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Abstract

Stock trend prediction is a challenging task due to the market’s noise, and machine learning

techniques have recently been successful in coping with this challenge. In this research, we

create a novel framework for stock prediction, Dynamic Advisor-Based Ensemble

(dynABE). dynABE explores domain-specific areas based on the companies of interest,

diversifies the feature set by creating different “advisors” that each handles a different area,

follows an effective model ensemble procedure for each advisor, and combines the advisors

together in a second-level ensemble through an online update strategy we developed.

dynABE is able to adapt to price pattern changes of the market during the active trading

period robustly, without needing to retrain the entire model. We test dynABE on three

cobalt-related companies, and it achieves the best-case misclassification error of 31.12%

and an annualized absolute return of 359.55% with zero maximum drawdown. dynABE also

consistently outperforms the baseline models of support vector machine, neural network,

and random forest in all case studies.

1 Introduction

Stock trend prediction is an area of interest to researchers and investors alike, due to the com-

plex patterns underlying the price data and the high profitability of successful trading strate-

gies. In recent years, machine learning has become a popular technique for modeling the stock

market. There are three quantitative approaches to stock prediction in general, each exploring

different areas related to the stock market. The most common approach is based on general

indicators, specifically the historical price and technical indicators. Such an approach relies on

the traditional chartist theory that price patterns in the past will reoccur in the future [1]. The

second approach is based on sentiment analysis, using natural language processing techniques

to interpret text-based data like news articles. It is based on financial research such as He et al.
[2] who show how investor sentiment influences stock returns. The third approach is based on

the intercorrelation of corporations that uses information of other companies to predict the

stock trend of one company, such as the recent work by Chen and Wei in 2018 [3].

In this paper, we present a novel stock prediction model, Dynamic Advisor-Based Ensem-

ble (dynABE). There are four main contributions of our research to current works: the
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exploration of domain-specific information for high-frequency predictions; the establishment

of an effective, first-level ensemble learning framework; the proposal of “advisors” for a sec-

ond-level ensemble; and an online update strategy for dynamic flexibility.

First of all, instead of the three common approaches to stock prediction, this work is one of

the few that explores the direction of commodity-stock relationship by incorporating domain-
specific information. By “domain-specific information,” we mean the information that is

related to the specific industry of a certain company. For example, the automobile market

would be a type of domain-specific information for automobile producers, clean energy tech-

nologies for oil mining companies, and the consumer electronics market for technology com-

panies. While fundamental analysis often explores the industry of specific companies to

estimate their intrinsic values for long-term investments [4], few works use quantitative and

high-frequency domain-specific information for short-term stock prediction.

Moreover, as we will later show in the literature review, no single machine learning model

has been established to be superior for stock prediction. This calls for the need of ensemble

learning, which combines the strengths of different models to compensate for one another’s

mistakes when no single model is guaranteed to be most effective [5]. Our work presents an

effective model ensemble framework that has a hybrid feature selection method and uses stack-

ing to combine the base models.

In addition, we propose the concept of “advisors,” which is especially effective for the stock

market. Specifically, we first define a number of domain-specific areas we want to investigate

for a certain company. For each area, we find a pool of related features that will go through the

previously defined ensemble learning framework to form one advisor. The multiple advisors

are then combined to form a second-level ensemble.

The last innovation lies in the method we designed for combining these advisors, an online

update strategy performed during the active trading period. Most current methods for stock

prediction are static after the initial training. Therefore, they lack the flexibility to update

themselves during the active trading period, making them vulnerable to the stock market

dynamics—the market’s changes in price patterns may render a previously effective prediction

model suddenly less accurate. In contrast, dynABE uses an online update strategy to dynami-

cally weigh the advisors during trading. We will later elaborate the details of the online update.

Intuitively, the use of advisors and online update ensures that all factors of the stock market

that we wish to investigate, as defined in the formation of advisors, are available at all times

during trading. Therefore, even if the price pattern of the stock market changes, dynABE is

still able to adapt to the new pattern by changing the weights of the advisors. We show in our

experiments that this additional dynamic flexibility of dynABE effectively increases its accu-

racy. In addition, since we do not need to retrain the base models with new data but only

update the weights of the advisors, dynABE’s online update method is robost with few

parameters.

We compare the performance of dynABE to three baseline models commonly used for

stock prediction, namely support vector machine, neural network, and random forest. We

show that dynABE consistently outperforms all the baseline models in all our case studies. We

further use the predicted stock trends as trading signals on a naïve trading strategy to illustrate

dynABE’s high potential profitability. It is important to point out that while the domain-spe-

cific information we use does have more financial motivations, it does not nullify the effective-

ness of general indicators, because financial motivation does not guarantee predictive

superiority. In addition, dynABE works well with domain-specific data because it is easier to

group the features into advisors using financial knowledge. However, one can certainly use

dynABE with other data as long as the feature set can be effectively grouped into advisors. In
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other words, dynABE is not limited to domain-specific information, and we will discuss its

generalization in this paper as well.

2 Related works

We examine the existing literature based on the different machine learning models they use.

Early works often used simple regression methods to estimate stock returns. For example,

Fama et al. [6] used a least square regression to predict the NYSE stock portfolio stock returns,

and Pesaran et al. [7] predicted the excess returns for S&P 500 and Dow Jones Industrial port-

folio stocks using multivariate regression. More complex models such as support vector

machine soon became popular, such as Lee’s work [8] that applied a hybrid feature selection

method on general indicators and fed the selected features to a support vector machine for pre-

diction of the NASDAQ index. Support vector machine is also commonly used for sentiment

analysis, such as Schumaker and Chen’s work [9] and Hagenau et al.’s work [10] that both

used support vector machine to interpret news articles.

Neural network is another popular model that explores the nonlinearity of stock data. As

early as 1998, Saad et al. [11] have already compared time delay, recurrent, and probabilistic

neural networks for stock prediction. While both Tsang et al. [12] and Tsai et al. [13] have had

successes using a basic three-layer vanilla network structure, more recent works use neural

network variants that are sometimes termed as “deep learning models.” Nelson et al. [14] in

2017 and Das et al. [15] in 2018 have both used long short-term (LSTM) recurrent neural net-

works, respectively on general indicators and sentiment analysis. In addition, Ding et al. in

2015 [16] and Chen and Wei in 2018 [3], the most recent work in our literature review, have

both used convolutional neural networks, respectively on sentiment analysis and intercorrela-

tion of corporations.

Despite the successes of support vector machine and neural network, they are still some-

times outperformed by other methods in comparative studies. For example, Patel et al.’s
research [17] compared performances of neural network, support vector machine, random

forest, and naïve-Bayes classifier for stock trend prediction, and random forest was the most

accurate. Similarly, in the comparative study of Ballings et al. [18], random forest outper-

formed models including logistic regression, neural networks, k-nearest neighbor, and support

vector machine as well as other ensemble methods including AdaBoost and Kernel Factory.

Therefore, as previously mentioned, the very diversity of successful models for stock predic-

tion suggests that there is no single well-established model proven to be most effective. Table 1

summarizes the related works. Besides the machine learning methods, we have also listed the

general approach of each work, which is among general indicators, sentiment analysis, and

intercorrelation of corporations.

3 Data selection

3.1 Critical metal companies as the case study

We choose critical metal companies as the case study to test dynABE, specifically cobalt com-

panies, due to the growing investment interests in critical metals [21]. In recent years, the

demand for metals in technology has been shifting from several major metals, such as iron and

copper, to numerous minor metals, such as cobalt and indium. Many of these minor metals do

not constitute their own ores but exist in low concentrations in ores of other common metals.

Therefore, their high susceptibility to supply instability and industrial importance lead to the

term “critical metals” [22]. Cobalt is a main critical metal for its rising importance in technol-

ogy. According to the United States Geological Survey (USGS), in 2017, the largest use of

cobalt was for superalloys in aircraft engines in the United States and the rechargeable battery
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industry in China [23]. Indeed, according to a recent study by Olivetti et al. [24] in 2017, many

of these high technology industries are materials dependent because they are directly enabled

by the availability of certain materials. It is not surprising that, as these high technologies con-

tinue to develop, the Cobalt Development Institute forecasts a 68% increase in cobalt con-

sumption from 2015 to 2025 [25]. Moreover, cobalt’s average annual price in 2017 also

doubled due to such “strong demand from consumers, limited availability of cobalt on the

spot market, and an increase in metal purchases by investors,” according to the report of

USGS [23].

We choose three cobalt-related companies to represent cobalt miners, cobalt refiners, and

miners of cobalt’s carrier metals. The three companies are Jinchuan Group International

Resources (HKG: 2362) listed in Hong Kong Stock Exchange (HKSE), Sumitomo Metal Min-

ing (TYO: 5713) listed in Tokyo Stock Exchange (TSE), and Zijin Mining Group (HKG: 2899)

listed in HKSE. Jinchuan Group represents mining companies that have cobalt as their main

metal product. As a leading global cobalt miner, Jinchuan has an annual mining capacity of

10,000 tons that constitutes around 10% of the world production [26]. Sumitomo Metal Min-

ing represents companies that refine cobalt as part of their business. Sumimoto Metal Mining

focuses on nickel and cobalt refining and is the only electrolytic cobalt refiner in Japan [27],

having produced 4,000 tons of electrolytic cobalt in 2017 [28]. Zijin Mining Group represents

Table 1. Summary of related works. Works are grouped by the machine learning models they utilize.

Author (s) General Approach Dataset Machine Learning Model

Features Target

Fama et al. (1988)

[6]

General Indicators Dividend yield NYSE portfolio stock

returns

Linear regression

Pesaran et al.
(1994) [7]

General Indicators Dividend yield, interest rates, inflation

rates, and industrial production index

S&P 500 and Dow Jones

Industrial portfolio stock

returns

Linear regression

M.-C. Lee (2009)

[8]

General Indicators Future contracts, spot indices, and

previous day’s NASDAQ index

NASDAQ index Support vector machine

Schumaker and

Chen (2009) [9]

Sentiment Analysis Financial news articles S&P 500 companies Support vector machine

Hagenau et al.
(2013) [10]

Sentiment Analysis Corporate announcement news Selected companies Support vector machine

Saad et al. (1998)

[11]

General Indicators Historical prices Selected companies Time delay, recurrent, and probabilistic neural

networks

Tsang et al. (2007)

[12]

General Indicators Historical prices HSBC stock trend 3-layer neural network

Tsai et al. (2010)

[13]

General Indicators Financial and macroeconomic indices TSE listed companies 3-layer neural network

Ding et al. (2015)

[16]

Sentiment Analysis News events S&P 500 index and

individual companies

Convolutional Neural Network

Nelson et al.
(2017) [14]

General Indicators Hitorical prices and technical

indicators

Companies listed in

IBovespa index

Recurrent (LSTM) Neural Netwok

Das et al. (2018)

[15]

Sentiment Analysis Twitter and other streaming data Google, Microsoft, and

Apple

Recurrent (LSTM) Neural Network

Chen and Wei

(2018) [3]

Intercorrelation of

Corporations

Corporate information 2988 companies listed in the

“tushare” API

Convolutional Neural Network

Patel et al. (2015)

[19]

General Indicators Technical indicators Two stock prices and two

stock indices

Comparison between ANN, SVM, random forest,

and naïve-Bayes

Ballings et al.
(2015) [20]

General Indicators Financial indices, corporate

information, and economic indicators

Stock trend of 5767 listed

European companies

Comparison between logistic regression, neural

networks, k-nearest neighbor, SVM, random

forest, and AdaBoost

https://doi.org/10.1371/journal.pone.0212487.t001
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companies that do not directly produce cobalt but have carrier metals of cobalt as their main

metal products. In this case, Zijin Mining is the second largest mined copper producer in

China [29], and cobalt is often produced as a byproduct of copper [22].

For this research, historical data from the entire year of 2015 is used for training. Data of

2016 and the first half of 2017 is used as the validation set, which the model has not previously

seen. Therefore, the validation set is the simulated active trading period of the model. We test

the model’s prediction accuracy during validation and the profitability of a naïve trading strat-

egy using the prediction results as trading signals.

3.2 Feature set makeup and advisors

One key innovation of dynABE is the concept of advisors. We first use financial knowledge to

determine general areas that we think will influence a certain company’s stock price. Then we

find a pool of features for each area, which will be candidate features for one advisor. There-

fore, the advisor is responsible for this one area. The term “advisor” is an analogy that when

executives make decisions, they never try to understand the implications of every single possi-

ble factor themselves. Instead, they listen to suggestions of different advisors, each an expert in

his or her field, in order to consider a variety of factors. Similarly, in our model, each advisor

only investigates features in one particular area. The “executive decision” is made in the final

step when all the advisors are combined to generate the final prediction. Since we investigate

domain-specific information in this research, we create three advisors to reflect the commod-

ity-stock relationship for critical metal companies in three areas: the commodity (metal) mar-

ket, cost of production, and macroeconomics.

The first advisor investigates the metal market. The price data of the direct metal products

of the critical metal companies is most apparently relevant. This is because, despite the firms’

hedging, the stock prices of mining companies still have a degree of price exposure to their

product metals [30]. Therefore, the prices of the product metals influence the revenues of the

mining companies and thus their intrinsic values, so their stock prices are affected. Moreover,

we also include information about metals that are not direct metal products of those compa-

nies, because the metal market is itself intercorrelated. For example, Fu et al.’s research in 2018

[31] shows that there is a strong supply constraint for carrier metals on their byproduct metals,

so prices of different metals can be related to each other.

The second advisor reflects the cost of production for mining. We incorporate commodity

prices of chemicals used in industrial productions and prices of energy resources. Energy is

especially important to the mining industry as crude oil and electricity are considered to be the

main operating costs of mining [32]. Therefore, these raw material commodities for mining

affect the profits of the metal producers. In addition, crude oil has price spillovers with many

markets, including the stock market, and Xiao et al. [33] have shown that oil price uncertainty

influences stock returns.

Last but not least, the third advisor includes macroeconomic factors, often shown to influ-

ence the entire stock market [34]. As we explore the commodity-stock relationship, we use var-

ious commodity indices. Most commodity indices we include, such as the London Metal

Exchange Index (LMEX) [35], are average commodity prices to reflect a larger commodity

market of interest like the metal market. Therefore, these are a macroscopic way to examine

relevant commodities to metal companies’ stock prices. In addition, we consider currency

exchange rates as an important macroeconomic factor. We mostly include exchange rates

between major metal producing countries and the United States, which we take as a major

metal consumer. Therefore, the currency exchange rates determine the actual value of the

profit in the producer’s country when the producer sells to a foreign country. Metal prices and

Dynamic Advisor-Based Ensemble (dynABE) for stock prediction
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currency exchange rates of major metal-producing countries are also sometimes correlated. As

an example, it was found that Chilean Peso to US Dollars exchange rate and copper prices are

highly correlated, with a correlation coefficient of 0.93 from July 7 to September 7 of 2015 [36].

For this research, we have obtained all the above-mentioned data from the Refinitiv Data-

stream [37] service, which is only available with subscription. However, we have provided the

description of each feature in the feature set and its corresponding symbol in the Refinitiv

Datastream database in S1 File of supporting information. Therefore, one can replicate the

experiments by gaining access to the Refinitiv Datastream and using the symbols provided.

Alternatively, one can also use a different service to obtain a similar feature set.

3.3 Proposed data selection standards

The previous section illustrates how we choose the advisors and the feature set for the critical

metal case study. Here we propose a general standard for data selection if one wishes to imple-

ment dynABE. In order to make a financially sound dynABE model, one needs to identify a

number of factors that influence the stock price of the companies of interest. For example, we

chose three commodity-related factors, the commodity market, raw material commodities

(cost of production), and macroeconomics, because this research focuses on the commodity-

stock relationship. Then one can select a pool of features for each factor to include as many fea-

tures in each pool as available: there is no need for the manual filtering of features because we

entrust the future feature selection to a computational procedure introduced later. Therefore,

the real data selection task lies in identifying these factors. There is indeed a high degree of

freedom in choosing factors one wishes to investigate, but since the purpose of this research is

to demonstrate that the domain-specific direction of the commodity-stock relationship is

effective, experimenting with other factors is beyond the scope of this paper. Therefore, we rec-

ommend creating advisors based on the same commodity-stock relationship to this paper, i.e.

three advisors respectively for the commodity market of the new company of interest, its raw

material commodities (cost of production), and macroeconomics.

Alternatively, the advisor creation does not always have to be financially sound. We hypoth-

esize that if dynABE were to be used for time-series prediction in general, one can create the

advisors purely computationally. For example, one can use some clustering algorithm on a

very large feature set and group one advisor for each cluster of features. However, this guess

requires experimental validations in the future.

4 Methodology

Here we give a detailed description of dynABE after the advisors have been chosen. There are

two main parts of dynABE, the ensemble learning framework for each advisor and the online

update strategy for combining the advisors. We first introduce our ensemble learning frame-

work, including feature selection, base models, ensembles of the base models, and the optimi-

zation of bootstrap aggregation. Then we discuss the online update strategy and provide the

algorithms for implementation. We do not elaborate the data cleaning and preprocessing

steps, though we include them as S1 Appendix in supporting information. Fig 1 is an overview

of dynABE, and Fig 2 illustrates the ensemble learning framework for an individual advisor.

Note that there are two places where we combine different models, the ensemble of base

models and the online update of advisors, yet the two serve different purposes. Ensemble is

combination at the algorithmic level for joining the strengths of different machine learning

models. On the other hand, online update combines observations from different fields of eco-

nomics, and it helps the model from a financial perspective. Both are necessary, non-redun-

dant parts of dynABE.
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Fig 1. Overview of dynABE.

https://doi.org/10.1371/journal.pone.0212487.g001

Fig 2. dynABE’s ensemble learning framework for one advisor.

https://doi.org/10.1371/journal.pone.0212487.g002
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4.1 Feature selection

Since we start with a large number of features, dimensionality reduction is necessary. Many

works have shown that machine learning models work better with lower dimensional but

more representative data, such as Huang et al.’s works [38] [39] that improve the accuracy of

financial early warning models through a kernel entropy manifold learning algorithm. For our

work, we perform dimensionality reduction with a feature selection process we designed. The

feature selection step is also an ensemble of individual feature selection methods, which is not

uncommon in literature [40]. Our strategy is to combine the feature rankings of different fea-

ture selection methods. All features first undergo a p-value filter to remove statistically insig-

nificant features. Then the filtered feature set goes through R2 ranking, RELIEF ranking,

random forest importance ranking, and the rankings are finally combined together.

As a rough filter, we perform a univariate linear regression between each feature and the

outcome of the stock trend in the training period. Then, after obtaining the p-value of each fea-

ture, we filter out those with p-values greater than 0.5. While by custom, the choice of p-value

thresholds is often smaller, such as 0.01 or 0.05 [41], we want to leave more space for future

steps. Therefore, we choose a bigger p-value threshold to make this filter more tolerant.

After filtering, the first feature ranking method is R2 ranking. R2 can be interpreted as the

proportion of the variance of output observations that can be predicted from input observa-

tions [41]. We extract the R2 value of each univariate regression model fitted between each fea-

ture and the outcome and rank the features accordingly.

The second feature ranking method is ReliefF [42], a heuristic measure of features which is

an extension of the RELIEF measure proposed by Kononenko [43]. RELIEF favors features

whose values distinguish the most in similar observations of different classes [42]. ReliefF opti-

mizes RELIEF by changing certain measures but adopts the same general idea.

The third feature ranking method is random forest importance, a variable importance mea-

sure used in random forest. Like most tree-based methods, random forest assigns a variable

importance measure to each feature. We use the mean decrease in accuracy, which calculates

the decrease in accuracy when the value of a feature is permuted. Thus, the more significant a

feature is, the more decrease in accuracy we should observe.

Finally, we combine the results of these three rankings with majority vote. We adopt a sim-

ple voting strategy: for any feature, we average its ranks in the three ranking methods to obtain

its combined rank, and whichever feature with the highest combined rank would be ranked as

the most important feature. We keep the top 20% as the selected feature set. The selected fea-

tures are included in S2 File in supporting information for experimental replications.

4.2 Base models and ensemble

With the selected feature set, we first build five base models and then combine them using dif-

ferent ensemble methods. Unless the original paper is cited, the explanations of the models in

this section are based on Hastie, Tibshirani, and Friedman’s book, Elements of Statistical
Learning [44]. Because most base models are common in machine learning, we only briefly

introduce them. We also discuss the hyperparameter tuning process for each model.

4.2.1 Linear regression. Linear regression with elastic net regularization is used as the

first base model. Elastic net regularization is a weighted combination of L1 and L2 regulariza-

tion. The objective function is: argminβ{ky − Xβk2 + λ(αkβk2 + (1 − α)kβk1)}, where λ, the reg-

ularization parameter, is greater than 0, and α, the relative strength of L2 regularization

compared to L1, is between 0 and 1. We first grid search possible values of α from 0 to 1, incre-

menting by 0.1 at each step. With a fixed α at each step, we then tune λ with a 10-fold cross-

validation using mean squared error to obtain the optimal λ for this certain α.
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4.2.2 Logistic regression. Logistic regression is the second base model, which is an exten-

sion of linear regression fitted on logistic functions so that the model outputs the probability

for classification problems. Because logistic regression has the same hyperparameters as linear

regression, λ and α are tuned through grid search in the same way.

Both linear regression and logistic regression are simple machine learning models com-

pared to recent ones in the field. We incorporate them as base models nonetheless for two rea-

sons. First, the assumption of ensemble learning is that the combination of weak classifiers can

boost the prediction performance, so regardless of how weak linear and logistic regressions

seem, as long as they are nontrivial and perform better than random guessing, they are worth

to be incorporated as base models. In addition, because linear and logistic regressions are sim-

pler than other complex base models, they are likely to make very different predictions, which

adds to the diversity of the ensemble.

4.2.3 Support vector machine. Support vector machine (SVM) is the third base model. It

separates samples of different classes with a hyperplane and maximizes the margin each class is

from the plane. It is formulated as a constraint optimization problem and solved with a

Lagrange multiplier. The solution of the Lagrange multiplier only depends on the dot products

of pairs of sample points (xi and xj). SVM then replaces the dot product of xi and xj with the

inner product hh(xi),h(xj)i in the Lagrangian, where h(xi) and h(xj) are non-linear transforma-

tions of xi and xj. In this way, SVM expands the feature space into higher dimensions.

We choose the radial basis kernel, which defines hhðxiÞ; hðxjÞi ¼ e� gjxi� xj j. In addition to γ,

the coefficient in the radial basis function, we also tune C, which defines how much tolerance

we have towards the case when the two classes cannot be perfectly separable by a hyperplane

in the given dimension. We tune these two hyperparameters using grid search.

4.2.4 Extreme gradient boosting (XGBoost). XGBoost is the fourth base model, which

uses a classification and regression tree (CART) ensemble based on gradient boosting devel-

oped by Chen et al. [45]. XGBoost is trained additively. At each step, a new CART model is

added to the ensemble to improve the model performance. Gradient boosting greedily reduces

its error by setting the negative gradient of the ensemble’s error to be the objective of the next

CART being added.

There is a variety of important hyperparameters to tune for XGBoost. We specifically focus

on 8 hyperparameters: the learning rate (“eta”), minimum sum of instance weights (“min_-

child_weight”), maximum depth of a tree (“max_depth”), row subsample rate (“subsample”),

column subsample rate (“colsample_bytree”), L1 and L2 regularization terms on weights

(“alpha” and “lambda”), and minimum loss reduction (“gamma”). Details of these hyperpara-

meters can be found in the original paper. Because there are so many hyperparameters, grid

searching through all possible combinations is not realistic. Therefore, we adopt the random

search strategy [46] for tuning, which is especially useful when the search space is very big.

4.2.5 Rotation forest. Rotation forest, another CART ensemble method, is the final base

model. Rotation forest was proposed by Rodrı́guez et al. [47] to complement existing ensemble

strategies. According to the authors, common ensemble methods either increase base model

accuracy while sacrificing base model diversity, such as boosting methods, or increase base

model diversity while sacrificing base model accuracy, such as random forest [47]. Rotation

forest is claimed to preserve base model accuracy and diversity at the same time.

In rotation forest, the complete feature set is randomly split into K subsets. Each subset

undergoes a principal component analysis (PCA), and all principal components are kept as the

new features for this subset, hence the “rotation” of features. The rotated features from each

subset form one CART D1. This process is repeated L times, each time training a different

CART Di. The final prediction is averaged over all CARTs D1,. . ., DL. The diversity of rotation
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forest is achieved through the random splits in creating feature subsets that generate different

rotations. And since rotation forest keeps all the principal components, the model accuracy is

not sacrificed.

Rotation forest only has two hyperparameters, the number of CARTs in the ensemble and

the size of the feature subsets for splitting. In practice, we find that hyperparameter tuning of

rotation forest does not affect its performance a lot, so we fix the number of classifiers to 10

and the size of each feature subset to be 3.

4.2.6 Base model ensembles with stacking. After the base models are trained, we put

them into an ensemble using the stacking method. Stacking puts the predictions of the base

models as new features into another model to discover relationships between each base model

prediction. It is crucial to avoid using the entire training data to train both the base models

and the stacking models, which leads to overfitting because the same data is used twice.

Instead, we perform a 5-fold cross-validation where all base models are re-trained at each fold

to make a cross-validated training set prediction. This would be the meta-features for the train-

ing period. Since the base models have not seen the validation data, we directly use the base

model validation predictions as meta-features for the validation set.

We use XGBoost, logistic regression, and rotation forest as the stacking models, and each

stacking model makes a prediction on the validation set. We further add another validation

prediction by averaging the three previous predictions and call it averaged stacking. We make

each advisor generate multiple stacking predictions because more stacking predictions, which

will all undergo the online update procedure, provide the online update with more options to

choose from. Fig 3 illustrates the training process of stacking.

4.3 Bootstrap aggregation

In order to reduce the model variance, we further implement bootstrap aggregation [44].

Assume our original training set Z has B bootstrap samples Z�b,b=1,2,. . .,B, and we use each

bootstrap sample to construct a classifier with its prediction result being f̂ �bðxÞ. The final pre-

diction after the bootstrap aggregation is the average: f̂ bag xð Þ ¼ 1

B

PB
b¼1

f̂ �bðxÞ:

Fig 3. The training process of stacking. We only show training the first-fold as an example, which is highlighted in red.

https://doi.org/10.1371/journal.pone.0212487.g003
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We set the sample size to be 80% of the original training set and create 10 bootstrap sam-

ples. We use each sample to train the base and ensemble models. The final stacking predic-

tions, which will then pass on to online update, are the each sample’s bootstrap aggregated

stacking predictions. Fig 4 shows the bootstrap aggregation process.

4.4 Online update strategy

Before diving into the details of online update, we first explain why it provides the dynamic

flexibility that constitutes a key feature of dynABE. Machine learning models generally use the

training data to uncover an underlying pattern between the input and output variables. This

method is powerful for tasks like image classification when the pattern to discover is

Fig 4. Stabilizing prediction results through bootstrap aggregation. We show processing sample 1 as an example. The same process would be repeated 10

times in practice.

https://doi.org/10.1371/journal.pone.0212487.g004
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unchanged: a cat always has one tail, four feet, and two fluffy ears. However, the stock market

is dynamic, and its price patterns can change with time. Directly constructing machine learn-

ing models based on the training time period can ignore some important factors. For example,

assume we know that the commodity market has to influence the stock price of the producer

company in general, but it does not have to during the training period. In a regular machine

learning model, this information is thus filtered out. However, once the price pattern changes

and the commodity market starts to influence the stock price again in the active trading

period, the model will be inaccurate because it has already filtered out the commodity market

data.

This problem calls for the need of updating the model according to changing price patterns

during the active trading period, which is less intuitive from simply retraining the model every

day with new data. Adding one more day of data to the hundreds of days of training set barely

affects the model, is computationally expensive, and makes the model prone to overfitting. For

most time-series models, including dynABE, retraining the entire model with new data is nec-

essary after a long period of time, such as a year, and we will give a sense of how to determine

when dynABE needs to be retrained in the Results and analysis section. However, here we are

only interested in updating in the short-term to increase accuracy.

Online update in dynABE handles this problem. After we identify general factors that influ-

ence the stock price and encode them as advisors, these factors are readily available for the

model at all times and will not be filtered out. dynABE can then weigh these factors during the

active trading period and change the weights according to price patterns it observes. It is

important to point out that online update deliberately only affects the model at the top level of

advisors and does not change the base models. This avoids the dilemma of retraining every

day and adds robustness to the model.

Now we discuss the formulation of online update. Using the ensemble learning framework

described in the previous section, each advisor would make four predictions on the validation

set, as shown in Fig 5. Since there are three advisors, we have a total of 12 predictions, which

we will term as “agents” of the online update process.

In the online update strategy, the first important parameter is the update frequency f. Intui-

tively, f is the length of the update window where each agent’s weight is updated every f days

mostly determined by the performances in the past f days. f should be small enough to swiftly

update the weights, yet it also should be large enough to capture meaningful relationships

between the agents before moving on to the next update.

The second important parameter, decay rate γ, determines how much we want to discount

the influence of previous update windows. Each time when we calculate the score of the cur-

rent update window, we add it to the scores of the previous update windows, where the previ-

ous scores are all multiplied by γ each time. γ is in the range of 0 and 1, where a γ of 0 is when

we do not consider days prior to the update window at all, and a γ of 1 is when we consider

days prior to the update window equally as important as days in the update window. γ expo-

nentialy decays and converges the influence of old update windows, and it is analogous to the

temporal-difference method [48], which deals with continually taking the means of temporally

successive data. The specific definition of decay rate in formula is presented later.

The third important parameter is diversity bias λ. Base model diversity is important for suc-

cessful model ensembles. For dynABE, because each advisor has a different feature set, they

should already make diverse predictions. Nevertheless, we use diversity bias when we want to

further encourage model diversity. Intuitively, λ represents how much we want to award the

case when one agent makes a correct prediction while other agents are wrong. We implement

it as a quality measure of correct predictions: when an agent is correct on one day, the more

the other agents make mistakes on that day, the higher the quality this correct prediction has.
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With a high λ, the agent that makes the highest quality of correct predictions often wins over

the agent that makes the highest quantity of correct predictions.

To summarize, we update the weights for each agent based on previous performances,

determined by update frequency f and decay rate γ. Diversity bias λ further adjusts the weights.

Now we present our implementation. Assume that we are currently in an online update win-

dow τi of f days, and there are N agents in total, a = (a1,a2,. . .,aN). An agent an’s score on the jth

Fig 5. Available agents to be passed to online update.

https://doi.org/10.1371/journal.pone.0212487.g005
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day, San
j, is updated in the following fashion until this update window is over:

San
j ¼ San

j� 1 þ
�ðan; jÞ

1þ l
P
�ða� n; jÞ

ð1Þ

where

�ðan; jÞ ¼

(
1; if an makes a correct prediction on the jth day

0; otherwise

a−n denotes all advisors excluding an, and λ is the diversity bias. Therefore, if agent an makes a

correct prediction on the jth day, the more the other agents are correct on that day, the higher

∑ϕ(a−n,i) is, and the smaller the score of an will be increased. After the update window is over,

denote the accumulated score for an in this window to be San
window. Then an’s final score after

this update window, San
τi , is calculated as:

San
τi ¼ San

window þ gSan
τi� 1 ð2Þ

where γ is the decay rate between 0 and 1. an’s new weight is finally calculated by normalizing

the score to a 0 to 1 scale:

wan
¼

San
τi

PN
j¼1

Saj
τi

ð3Þ

The entire online update process is illustrated by the following algorithms:

Algorithm 1: Online update with diversity bias
Inputs:
Predictions by N agents as matrix Ŷ a ¼ ðŷa1

; ŷa2
; . . . ; ŷaN

Þ where each column
is ŷan

, a vector of predictions made by agent an
Actual outcome: y
Update frequency: f
Decay rate: γ
Diversity bias: λ
Output:
Predictions after online update: ŷ final

1. Initialize:
current day i = 0
ŷ final ¼ <>, an empty vector

score vector S1 ¼< Sa1

1; Sa2

1; . . . ; SaN
1 >¼ 0

*
, a zero vector

weight vector w1 ¼< wa1

1;wa2

1; . . . ;waN
1 >¼ 1

N

*

, a vector whose values
are all 1

N

2. While i + f < length(y), do:
a. Define update window: τ = i(i + f)
b. Take the rows of matrix Ŷ a indexed by τ as Ŷ a

τ
¼ Ŷ a½τ; :�, and

take the elements of y indexed by τ as yτ = y[τ]
c. Make predictions for the next f days: ŷnew ¼ Ŷ a

τ
wi

d. Append ŷnew to ŷ final

e. Update weights: wiþf ¼ update weightsðŶ a
τ
; yτ; Sf ; g; lÞ½0�

f. Record scores: Siþf ¼ update weightsðŶ a½T; :�; y½T�; S
f ; g; lÞ½1�

g. Update day: i(i + f)
3. If i < length(y), then:

a. Process the leftover days: ŷnew ¼ Ŷ a½i : lengthðyÞ; :�wi

b. Append ŷnew to ŷ final
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4. Output: ŷ final

Algorithm 2: update_weights
Inputs:
Predictions by N agents for update window τ as matrix Ŷ a

τ
¼

ðŷa1

τ
; ŷa2

τ
; . . . ; ŷaN

τ
Þ where each column is ŷan

τ, a vector of predictions made
by agent an in update window τ
Actual outcome for update window τ: yτ

Old score vector: Sold

Decay rate: γ
Diversity bias: λ
Output:
Updated weight vector: w0 ¼ ðwa1

;wa2
; . . . ;waN

Þ

Updated score vector: S0 ¼< Sa1
; Sa2

; . . . ; SaN
>

1. Initialize score: S0 ¼ 0
*

2. For day i in 1:length(yτ):
a. For agent an in {a1,a2,. . .aN}, update:

San
¼ San

þ
�ðan; iÞ

1þ l
P
�ða� n; iÞ

� an; ið Þ ¼

(
1; if ŷ 0ak ½i� ¼ y0½i�

0; otherwise

3. Calculate final score vector: S0 = S0 + γSold

4. Normalize scores to obtain weights:
a. sum scores ¼ Sa1

þ Sa2
þ � � � þ SaN

b. If sum_scores == 0, then w0 ¼ 1

N ;
1

N ; . . . ; 1

N

� �
// None of the agents

made correct predictions
c. Else, w0 ¼ S0

sum scores

5. Output: (w0,S0)
For the sake of simplicity, we fix the decay rate to be 0.8 and only choose values for update

frequency and diversity bias, but all three parameters can be tuned together, which is a poten-

tial to further improve model performance.

5 Results and analysis

We test dynABE on three cobalt-related companies: Jinchuan Group, Sumimoto Metal Min-

ing, and Zijin Mining. As previously mentioned, we create three advisors for this case study.

We formulate Advisor 1 to represent macroeconomic factors, Advisor 2 to represent the cost

of production, and Advisor 3 to represent the metal market. We will refer to them as Advisor

1, 2, and 3 for the rest of this section.

We evaluate dynABE on the classification accuracy of each advisor as well as the accuracy

after all the advisors are combined in online update. Then we plot the weight update histories

to visualize online update at work. Afterward, we discuss an interesting observation of accu-

racy decay, which is related to choosing the length of active trading before dynABE is updated

with new data. Finally, we use predictions of dynABE for creating a naïve trading strategy to

show the model’s financial value.

5.1 Individual advisor performances

We use misclassification errors as the evaluation metric, which is the percentage of the trading

days for which the models predicts the wrong stock trend. We first look at each advisor’s base

and ensemble models’ errors on validation sets before online update. Since we use bootstrap

sampling to stabilize the base models, we present the average errors over all 10 samples for the
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base models. Table 2 shows the misclassification errors on the validation set of all three advi-

sors before online update.

The best performance of each advisor for each company is bolded. For Jinchuan, Advisor 2

achieves the best performance with a 33.86% misclassification error with logistic stacking. For

Sumitomo, Advisor 1 performs best at a 31.94% error with averaged stacking while Zijin

shows that Advisor 3 is most accurate with a 40.00% error with rotation forest stacking. No

single base model consistently outperforms the others in all three datasets, which justifies our

decision to use an ensemble-based approach. In general, stacking succeeds at improving the

base model performances, such as reducing the error from 34.03% to 31.94% in Advisor 1 of

Sumitomo. Nevertheless, stacking does not always outperform every single base model.

This situation happens when only one base model is very strong while others are weak, such

as Advisor 3 of Jinchuan for which the base model XGBoost outperforms all the stacking

models.

5.2 Online update performances

Online update predictions are evaluated differently to take the initialization period into con-

sideration. For an update frequency of f, we evaluate online update by excluding its predictions

of the first f days, for which we use to assign the initial weights to the advisors.

Table 2. Misclassification errors of each advisor for all three companies during the validation period. The best performance of each advisor is bolded.

Company Classifier Advisor 1 Error Advisor 2 Error Advisor 3 Error

Jinchuan Linear Regression (average) 36.33% (average) 43.04% (average) 39.74%

Logistic Regression (average) 39.00% (average) 40.29% (average) 39.45%

SVM (average) 35.72% (average) 40.47% (average) 38.79%

XGBoost (average) 34.86% (average) 36.35% (average) 35.28%

Rotation forest (average) 40.00% (average) 41.84% (average) 39.13%

Logistic Stacking 35.43% 33.86% 36.75%

XGBoost Stacking 34.38% 33.86% 35.70%

Rotation Forest Stacking 35.43% 38.06% 38.85%

Averaged Stacking 35.70% 34.12% 36.75%

Sumitomo Linear Regression (average) 34.03% (average) 44.22% (average) 40.06%

Logistic Regression (average) 36.06% (average) 43.72% (average) 38.28%

SVM (average) 35.75% (average) 43.75% (average) 40.17%

XGBoost (average) 36.81% (average) 43.31% (average) 35.22%

Rotation forest (average) 35.89% (average) 43.89% (average) 39.78%

Logistic Stacking 31.67% 44.17% 35.00%

XGBoost Stacking 32.22% 45.28% 36.11%

Rotation Forest Stacking 32.50% 43.33% 34.72%

Averaged Stacking 31.94% 43.89% 34.17%

Zijin Linear Regression (average) 43.14% (average) 43.72% (average) 42.31%

Logistic Regression (average) 41.86% (average) 43.25% (average) 42.36%

SVM (average) 43.06% (average) 43.28% (average) 41.31%

XGBoost (average) 41.81% (average) 44.61% (average) 42.19%

Rotation forest (average) 41.33% (average) 44.58% (average) 43.00%

Logistic Stacking 42.78% 41.67% 42.50%

XGBoost Stacking 42.50% 42.50% 40.83%

Rotation Forest Stacking 42.50% 43.89% 40.00%

Averaged Stacking 41.94% 42.78% 41.11%

https://doi.org/10.1371/journal.pone.0212487.t002
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Since decay rate is always fixed at 0.8, we only need to set the values of update frequency

and diversity bias. Here we experiment with several common values for these two hyperpara-

meters as a guideline. 3 to 10 is a common range for the update frequency and 0 to 10 for

Table 3. Online update experiments with Jinchuan. Here we show common hyperparameter combinations and

their effects on online update’s misclassification error. Then we grid search on the validation set and present the

searched optimal combinations.

Company: Jinchuan

Update Frequency Diversity Bias Error

3 0 33.86%

3 1 33.86%

3 10 33.60%

5 0 33.51%

5 1 33.24%

5 10 32.71%

10 0 32.88%

10 1 32.35%

10 10 32.35%

(grid search) 5 (grid search) 5 31.12%

https://doi.org/10.1371/journal.pone.0212487.t003

Table 4. Online update experiments with Sumitomo.

Company: Sumitomo

Update Frequency Diversity Bias Error

3 0 31.93%

3 1 31.93%

3 10 33.61%

5 0 32.39%

5 1 31.83%

5 10 34.08%

10 0 31.71%

10 1 32.29%

10 10 34.00%

(grid search) 12 (grid search) 0 31.61%

https://doi.org/10.1371/journal.pone.0212487.t004

Table 5. Online update experiments with Zijin.

Company: Zijin

Update Frequency Diversity Bias Error

3 0 42.58%

3 1 42.58%

3 10 40.34%

5 0 42.54%

5 1 41.41%

5 10 40.28%

10 0 42.29%

10 1 41.14%

10 10 40.86%

(grid search) 40 (grid search) 31 37.19%

https://doi.org/10.1371/journal.pone.0212487.t005
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diversity bias. Therefore, we try update frequencies of 3, 5, and 10 and diversity biases of 0, 1,

10 and record the respective errors for each combination. We do not develop a hyperpara-

meter tuning strategy for online update in this paper, but in order to aid future developments

of tuning strategies, we do an exhaustive hyperparameter grid search on the validation set in

addition to the common values. Tables 3–5 show each company’s online update misclassifica-

tion errors first with common hyperparameter combinations and, in the last row, with the grid

searched optimal hyperparameter combinations.

With the exception of Zijin, whose optimal hyperparameter combination is way outside the

normal range, the performances with common hyperparameter combinations do not differ

significantly from the optimal performances.

We visualize the hyperparameter grid search with a bubble plot. It is important to point

out that this is not a tuning process because we are using the validation set. Instead, the grid

search experiment is for an intuition of what hyperparameter combinations are often more

effective. Without a tuning strategy, one is not always able to choose the optimal hyperpara-

meter combination. Figs 6–8 are the hyperparameter grid search plots for all three companies.

Bigger and brighter bubbles represent higher accuracies, corresponding to the legend. The

Fig 6. Online update hyperparameter grid search for Jinchuan. Bigger and brigher bubbles represent higher accuracies.

https://doi.org/10.1371/journal.pone.0212487.g006
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tuning range for Zijin Mining is bigger than that for Jinchuan and Sumitomo so the bubbles

are denser.

For Jinchuan, the patterns are the most obvious as high accuracy bubbles are usually in the

upper right portion of the plot. This means that a high diversity bias combined with a big

update frequency is likely to yield good results. On the other hand, low diversity bias with

small update frequency should be avoided. Sumitomo is not as sensitive to different hyperpara-

meter combinations, and as long as the diversity bias is not too high, such as between 0 and 1,

accuracies are high regardless of update frequency. We later show that Sumitomo also does

not benefit much from online update, so this might be why different hyperparameter combina-

tions do not affect Sumitomo’s performance dramatically. Last but not least, Zijin’s optimal

hyperparameter combinations are found in a more extreme range than the other two compa-

nies, so we show a more exhaustive tuning plot. Zijin generally favors very high diversity

biases, mostly above 20, coupled with relatively big update frequencies.

We now compare the stacking errors with the online update errors achieved with the opti-

mal hyperparameter combinations, which we consider to be expected optimal. Table 6 shows

Fig 7. Online update hyperparameter grid search for Sumitomo.

https://doi.org/10.1371/journal.pone.0212487.g007
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Fig 8. Online update hyperparameter grid search for Zijin. Bubbles are denser for Zijin because its optimal hyperparameter combinations are outside the

normal range, so its tuning range is also greater.

https://doi.org/10.1371/journal.pone.0212487.g008

Table 6. Comparison of stacking and online update errors. The best performance of each company is bolded.

Company Advisor 1 Stacking Error Advisor 2 Stacking Error Advisor 3 Stacking Error Online Update Error

Jinchuan 35.43% (Logistic Stk.) 33.86% (Logistic Stk.) 36.75% (Logistic Stk.) 31.12% (expected optimal)

34.38% (XGBoost Stk.) 33.86% (XGBoost Stk.) 35.70% (XGBoost Stk.)

35.43% (Rot. Forest Stk.) 38.06% (Rot. Forest Stk.) 38.85% (Rot. Forest Stk.)

35.70% (Averaged Stk.) 34.12% (Averaged Stk.) 36.75% (Averaged Stk.)

Sumitomo 31.67% (Logistic Stk.) 44.17% (Logistic Stk.) 35.00% (Logistic Stk.) 31.61% (expected optimal)

32.22% (XGBoost Stk.) 45.28% (XGBoost Stk.) 36.11% (XGBoost Stk.)

32.50% (Rot. Forest Stk.) 43.33% (Rot. Forest Stk.) 34.72% (Rot. Forest Stk.)

31.94% (Averaged Stk.) 43.89% (Averaged Stk.) 34.17% (Averaged Stk.)

Zijin 42.78% (Logistic Stk.) 41.67% (Logistic Stk.) 42.50% (Logistic Stk.) 37.19% (expected optimal)

42.50% (XGBoost Stk.) 42.50% (XGBoost Stk.) 40.83% (XGBoost Stk.)

42.50% (Rot. Forest Stk.) 43.89% (Rot. Forest Stk.) 40.00% (Rot. Forest Stk.)

41.94% (Averaged Stk.) 42.78% (Averaged Stk.) 41.11% (Averaged Stk.)

https://doi.org/10.1371/journal.pone.0212487.t006
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the expected optimal performance boost from stacking to online update. The errors corre-

spond to predicions made on the validation sets.

Online update outperforms all stacking predictions from three advisors for all the compa-

nies. Specifically, Jinchuan and Zijin both benefit significantly from online update. However,

online update does not improve Sumitomo’s best stacking predictions as much, where its best

stacking error is 31.67% and the best online update error is 31.61%. This might explain why

Sumitomo is less sensitive to different hyperparameter combinations during grid search in the

previous experiment. We believe that Sumitomo benefits less from online update because its

Table 7. Comparison between baseline models and dynABE on the validation set. Here we use misclassification errors as the evaluation metric. The best baseline per-

formances are italicized, and the best overall performances are bolded.

Company Support Vector Machine 3-layer Neural Network Random Forest dynABE

Jinchuan 37.53% 35.43% 34.12% 31.12%

Sumitomo 41.39% 44.44% 38.06% 31.61%

Zijin 43.61% 40.28% 39.72% 37.19%

https://doi.org/10.1371/journal.pone.0212487.t007

Fig 9. Advisor weight history of Jinchuan. Different advisors are represented by different colors, corresponding to the legend. The x-axis is the epochs.

Each epoch means one weight update. The y-axis is the weights. A higher weight means that a certain advisor plays a more important role during online

update.

https://doi.org/10.1371/journal.pone.0212487.g009
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Advisor 2 is significantly weaker than the other two advisors, so it cannot contribute much to

compensating the other two advisors’ mistakes during online update.

5.3 Comparison with baseline models

Here we compare the classification accuracies of dynABE with three baseline models for stock

prediction: support vector machine, neural network, and random forest. These are popular

models in the field for stock prediction as discussed in the Related works section. In order to

make a fair comparison of the models’ predictive abilities only, we use the same feature selec-

tion process for the baseline models as dynABE. All baseline models’ hyperparameters are

tuned extensively with grid search. For neural network, we use a 3-layer structure with 20 hid-

den nodes, optimized with stochastic gradient descent with momentum. Table 7 compares the

classification accuracies between baseline models and dynABE.

Among the three baseline models, random forest consistently outperforms support vector

machine and neural network. This result is consistent with comparative studies in the field,

such as Patel et al.’s work [17] and Ballings et al.’s work [18] discussed before, which show that

random forest is one of the best performing models for stock prediction. Nevertheless,

dynABE consistently outperforms all the baseline models in all three case studies by a notice-

able degree. In addition, besides Zijin, which tends to favor more extreme online update

Fig 10. Advisor weight history of Sumitomo.

https://doi.org/10.1371/journal.pone.0212487.g010
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hyperparameter combinations as shown in the previous section, dynABE with any common

hyperparameter combinations is able to outperform all the tuned baseline models (see Tables

3–5).

5.4 Weight update histories in online update

In order to better understand online update, we visualize the each advisor’s weight changes

with each company’s optimal hyperparameter combinations. We sum the weights of the four

stacking methods that belong to the same advisor into one advisor weight and plot the weights

of the three advisors. Figs 9–11 are the weight history plots. The x-axis is the epoch, and each

epoch means one weight update. The y-axis represents the weights.

Recall that Advisor 1 represents macroeconomics, Advisor 2 the cost of production, and

Advisor 3 the metal market. The advisor that receives the highest weight at a certain epoch

affects the result of online update the most. The weights of the three advisors always add up to

one.

Jinchuan has the most balanced weight update history because none of the three advisors

consistently receives bigger weights than the other two. Zijin has the most severe advisor

imbalance as Advisor 3 always receives the biggest weights, and 2 the smallest, throughout the

validation period. In addition, since Sumitomo’s Advisor 2 was shown to be noticeably weaker

Fig 11. Advisor weight history of Zijin.

https://doi.org/10.1371/journal.pone.0212487.g011
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than Advisor 1 and 3 before in the Individual advisor performances section, it is reasonable

that Advisor 2, plotted in green in Fig 10, continuously receives smaller weights throughout

the trading period.

5.5 Accuracy gain and decay in online update

We further experiment with changing the length of validation, i.e. the active trading period,

and observing its effect on classification accuracy. We carry out the following experiment: a

dynABE model trained on the training set starts with the first day of the validation set, per-

forms online update, and records the classification accuracy for the first day; then we add one

more day and record the cumulated accuracy for the first two days; we repeat this process until

we include all days of the validation period. Figs 12–14 are the accuracy history plots of this

experiment. An additional smoothed trend line is plotted to better visualize the trend.

Interestingly, we observe a universal pattern of a steady accuracy gain at first. It is some-

times followed by a steady accuracy decay after the highest accuracy is reached, most obviously

in Sumitomo. We believe that the initial accuracy gain as the length of validation gets further

into the future is a sign of the online update learning more accurate relationships between the

advisors, after seeing more historical data. On the other hand, the accuracy decay might be due

to the expiration of patterns each advisor observes from its training set, so the online update

Fig 12. Accuracy history of Jinchuan. x-axis is the dates, and y-axis is the cumulative accuracy up to a certain day.

https://doi.org/10.1371/journal.pone.0212487.g012
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can no longer adapt to pattern changes. When this situation occurs, one should update the

training set with newer data and retrain both the base and ensemble models of dynABE.

This observation of accuracy gain and accuracy decay is important for implementing

dynABE in practice. As we show in the experiments above, deciding on the right length of vali-

dation, or active trading, can effectively improve the accuracy. However, making such decision

during training is not intuitive, if not possible. Instead, we suggest choosing the trading length

empirically during validation. For example, one can keep track of a live accuracy plot like Figs

12–14, updated every day, and decide to stop trading and retrain the entire model with new

data once dynABE starts to show a trend of gradual accuracy decay.

5.6 Trading strategy performance

We now use the trend signals that dynABE generates on a naïve trading strategy. Assume that

all our assets are cash in the beginning. If the stock price is predicted to rise the next day, we

use all our cash to buy shares at the closing price today. If the price is predicted to fall the next

day, we sell all the shares we hold at the moment at the closing price today. We record our cur-

rent asset every day as cash plus the current value of our stock shares. At the end of the trading

period, we would obtain a record of asset history using this naïve trading strategy. Then we

Fig 13. Accuracy history of Sumitomo.

https://doi.org/10.1371/journal.pone.0212487.g013
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plot the return rate of our naïve trading strategy with the return rate of the stock itself. Figs

15–17 are the absolute return plots in the trading window of a year and a half. We label the

exact percentage of the absolute returns of both the strategy and the stock at the end of each

trend line.

Each company has a short weight initialization period in the beginning, represented as a

flat black line, and we use the optimal online update predictions for creating these trading

strategies.

We evaluate our trading strategy further with financial metrics. Specifically, because our

trading period is more than a year, we first annualize the absolute returns using 250 days as the

number of trading days in a year. We then show the annualized excess return compared to the

stock’s own return, which is the difference in the trading strategy’s annualized absolute return

and the stock’s annualized absolute return. Next, we calculate the annualized excess return

compared to the stock index of the stock exchange the company’s stock is in. Since Jinchuan

and Zijin are listed in Hong Kong Stock Exchange, we compare with the Heng Seng Index.

And since Sumitomo is listed in Tokyo Stock Exchange, we compare with the JPX-Nikkei 400

Equity ETF Index. In addition, we calculate the Sharpe ratio and the maximum drawdown of

the trading strategies. Sharpe ratio is proposed by William Sharpe [49] to measure the expected

excess return of a strategy over a risk-free investment per unit of risk [50]. Here we take the US

Fig 14. Accuracy history of Zijin.

https://doi.org/10.1371/journal.pone.0212487.g014
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Treasury’s 12-month bond rate to be the risk-free investment. Maximum drawdown is the per-

centage of maximum loss from peak to trough [51]. Table 8 summarizes the evaluation results

on the trading strategies. We see that Sumitomo and Zijin do not have a single loss in the active

trading period so their maximum drawdown is 0.

Our trading strategy returns are only for a rough illustration. A more sophisticated trading

strategy, such as one which considers multiple stocks simultaneously, can yield higher returns.

In addition, we assume that we are always able to trade at every day’s closing price, which is

not always realistic. Stock prices may further change in practice if we actively enter the market

and trade in high volumes. Therefore, one must consider these implications if he or she wants

to use the predictions of dynABE as trading signals.

5.7 Future work

For future work, we believe that the stacking step for the base models does not yield the most

satisfactory results at this point. The stacked predictions can underperform the base models

especially when one of the base models is noticeably worse than the others. Therefore, in the

future, we would add some sort of pre-stacking base model filter that removes clearly inferior

ones before they are stacked. Ideally, we want the stacked predictions to almost always outper-

form the individual base models.

Fig 15. Absolute returns of the trading strategy and the stock price for Jinchuan. Exact returns of the last day of the trading period are labled at the end

of each trend line. The weight initialization period in the beginning is plotted as a flat black line.

https://doi.org/10.1371/journal.pone.0212487.g015
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Online update also has a space for improvements. Most importantly, we want to develop a

tuning strategy for the update frequency, decay rate, and diversity bias. In addition, while we

currently combine the advisors linearly with weighted majority vote, we would like to intro-

duce nonlinearity into combining the advisors in the future. Moreover, similar to a pre-stack-

ing filter, we can also experiment with a pre-online-update filter to filter out clearly poor-

performing agents.

6 Conclusion

By achieving a best-case misclassification error of 31.12% for Jinchuan Group and a best-case

profit of 359.55% annualized absolute return for Sumitomo Metal Mining, dynABE demon-

strates accurate stock predictions and high profitability. dynABE also consistently outperforms

support vector machine, neural network, and random forest in all case studies. Even though

we only investigate critical metal companies in this paper, dynABE can be used for stock pre-

diction of any company. The advantages of dynABE for stock prediction lie in the fact that it

uses domain-specific information for advisor creation, relies on an effective ensemble learning

framework, and is dynamically adaptive to market changes due to its robust online update

strategy.

Fig 16. Absolute returns of the trading strategy and the stock price for Sumitomo.

https://doi.org/10.1371/journal.pone.0212487.g016
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The various analyses done on the final predictions gain us insights into how dynABE works

in practice. Visualization of the online update hyperparameter grid search gives intuitions for

developing a tuning strategy in the future. We also plot the weight changes of different advisors

and observe weight imbalances in some cases. In addition, we further analyze the accuracy his-

tory as the active trading period gets longer and see the interesting phenomenon of accuracy

gain and decay, which can help us decide on the optimal trading period before retraining the

base and stacking models with new data.

We hope that the ideas of extensively using ensemble learning, creating advisors, and using

ideas of decay rate and diversity bias in developing an effective online update strategy can help

Fig 17. Absolute returns of the trading strategy and the stock price for Zijin.

https://doi.org/10.1371/journal.pone.0212487.g017

Table 8. Evaluations on trading strategies. The returns have been annualized using 250 days as the number of trading days in a year.

Company Annualized Absolute Return

(%)

Annualized Excess Return to Stock

(%)

Annualized Excess Return to Index

(%)

Sharpe Ratio Maximum

Drawdown

Jinchuan 254.704 140.255 253.840 2.08089 0.930976

Sumitomo 359.549 343.168 358.643 2.15309 0

Zijin 77.2329 76.0122 76.2205 2.16598 0

https://doi.org/10.1371/journal.pone.0212487.t008
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future researchers deal more effectively with other similar types of noisy time-series data.

Indeed, dynABE is an ensemble learning framework in essence, and it is open to numerous

flexible changes to potentially adapt to tasks other than stock prediction.

Supporting information

S1 Appendix. Preprocessing procedures. We provide the details of preprocessing and clean-

ing the data.

(PDF)

S1 File. Feature Set descriptions. This file is a comprehensive table that provides the descrip-

tions of each feature in our original feature set and its symbol.

(CSV)

S2 File. Symbols of selected features. This file is a table that shows the features each advisor

selects after the feature selection process for all three companies. The features are given in sym-

bols corresponding to descriptions in S1 File. The features are also ranked based on their com-

bined rankings as discussed in the feature selection procedure. The top-ranking feature of each

advisor appears first in the table. The suffix of the feature starting with an underscore repre-

sents the lag number of this feature. For example, “GSCITOT_1” means that it is the first-

lagged version of the feature with symbol “GSCITOT.” Each feature was lagged five times in

the preprocessing step. See S1 Appendix for details on lagging.

(XLSX)

S3 File. Stationary analysis of original and first-differenced features. This file is referenced

in S1 Appendix. It contains two tables that show the Augmented Dickey-Fuller (ADF) tests for

stationary analysis on the original and first-differenced features respectively. The features of

the original feature set that were removed during data cleaning, as described in S1 Appendix,

did not run this test.

(XLSX)

Acknowledgments

The author would like to thank Xinkai Fu from the Department of Materials Science and Engi-

neering, MIT for his assistance on data collection and interpretation. The author would also

like to thank Asuka Saito from Nogizaka46 for her motivations when bottlenecks were met

during the research process.

Author Contributions

Conceptualization: Zhengyang Dong.

Formal analysis: Zhengyang Dong.

Methodology: Zhengyang Dong.

Software: Zhengyang Dong.

Validation: Zhengyang Dong.

Visualization: Zhengyang Dong.

Writing – original draft: Zhengyang Dong.

Writing – review & editing: Zhengyang Dong.

Dynamic Advisor-Based Ensemble (dynABE) for stock prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0212487 February 22, 2019 30 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212487.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212487.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212487.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212487.s004
https://doi.org/10.1371/journal.pone.0212487


References
1. Allen H, Taylor MP. Charts, Noise and Fundamentals in the London Foreign Exchange Market. Econ J.

1990; 100: 49. https://doi.org/10.2307/2234183

2. He Z, He L, Wen F. Risk Compensation and Market Returns: The Role of Investor Sentiment in the

Stock Market. Emerg Mark Finance Trade. 2019; 55: 704–718. https://doi.org/10.1080/1540496X.

2018.1460724

3. Chen Y, Wei Z, Huang X. Incorporating Corporation Relationship via Graph Convolutional Neural Net-

works for Stock Price Prediction. Proceedings of the 27th ACM International Conference on Information

and Knowledge Management—CIKM ‘18. Torino, Italy: ACM Press; 2018. pp. 1655–1658. https://doi.

org/10.1145/3269206.3269269

4. Ou JA, Penman SH. Financial statement analysis and the prediction of stock returns. J Account Econ.

1989; 11: 295–329. https://doi.org/10.1016/0165-4101(89)90017-7

5. Berk RA. An Introduction to Ensemble Methods for Data Analysis. Sociol Methods Res. 2006; 34: 263–

295. https://doi.org/10.1177/0049124105283119

6. Fama EF, French KR. Dividend Yields and Expected Stock Returns. J Financ Econ. 1988; 22: 3–25.

7. Pesaran MH, Timmermann A. Forecasting stock returns an examination of stock market trading in the

presence of transaction costs. J Forecast. 1994; 13: 335–367. https://doi.org/10.1002/for.3980130402

8. Lee M-C. Using support vector machine with a hybrid feature selection method to the stock trend predic-

tion. Expert Syst Appl. Elsevier Ltd; 2009; 36: 10896–10904. https://doi.org/10.1016/j.eswa.2009.02.

038

9. Schumaker RP, Chen H. Textual Analysis of Stock Market Prediction Using Breaking Financial News:

The AZFinText System. ACM Trans Inf Syst TOIS. 2009; 27. https://doi.org/10.1145/1462198.1462204

10. Hagenau M, Liebmann M, Neumann D. Automated news reading: Stock price prediction based on fi

nancial news using context-capturing features. Decis Support Syst. 2013; 55: 685–697. https://doi.org/

10.1016/j.dss.2013.02.006

11. Saad EW, Prokhorov DV, Wunsch DC. Comparative study of stock trend prediction using time delay,

recurrent and probabilistic neural networks. IEEE Trans Neural Netw Publ IEEE Neural Netw Counc.

1998; 9: 1456–1470. https://doi.org/10.1109/72.728395 PMID: 18255823

12. Tsang PM, Kwok P, Choy SO, Kwan R, Ng SC, Mak J, et al. Design and implementation of NN5 for

Hong Kong stock price forecasting. Eng Appl Artif Intell. 2007; 20: 453–461. https://doi.org/10.1016/j.

engappai.2006.10.002

13. Tsai C, Hsiao Y. Combining multiple feature selection methods for stock prediction: Union, intersection,

and multi-intersection approaches. Decis Support Syst. Elsevier B.V.; 2010; 50: 258–269. https://doi.

org/10.1016/j.dss.2010.08.028

14. Nelson DMQ, Pereira ACM, de Oliveira RA. Stock market’s price movement prediction with LSTM neu-

ral networks. 2017 International Joint Conference on Neural Networks (IJCNN). Anchorage, AK, USA:

IEEE; 2017. pp. 1419–1426. https://doi.org/10.1109/IJCNN.2017.7966019

15. Das S, Behera RK, kumar M, Rath SK. Real-Time Sentiment Analysis of Twitter Streaming data for

Stock Prediction. Procedia Comput Sci. 2018; 132: 956–964. https://doi.org/10.1016/j.procs.2018.05.

111

16. Ding X, Zhang Y, Liu T, Duan J. Deep Learning for Event-Driven Stock Prediction. Proceedings of the

Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015). 2015. p. 7.

17. Patel J, Shah S, Thakkar P, Kotecha K. Predicting stock and stock price index movement using Trend

Deterministic Data Preparation and machine learning techniques. Expert Syst Appl. Elsevier Ltd; 2015;

42: 259–268. https://doi.org/10.1016/j.eswa.2014.07.040

18. Ballings M, Van Den Poel D, Hespeels N, Gryp R. Evaluating multiple classifiers for stock price direction

prediction. Expert Syst Appl. Elsevier Ltd; 2015; 42: 7046–7056. https://doi.org/10.1016/j.eswa.2015.

05.013

19. Patel J, Shah S, Thakkar P, Kotecha K. Predicting stock and stock price index movement using Trend

Deterministic Data Preparation and machine learning techniques. Expert Syst Appl. 2015; 42: 259–268.

https://doi.org/10.1016/j.eswa.2014.07.040

20. Ballings M, Van Den Poel D, Hespeels N, Gryp R. Evaluating multiple classifiers for stock price direction

prediction. Expert Syst Appl. 2015; 42: 7046–7056. https://doi.org/10.1016/j.eswa.2015.05.013

21. Investing News Network. Critical Metals Investing News [Internet]. 2018. Available: https://

investingnews.com/category/daily/resource-investing/critical-metals-investing/

22. Gunn G, editor. Critical Metals Handbook. American Geophysical Union; John Wiley & Sons, Ltd;

2014. https://doi.org/10.1016/S0065-3233(08)60135-7

Dynamic Advisor-Based Ensemble (dynABE) for stock prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0212487 February 22, 2019 31 / 33

https://doi.org/10.2307/2234183
https://doi.org/10.1080/1540496X.2018.1460724
https://doi.org/10.1080/1540496X.2018.1460724
https://doi.org/10.1145/3269206.3269269
https://doi.org/10.1145/3269206.3269269
https://doi.org/10.1016/0165-4101(89)90017-7
https://doi.org/10.1177/0049124105283119
https://doi.org/10.1002/for.3980130402
https://doi.org/10.1016/j.eswa.2009.02.038
https://doi.org/10.1016/j.eswa.2009.02.038
https://doi.org/10.1145/1462198.1462204
https://doi.org/10.1016/j.dss.2013.02.006
https://doi.org/10.1016/j.dss.2013.02.006
https://doi.org/10.1109/72.728395
http://www.ncbi.nlm.nih.gov/pubmed/18255823
https://doi.org/10.1016/j.engappai.2006.10.002
https://doi.org/10.1016/j.engappai.2006.10.002
https://doi.org/10.1016/j.dss.2010.08.028
https://doi.org/10.1016/j.dss.2010.08.028
https://doi.org/10.1109/IJCNN.2017.7966019
https://doi.org/10.1016/j.procs.2018.05.111
https://doi.org/10.1016/j.procs.2018.05.111
https://doi.org/10.1016/j.eswa.2014.07.040
https://doi.org/10.1016/j.eswa.2015.05.013
https://doi.org/10.1016/j.eswa.2015.05.013
https://doi.org/10.1016/j.eswa.2014.07.040
https://doi.org/10.1016/j.eswa.2015.05.013
https://investingnews.com/category/daily/resource-investing/critical-metals-investing/
https://investingnews.com/category/daily/resource-investing/critical-metals-investing/
https://doi.org/10.1016/S0065-3233(08)60135-7
https://doi.org/10.1371/journal.pone.0212487


23. USGS. Mineral Commodity Summaries—Cobalt [Internet]. 2018. Available: https://minerals.usgs.gov/

minerals/pubs/commodity/cobalt/mcs-2018-cobal.pdf

24. Olivetti EA, Ceder G, Gaustad GG, Fu X. Lithium-Ion Battery Supply Chain Considerations: Analysis of

Potential Bottlenecks in Critical Metals. Joule. 2017; 1: 229–243. https://doi.org/10.1016/j.joule.2017.

08.019

25. Spencer E. Cobalt supply and—A global perspective. Cobalt Development Institute Conference; 2016

May 11; Seoul, Republic of Korea.

26. Apodaca LE. 2014 Minerals Yearbook: Sulfur. 2016;

27. Sumitomo Metal Mining Co., Ltd. Electrolytic Cobalt: Sumitomo Metal Mining Co., Ltd. [Internet]. 2018

[cited 7 Aug 2018]. Available: http://www.smm.co.jp/E/products/refining/ecobalt/

28. Sumitomo Metal Mining Co., Ltd. 2017 Integrated Report of Sumitomo Metal Mining Co., Ltd. [Internet].

Sumitomo Metal Mining Co., Ltd.; 2017 p. 164. Available: http://www.smm.co.jp/E/ir/library/annual/pdf/

2017EN_All.pdf

29. Zijin Mining Group Co., Ltd. Copper: Zijin Mining Group [Internet]. 2018 [cited 13 Aug 2018]. Available:

http://www.zijinmining.com/business/Copper.htm

30. Tufano P. The Determinants of Stock Price Exposure: Financial Engineering and the Gold Mining Indus-

try. J Finance. 1998; 53: 1015–1052. https://doi.org/10.1111/0022-1082.00042

31. Fu X, Polli A, Olivetti E. High-Resolution Insight into Materials Criticality: Quantifying Risk for By-Prod-

uct Metals from Primary Production: Quantifying Risk for By-Product Metals. J Ind Ecol. 2018; https://

doi.org/10.1111/jiec.12757

32. Levesque M, Millar D, Paraszczak J. Energy and mining-The home truths. J Clean Prod. Elsevier Ltd;

2014; 84: 233–255. https://doi.org/10.1016/j.jclepro.2013.12.088

33. Xiao J, Zhou M, Wen F, Wen F. Asymmetric impacts of oil price uncertainty on Chinese stock returns

under different market conditions: Evidence from oil volatility index. Energy Econ. 2018; 74: 777–786.

https://doi.org/10.1016/j.eneco.2018.07.026

34. Flannery MJ, Protopapadakis AA. Macroeconomic Factors Do Influence Aggregate Stock Returns. Rev

Financ Stud. 2002; 15: 751–782. https://doi.org/10.1093/rfs/15.3.751

35. The London Metal Exchange. London Metal Exchange: LMEX [Internet]. [cited 25 Nov 2018]. Available:

https://www.lme.com/en-GB/Trading/Contract-types/LMEX#tabIndex=0

36. David Meyer. The High Correlation between the Chilean Peso and Copper Prices—Market Realist

[Internet]. 2015 [cited 28 Aug 2017]. Available: http://marketrealist.com/2015/09/high-correlation-

chilean-peso-copper-prices/

37. Refinitiv. Datastream Macroeconomic Analysis | Refinitiv [Internet]. [cited 22 Dec 2018]. Available:

https://www.refinitiv.com/en/products/datastream-macroeconomic-analysis

38. Huang Y, Kou G. A kernel entropy manifold learning approach for financial data analysis. Decis Support

Syst. 2014; 64: 31–42. https://doi.org/10.1016/j.dss.2014.04.004

39. Huang Y, Kou G, Peng Y. Nonlinear manifold learning for early warnings in financial markets. Eur J

Oper Res. 2017; 258: 692–702. https://doi.org/10.1016/j.ejor.2016.08.058

40. Golzadeh M, Hadavandi E, Chelgani SC. A new Ensemble based multi-agent system for prediction

problems: Case study of modeling coal free swelling index. Appl Soft Comput J. 2018; 64: 109–125.

https://doi.org/10.1016/j.asoc.2017.12.013

41. Rice JA. Mathematical Statistics and Data Analytics. 3rd ed. Brooks/Cole, a part of Cengage Learning;

2007.
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