroblastic 
cell lines that are not committed with adipogenic poten-
tial, and the established preadipocyte cell lines, under-
gone commitment to the adipose lineage [31].

For comprehending the role of vitamin D in adipogen-
esis, epidemiological studies have shown that 25-hydrox-
yvitamin D3 was negatively associated with body fat 
content and BMI [32, 33] and 1,25-Dihydroxyvitamin 
D3 presented unpredictable outcomes at higher concen-
trations in the obese people. However, further studies 
have indicated lower 1,25-Dihydroxyvitamin D3 levels 
in the obese population compared to non-obese popula-
tion [32]. In a double-blind randomized clinical trial, we 
found that improving 25(OH) D serum concentrations 
by vitamin D3 supplementation is associated with lower 
body fat mass [34].

Since, Vitamin D influences differentiation of com-
mon progenitor mesenchymal stem cells in bone 
marrow to preosteoblasts, it is assumed that 1,25-Dihy-
droxyvitamin D3 can play a prominent role in differen-
tiation of mesenchymal stem cells to adipocytes through 

Fig. 4 1,25(OH)2D3 differentially regulates the mRNA expression of adipogenic marker genes during adipogenesis. mRNA expression of SREBP1c 
(a) and INSIG2 (b) in 1,25(OH)2D3 groups during adipogenic differentiation.The relative qPCR values were corrected to GAPDH expression levels and 
normalized with respect to controls on each time. The mRNA levels are expressed as the fold increase relative to the control, and values given are 
the mean ± SD with 95% CIs for three independent plates. *p < 0.05  (10−8 M 1,25(OH)2D3), **p < 0.05  (10−10 M 1,25(OH)2D3) vs. control

Table 2 Comparison of protein expression in 
1,25-Dihydroxyvitamin D3 groups vs. control

FABP4: Fatty acid binding proteins-4; GLUT4: Glucose transporter-4; VDR: Vitamin 
D receptor § ng/mg total protein
* Mean values were significantly different between the groups (P < 0.05)

Proteins Time Group Mean§ Standard 
Deviation

Result

FABP4 Day 6 Control 0.27 0.03 X = 8.76
df = 2
P value = 0.012*

10−8MVitD 0.17 0.007

10−10 M VitD 0.14 0.03

Day 14 Control 0.32 0.02 X = 7. 26
df = 2
P value = 0.026*

10−8 M VitD 0.20 0.04

10−10 M VitD 0.24 0.05

GLUT4 Day 6 Control 0.17 0.03 X = 8.76
df = 2
P value = 0.012*

10−8 M VitD 0.12 0.02

10−10 M VitD 0.08 0.02

Day 14 Control 0.20 0.01 X = 7. 26
df = 2
P value = 0.026*

10−8 M VitD 0.20 0.03

10−10 M VitD 0.15 0.03

VDR Day 6 Control 0.69 0.45 X = 4.19
df = 2
P value = 0.012*

10−8 M VitD 0.44 0.02

10−10 M VitD 0.35 0.08

Day 14 Control 0.80 0.05 X = 7. 26
df = 2
P value = 0.026*

10−8 M VitD 0.50 0.09

10−10 M VitD 0.60 0.13
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unknown molecular pathways [19]. The inhibitory effect 
of 1,25-Dihydroxyvitamin D3 on adipocyte differentia-
tion was first reported several years ago when in a study, 
lipid accumulation was reduced by half in 3T3-L1 and 
ST-13 preadipocytes compared to the control group [35, 
36], suggesting that 1,25-Dihydroxyvitamin D3 prohibits 
adipogenic differentiation via receptor-mediated path-
ways [35]. On the other hand, according to the literature, 
1,25-Dihydroxyvitamin D3 stimulates FAS in human adi-
pocytes along with suppression of uncoupling protein 2 
(UCP-2) and leptin [23, 37].

1,25-Dihydroxyvitamin D3 and VDR have been 
reported to be involved in regulation of adipogenesis. 
The evidence shows that 1,25-Dihydroxyvitamin D3 sup-
presses differentiation of 3T3-L1 cells in a dose-depend-
ent manner,which is consistent with its inhibitory effect 
on transcription of adipogenic markers [2]. In contrast, 
it has been shown that 1,25-Dihydroxyvitamin D3 pos-
sibly stimulates differentiation of human preadipocytes 
by sustaining overexpression level of key adipogenic 
transcription factors [13]. C/EBPα and PPARγ have been 
introduced as the target of other adipogenic inhibitors 
[25] and overexpression of C/EBPβ is an initial incident 
that is vital for mitotic clonal expansion [26]. According 
to our findings, in the hASCs model, 1,25-Dihydroxy-
vitamin D3  (10−10  M) prohibits adipogenesis possibly 
by repressing mRNA expression of C/EBPβ, PPARγ,and 
adipogenic enzymes including FASN and LPL, together 
with stabilizing VDR protein level throughout late stage 
of differentiation. While, mRNA expression of these adi-
pogenic markers was upregulated in the cells treated with 
1,25-Dihydroxyvitamin D3 at a concentration of  10−8M. 
It was found that 1,25-Dihydroxyvitamin D3 influenced 
expression of C/EBPα and C/EBPβ mRNA through 
adipocyte differentiation. 1,25-Dihydroxyvitamin D3 
 (10−10  M) inhibited expression of C/EBPα and PPARγ 
and antagonized transcriptional action of PPARγ. Sup-
pression of C/EBPα and PPARγ by 1,25-Dihydroxyvita-
min D3 may inhibit differentiation of 3T3-L1 cells [23]. 
Since, retinoid X receptor (RXR) is a common heterodi-
meric partner of both VDR and PPARγ, 1,25-Dihydroxy-
vitamin D3 represses transcriptional action of PPARγ by 
emulating for inadequate quantity of RXR through VDR. 
In the key phase of adipogenic process, when 1,25-Dihy-
droxyvitamin D3 binds and activates VDR, it may seques-
ter RXR from PPARγ [23, 27].

In the case of VDR overexpression, abundant amount 
of VDR in the cells may sequester RXR without ligand 
activation and overexpression of RXR can actually pre-
vent sequestering action of VDR [23, 27]. Interestingly, 
expression of INSIG2 has been found to inhibit differ-
entiation of preadipocytes and to control lipogenesis in 
mature adipocytes, probably shutting off extra synthesis 

of triglyceride for tissues, in which SREBPs play critical 
roles [38, 39]. In the present experiment, 1,25-Dihydrox-
yvitamin D3 prompted INSIG2 expression at the con-
centration of  10−8  M. Given the fact that SREBP1c is a 
potent marker of adipogenesis, our findings suggest that 
the inhibitory effect of 1,25-Dihydroxyvitamin D3 in adi-
pogenesis may also be associated with overexpression of 
INSIG2 in early stages of lipogenesis. Expression level of 
SREBP-1c, as a proadipogenic marker was upregulated 
significantly in the cells treated with 1,25-Dihydroxyvi-
tamin D3 at the concentration of  10−8M. Further studies 
are also warranted to conclude whether the augmented 
INSIG2 expression upon 1,25-Dihydroxyvitamin D3 
treatment leads to reduction of SREBP1c levels in 3T3-L1 
preadipocytes and inhibit adipogenesis [40]. In line with 
our results indicating the stimulating effect of 1,25-dihy-
droxyvitamin D  (10−8 M) on expression of LPL mRNA, 
Nimitphong et al., showed an increase in the LPL expres-
sion in 3T3-L1 preadipocyte [13]. Kang et  al., also pro-
posed that reduction of body weight and fat deposition 
after treatment with vitamin D3 is possibly attributed 
to modulation of lipogenic enzymes, FAS, stearoyl-
CoA desaturase 1 (SCD1),and acetyl-CoA carboxylase 
1 (ACC1) in adipocytes of the pregnant rats [40]. Stud-
ies have shown the pro-adipogenic effects of 1,25-Dihy-
droxyvitamin D3 in human preadipocytes in contrast 
with its anti-adipogenic effect in the 3T3-L1, as the com-
monly used preadipocyte cell line. Treatment of 3T3-L1 
with 1,25-Dihydroxyvitamin D3 through early induction 
stage is important for its inhibitory effect as confirmed in 
the current study [13, 23]. Adipogenesis was not induced 
when 1,25(OH)2D3 was added through the 3rd-induc-
tion phase.

Whereas, adding 1,25-Dihydroxyvitamin D3 within 
maturation period similarly induces adipogenesis as the 
continuous treatment [42]. Since, FABP4 and GLUT4 
are essential for adipocyte function, our findings dem-
onstrated that protein level of FABP4 and GLUT4 was 
upregulated by 1,25-Dihydroxyvitamin D3 (Table  2). 
However, expression level of FABP and GLUT4 pro-
teins was higher in the control group compared to the 
groups treated with 1,25-Dihydroxyvitamin D3. In 
hASCs, expression of FABP4 was increased in adipogenic 
medium compared to basic medium. In the cells treated 
with 1,25-Dihydroxyvitamin D3, expression of FABP4 
was further upregulated [20]. Additionally, Nemetphong 
et al., demonstrated that 1,25-Dihydroxyvitamin D3 aug-
mented expression level of FABP4 protein, dose-depend-
ently [13]. Regulation of lipid and glucose metabolism is 
a key function of adipocytes, which depends on uptake of 
glucose by GLUT4, as the major insulin-dependent glu-
cose transporter in skeletal muscle, heart, and adipocyte 
tissues. In the humans and rodents, expression of GLUT4 
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is reduced in adipocytes due to obesity or type 2 diabetes 
attributing to pathogenesis of insulin resistance and type 
2 diabetes [43]. It has been stated that PPARγ activates 
C/EBPα gene promoter through a positive feedback and 
then, induces expression of the genes involved in insulin 
sensitivity, lipogenesis, and lipolysis including GLUT4 
and FABP4 [44].

Conclusion
Results of the present study indicated that treatment of 
human mesenchymal stem cells with 1,25-Dihydroxyvita-
min D3 at a concentration of  10-8M enhanced expression 
of adipogenic-related genes including PPAR-γ, FASN, and 
LPL.

One of the limitations of the present study was that 
during morphological assessment of the differenti-
ated cells, despite observing more lipid vacuoles in 
the control group compared to the groups treated with 
1,25-Dihydroxyvitamin D3, lipid accumulation was 
not quantitatively measured. The genomic and non-
genomic pathways controlling vitamin D endocrine sys-
tem in human adipocytes are also suggested to be further 
investigated.
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