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Abstract

There is a strong need to develop novel strategies in using antiviral agents to efficiently treat influenza infections. Thus, we
constructed a rule-based mathematical model that reflects the complicated interactions of the host immunity and viral life
cycle and analyzed the key controlling steps of influenza infections. The main characteristics of the pandemic and seasonal
influenza strains were estimated using parameter values derived from cells infected with Influenza A/California/04/2009 and
Influenza A/NewCaledonia/20/99, respectively. The quantitative dynamics of the infected host cells revealed a more
aggressive progression of the pandemic strain than the seasonal strain. The perturbation of each parameter in the model
was then tested for its effects on viral production. In both the seasonal and pandemic strains, the inhibition of the viral
release (kC), the reinforcement of viral attachment (kV), and an increased transition rate of infected cells into activated cells
(kI) exhibited significant suppression effects on the viral production; however, these inhibitory effects were only observed
when the numerical perturbations were performed at the early stages of the infection. In contrast, combinatorial
perturbations of both the inhibition of viral release and either the reinforcement of the activation of infected cells or the
viral attachment exhibited a significant reduction in the viral production even at a later stage of infection. These results
suggest that, in addition to blocking the viral release, a combination therapy that also enhances either the viral attachment
or the transition of the infected cells might provide an alternative for effectively controlling progressed influenza infection.
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Introduction

Influenza is the causative agent of the annual epidemics of

seasonal flu, which has a significant impact on public health

worldwide. This virus is also responsible for occasional outbreaks

of pandemic flu, such as the H1N1 in 2009. To date, two classes of

drugs are approved for the treatment of Influenza A infection.

However, the M2 ion channel blocker (e.g., Rimantadine or

Amantadine) is of limited use, because of the rapid emergence of

resistant strains and the risk of serious side effects [1,2]. The

resistance to oseltamivir, a widely used neuraminidase inhibitor

(NAI), was reported during the 2007–2008 influenza season and

since then, a resistant influenza A (H1N1)pdm09 strain harboring

an H275Y substitution in NA has emerged [3–5]. Recently,

increased infections with an oseltamivir-resistant influenza A

(H1N1)pdm09 strain have been reported in immune-compromised

patients who have not been previously treated with oseltamivir,

indicating that this resistant strain has become transmissible [6–8].

In addition to this, side effects on the central nervous system have

been also reported [9,10]. Therefore, it is urgent to develop novel

strategy to safely and effectively treat influenza virus infection.

Currently, there are several clinical trials on going using the

neuraminidase inhibitors (e.g., Peramivir and Laninamivir)

[11,12]. In addition, inhibitors of RNA replication (e.g., Favipir-

avir) or NS1 viral protein has been under development as effective

therapeutic candidates [2,13]. However, it is quite challenging to

develop drugs that are effective and safe on the systemic level,

mainly due to the rapid alterations of influenza genome and

complicated interactions between virus and host immunity

[14,15].

Influenza is an infectious particle with 8 single-stranded,

segmented RNA fragments. The infectivity and transmission of

influenza depends on the interaction between its own viral proteins

and the host factors that are involved in the anti-viral innate and

adaptive immunities. Specifically, the interaction between the viral

surface protein HA and the sialic acid receptors in the host surface

membrane plays an essential role in the viral entry into the cell

through the endocytic vesicle [16]. The virus ribonucleoprotein

complexes (vRNPs) are released into the cytoplasm through an M2

ion channel and then transported into the nucleus. The vRNPs are

transcribed and replicated by trimeric viral RNA polymerase

(PB1, PB2, and PA) and the M1-NS2 complex mediates the viral

assembly. The NS1 viral protein inhibits the RIG-I-like receptors

(RLRs) innate signaling pathways that recognize the cytosolic viral

replication and activate the production of the type I interferons

(IFN, including IFNa and IFNb).
The secreted IFNs act on the neighboring cells and stimulate

their signaling pathways for the induction of various IFN-
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stimulated genes (ISGs), which play key roles in anti-viral innate

immunity. The IFN-induced MxA traps viral particles, thereby,

repressing the generation of new influenza virus [17,18].

Meanwhile, type I IFN heterogeneity in the RNA virus infected

mammalian cells has been reported and proposed as a balancing

mechanism between anti-viral immunity and defense against cell

damage [19–23]. In the virus-infected host cell population, only a

small portion of the infected cells produce IFNs (i.e., become

‘‘activated’’), which were prone to apoptosis. Whereas, other cells

with virus infection remain non-responsive, as they produce none

or low levels of IFNs and were unlikely to undergo apoptosis [24].

In development of effective drugs against influenza infection,

the construction of a mathematical model that considers the core

interaction units between the virus and the infected host cells is

helpful in understanding and predicting the systemic outcome of

the infected host cell population. For example, the viral production

of a pandemic (H1N1 2009) strain in human epithelial cells is

intensely and persistently increased compared to a seasonal strain

and the elevated replication efficiency was proposed as an

underlying mechanism of differential kinetics [25]. The mathe-

matical model focusing on the type I IFN signaling pathway

investigated the effect of IFNb pretreatment on influenza virus-

infected host cells and demonstrated that two distinct phases can

be identified based on the time delay of IRF7 activation [26].

However, the quantitative analysis of viral kinetics and the

dynamics of infected cell population is limiting, although it may be

beneficial in verifying key control steps and evaluating the

consequences of alterations in each step [27,28].

Based on the improved understanding of the innate immunity of

influenza A virus-infected host cell systems, we attempted to

identify the key steps for an effective regulation of influenza

production. Consequently, perturbation simulations of the inter-

connected model of the viral life cycle and the innate defense

system were performed. The biological interpretations of the

proposed strategies that are suggested by this work present novel

insights on advanced treatments against influenza.

Methods

Model Equations
We constructed deterministic differential equations based on the

interconnections between the viral life cycle and the host cell

immunity (see Figure 1). First, the influenza virus was classified as

either extracellular virus (VE), which can infect normal cells, or

intracellular virus (VI), which can replicate itself in the host cell.

Second, the cells were divided into three types: 1) normal cells (NC)

that can replicate and be infected by virus (VE), 2) infected cells

(IC), which have been infected by virus, and 3) activated cells (AC)

that express antiviral cytokines, such as IFNb.

dNC

dt
~ mN

:NC{kNV
:VE

:NCzkAI :AC
:ICzkA:AC{dN :NC ð1Þ

dIC

dt
~ kNV

:VE
:NC{kAI :AC

:IC{kI :IC{dI :IC ð2Þ

dAC

dt
~ kI :IC{kA:AC{dA:AC ð3Þ

The amount of normal cells (NC) increases with the cell growth

rate mN and decreases with the death rate dN. The growth rate mN
was restricted according to the contact inhibitory effect of the cell

culture conditions. The normal cell growth was arrested when the

total number of cells (NC+IC+AC) reaches the maximum confluency

(Cmax); in all other cases, the cells increased with the maximum

growth rate, mN,max [29].

mN ~mN,max
: cmax{(NCzICzAC)

cmax
ð4Þ

The normal cells decrease according to the virus infection with a

rate of kNV and increase by the recovery of infected cells with a rate

of kA, which is proportional to the number of activated cells. The

infected cells increase with the same rate of kNV, the infection rate

of normal cells, and decrease with the infected cell death rate, dI.

We assumed that the infected cells would become normal cells in

proportion to the number of activated cells (AC), with a recovery

rate of kAI, based on the antiviral functions of IFNb secreted from

the activated cells [30,31]. Since the heterogeneous IFNb
production in virus-infected cells has been reported in various

virus infections [19–23], we considered this cellular factor in our

model. The infected cells are converted to activated cells

depending on the intracellular viral load (VI/(1+ IC)), with a

specific transition rate kI,rel.

kI ~ kI ,rel :
vI

1zIC
ð5Þ

The activated cells are produced by the transition of infected

cells and decrease with their own death rate dA.

dVE

dt
~{kV :kNV

:NC
:VEzkC :VI ð6Þ

Figure 1. A schematic diagram of the model system. Based on
the interaction between the influenza virus and the host cells, three
states of host cells (NC, IC, and AC) and two types of viruses (VE and VI)
were expressed with 13 parameters. For details, see Methods and
Table 1.
doi:10.1371/journal.pone.0068235.g001

Quantitative Analysis of Influenza Infection
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dVI

dt
~ kV :kNV

:NC
:VEzmV

:IC{dV :AC
:VI{kC :VI ð7Þ

An extracellular virus particle is attached to the normal cell with

the rate kV and internalized with the rate kNV. The intracellular

virus is increased by this internalization, proliferates with the

replication rate mV, degraded with the rate dV, which depends on

the cytokine activity that is secreted by the activated cells, and is

released with the rate kC. The amount of extracellular virus

increases through the ejection of virus from the infected cell. The

nonlinear equations were numerically solved by the standard

procedure ode45 in MatLabH with the initial conditions indicated

in the experimental methods.

Parameter Estimation
Our model incorporates five variables and 13 parameters (see

Figure 1 and Table 1). The parameters related to the cellular life

cycle, such as the cell replication and the death rate, were set to the

values reported in a similar ODE model of influenza-infected

human host cells [29,32]. The values of the parameters that may

vary in different influenza strains, were determined through an

optimization process using reported experimental data sets for

pandemic and seasonal influenza infections [25]. The values of the

remaining parameters, such as the recovery rate of infected cells

(kAI) and activated cells (kA) were set to physiologically reasonable

low values. The optimization was performed to minimize the

extended least squares of the difference between the influenza

dynamics of the experimental data and the simulations using the

standard procedure fmincon in MatLabH.

Results

Host Cells Infected with Pandemic Influenza Exhibited
more Severe Progress of Infection than Cells Infected
with Seasonal Influenza
We constructed a mathematical model focused on the

interaction between the influenza virus and the host cells whose

multiple interactions were expressed as a set of differential

equations (Figure 1. For detailed description, see Methods). To

determine the model parameters of the pandemic and seasonal

influenza viruses, we used previously reported influenza dynamics

of a seasonal (A/NewCaledonia/20/99) and a pandemic strain

(A/California/04/2009), which were obtained in differentiated

human bronchial epithelial cells (Table 1). The only difference in

the parameter values that differentiate the seasonal and pandemic

influenza strains was the viral replication rate (mV), which indicates

that the intrinsic nature of the intracellular viral replication

significantly affects the pathogenicity of pandemic strains. The

goodness-of-fit for the optimized results was verified with a k2 test
for each experimental data: the seasonal strain with an MOI of

0.01 (Figure 2A: p,0.02), the pandemic strain with an MOI of

0.01 (Figure 2B: p,0.07), and the pandemic strain with an MOI

of 0.001 (Figure 2C: p,0.03). The two simulated dynamics of

pandemic (Figure 2B) and seasonal (Figure 2A) strains were

significantly different from each other (ANOVA test : p,0.0001).

At 50 hours after the infection, levels of both the extracellular

and the intracellular virus particles were found to be approxi-

mately twenty times higher in the cells infected with pandemic

strain (Figure 2A–D). The simulated dynamics of normal cells (NC),
activated cells (AC), and infected cells (IC) showed that the levels of

normal cells were significantly different between these two stains.

In both strains, a rapid reduction in the number of normal cells

was observed when the number of extracellular virus dramatically

increased. Since this pattern was observed only when the infected

virus was successfully replicated within the host cells, the amount

of time elapsed until the fall of NC and the increment of VE crossed

each other reflects the time that is required to get effective

infection, TEI.

With the same MOI, the pandemic virus exhibited a TEI that

was half that of the seasonal strain. Although the number of IC and

AC remained relatively unchanged, the number of NC with the

pandemic virus infection was approximately 10 fold less than the

number of those that had obtained with the seasonal virus

infection during the period of effective infection. In fact, the

number of NC in the pandemic infection actually reaches zero,

which indicates that every cell is either infected or dead. With a

Table 1. Descriptions and values for the model parameters.

Parameter Meaning Value Unit Reference

mN,max Maximum growth rate of normal cells 0.03 h21 [29,32]

kNV Virus internalization rate 0.0014 pfu21?h21 [29,32]

kAI Recovery rate of infected cells 0.000001 cells21?h21

kI,rel Transition rate of infected cells to immune-
activated cells

0.0102 h21 [25]

kA Recovery rate of activated cells 0.000001 h21

mV Viral replication rate : seasonal 0.00041 pfu?cells21?h21 [25]

mV Viral replication rate : pandemic 0.0131 pfu?cells21?h21 [25]

dV Viral degradation rate 0.00001 cells21?h21 [25]

dN Death rate of normal cells 0.001 h21 [29,32]

dI Death rate of infected cell 0.001 h21

dA Death rate of activated cells 0.0257 h21 [29,32]

kC Viral release rate 9.996 h21 [25]

kV Viral attachment rate 1 pfu?cells21

Cmax Maximum cell confluency 10000000 cells

doi:10.1371/journal.pone.0068235.t001

Quantitative Analysis of Influenza Infection
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ten-fold lower dose of the pandemic virus (MOI= 0.001), the TEI

was increased more than two fold. However, after 50 hours of

infection, the IC, NC and AC were not significantly changed when

the extracellular virus reached its saturation level in both in the

simulation and the experiments (Figure 2D).

Therefore, we systemically examined the effect of the initial

number of pandemic and seasonal virus particles on the dynamics

of the three different host cell states during the course of infection.

The model system was numerically simulated with varying viral

load (VE) at t = 0 in the range of 102–105 (which corresponds to

MOIs in the range of 0.0001–0.1). In both strains, the time to

reach effective infection was prolonged, with smaller dose of the

initial infection. The accumulation of the extracellular virus (VE),

as well as the number of infected cells (IC), was severely delayed in

the course of the seasonal influenza infection, which indicates that

either the intrinsic rate of the viral replication or the viral release,

in addition to the differential induction of the innate anti-viral

immunity of the host cells might be responsible for these slack

responses. As a result, the NC in the population with seasonal virus

infection remained high for a relatively long time; in addition, even

after the onset of effective infection, substantial amounts of NC

were still observed (Figure 3A). In contrast, the population with

pandemic virus infection attained effective infection much faster

than that the population infected with the seasonal strain

(Figure 3B). Furthermore, the NC in the population infected with

the pandemic virus strain decreased rapidly and reached an

insignificant number during the period of effective infection. In

summary, the host cells infected with the pandemic strain

exhibited a more aggressive progression for broader range of

initial viral loads compared with the seasonal influenza strain.

Viral Release Rate (kC) is the most Influential Factor for
Influenza Production
Based on the model simulations of the virus-host interactions in

the seasonal and pandemic influenza infections, we next attempted

to identify the key controlling parameters that minimize the viral

production and promote the survival of normal cells. For this

purpose, changes in the dynamics of VE were examined with single

parameter perturbations during the seasonal and pandemic

influenza infections (Figure 4). Each parameter was numerically

altered (either reduced 50-fold (kNV, mV, and kC ) or induced 50-fold

(kI,rel and kV) relative to their original values) 0, 6, 12, or 24 hours

after infection, and the dynamics of VE were analyzed for a total of

50 hours after infection. Among the parameters tested, the

internalization rate of virus (kNV) exhibited the least effect on the

dynamics of VE (Figure 4A). The perturbation of the viral

replication rate (mV) effectively inhibited the pandemic, but not

the seasonal influenza strain only when it was perturbed during the

early stages of the infection (Figure 4B). The most effective

parameter perturbations (kI,rel, mV, kV, and kC) exhibited weakened

Figure 2. Quantitative dynamics of host cells infected with the
seasonal and pandemic strains of influenza virus. The experi-

mental values of viral loads (circle) produced from the infection of
human bronchial epithelial cells were used for the parameter estimation
[25]. The simulated dynamics of the extracellular virus (solid black line),
intracellular virus (solid gray line), normal cells (long dashed black line),
infected cells (dashed gray line), and activated cells (short dashed line)
are presented for different influenza strains and initial conditions: (A)
Influenza A/NewCaledonia/20/99 (104 pfu) with an initial 106 normal
cells; (B) Influenza A/California/04/2009 (104 pfu) with 106 normal cells;
(C) Influenza A/California/04/2009 (103 pfu) with 106 normal cells. For
simulation of viral dynamics in A, B, and C, 9, 6, and 7 experimental data
points were used respectively in the parameter estimation. The TEI
indicates the time required to reach effective infection. The detailed
parameter values used in this simulation are shown in Table 1.
doi:10.1371/journal.pone.0068235.g002

Quantitative Analysis of Influenza Infection
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inhibitory effects when the perturbation were performed at later

stages of the infection.

The most dramatic effect on the dynamics of VE was observed

with perturbations on the intracellular immunity (kI,rel), the

attachment ratio of the virus to the cell (kV), and the release rate

of the virus (kC), although their effect was also sensitive to the time

of the perturbation (Figure 4C–E). The overall simulation for a

single degree of parameter perturbations showed that kI,rel, kV, and

kC are critical parameters for the effective manipulation of the viral

production.

To determine the kinetic behavior of each inhibition in the

control of the viral production, the selected parameters were

further simulated using various degrees of perturbations 24

hours after infection. The resulting VE values after 50 hours of

infection were expressed as percentile scores relative to the

value of VE in the absence of any perturbations (Figure 5). We

found that the blockage of the viral replication (mV) exhibited

the most sensitive effect in the inhibition of the viral production

because this production started to decline with a very low

degree of inhibition. However, the inhibition effect was quickly

saturated at the 60% and 45% level in the seasonal and

pandemic strains, respectively. In contrast, kC, kV, and kI,rel block

viral production completely, at a higher degree of perturbation.

In the simulation of the seasonal strain, the perturbations of kC
and kV exhibited similar degrees of half-maximal reduction (D50)

of the viral production (65.2 and 61.5, respectively), whereas the

D50 of kI,rel was 153.9. These data indicate that the rate of viral

attachment to the host cells and the rate of viral release from

the host cells can be effective targets for the manipulation of the

production of seasonal influenza virus. In contrast, the viral

Figure 3. Dynamics of cells and virus with varying initial doses of the seasonal and pandemic strains. The dynamics of NC, IC, and VE
were simulated for 150 hours after infection, with varying MOIs (0.0001–0.1) for infection with seasonal (A) and pandemic (B) influenza strains. The
dynamics of each variable for the first 24 hours of infection are displayed within the small boxes.
doi:10.1371/journal.pone.0068235.g003
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production of the pandemic strain was similarly affected by

perturbations of kV and kI,rel, with D50 values of 144.3 and

148.7, respectively, whereas the D50 of kC was 90.4. This result

indicates that the release process of the newly synthesized

Figure 4. Effect of parameter perturbations on the production of influenza virus. Each parameter was numerically perturbed 0, 6, 12, or 24
hours after infection, and the dynamics of VE were simulated for a total 50 hours. The internalization rate kNV (A), the replication rate mV (B), and the
release rate kC (E) were reduced 50-fold, whereas the transition rate kI,rel (C) and the attachment rate kV (D) were increased 50-fold. The dynamics of
the seasonal strain (gray solid line) and the pandemic strain (black solid line) without any perturbations were compared with those of the perturbed
simulations of the seasonal (gray dotted line) and pandemic (black dotted line) strains.
doi:10.1371/journal.pone.0068235.g004
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pandemic influenza virus particles might be an effective target

for manipulating viral production.

Combinatorial Perturbations of kC and either kI,rel or kV
Effectively Suppress Viral Production in Progressed
Influenza Infection
To clinically treat influenza infection, it is critical to achieve

complete suppression of influenza production after the progression

of effective infection in the host cells. Although several drugs are in

use or under development for the treatment of influenza infection,

the efficacy of these drugs significantly depends on the stage of the

viral infection; in addition, influenza often acquires resistance to

one or more of these drugs [33–35]. Therefore, it is essential to

develop a combinatorial treatment strategy that efficiently

suppresses viral production even at a later stage of infection.

Thus, we examined the effect of perturbing both kC, which

exhibited the most promising effect in our single parameter

perturbation simulations, and additional parameters 24 hours after

infection (Figure 6). Among the parameters examined, the

combinatorial perturbations of kC and either kI,rel or kV proved to

be the most effective to suppression of both pandemic and seasonal

influenza productions, whereas the other parameters, including

mV, were hardly effective (Figure 6A–C). Therefore, these data

suggest that, when effective viral production is in progress, a

superior reduction of the influenza production might be achieved

by the blockage of the viral release in addition to the enhancement

of either intracellular immune responses or the viral adhesion to

host cells.

Discussion

The infection of influenza A virus is initiated by the attachment

of the virion to the surface of the host epithelial cells. The

propagation of the infected virus is controlled not only by the

intrinsic properties of the viral or host genome but also by the

complicated interactions between them [36,37]. Therefore, it is

not easy to predict the outcome of influenza infection and the fates

of the infected host cells. To understand the critical steps and the

interactions that affect the viral and infected host cell dynamics, it

is essential to quantitatively analyze the influenza dynamics and

the infected cell population. In this study, through the simulation

of simple models of the virus-infected host cell interactions, we

attempted to illustrate the characteristics of the cellular and viral

dynamics of host cells infected with pandemic and seasonal strains

of influenza.

Specifically, we focused on the parameters that significantly

affect the time required to achieve effective infection (TEI) and the

dynamics of the normal cells (NC) during the period of effective

infection. After TEI is reached, a dramatic increase in the

extracellular virus (VE) and a sudden decrease in the amount of

normal cells is observed. The TEI was sensitive to the initial viral

load of infection because it took a longer time to reach effective

infection with a lower MOI, in both the pandemic and seasonal

strains (Figure 3). A similar effect of the MOI on the dynamics of

influenza A production has been previously reported in influenza-

infected MDCK cells [38].

In our model simulation, we identified several biological

parameters that affect the dynamics of viral production; although

the only difference between the pandemic and seasonal strains

were derived from the viral replication rate (mV), the strongest

blockage of viral production was achieved by a combinatorial

perturbation of the viral release rate (kC) and either the viral

attachment to the host cells (kV) or the activation of intracellular

immunity (kI). In most of the simulations with single parameter

perturbations, the effects on the viral dynamics were significant

when the perturbations were performed during the early stages of

the infection. This finding is in agreement with the previous study

that the addition of T-705, which is a chemical that inhibits viral

replication, to MDCK cells infected with the influenza A/PR/8/

34 strain is effective only when it is administered within 4 hours

after infection [39]. Furthermore, it provides partial explanation

for the decreased Oseltamivir efficacy administered later than the

first 12 hours of fever onset [36], which can be mimicked when we

chose a larger degree of perturbation.

The currently available drugs that are frequently used to treat

influenza infection are Oseltamivir, Zaninamivir, Amantadine,

and Ribavirin, which have been reported to inhibit viral release,

viral internalization, and viral replication, respectively [11,40]. In

the model simulations that compare the degree-dependent kinetics

of the single parameter perturbations (Figure 5), the inhibitory

effect of the viral release rate (kC) was the most prominent

compared with the viral internalization rate (kNV) and the viral

replication rate (mV). In support of our simulation results,

Oseltamivir exhibited the lowest halfmaximal effective concentra-

tion, EC50, compared to the other drugs (Amantadine, and

Ribavirin) in MDCK cells infected with the A/NewCaledonia/

20/99 influenza virus [41]. Although it is hard to directly compare

the efficacy of the different drugs, the data indicates that model

simulations might be useful for the investigation of the key

biological parameters that affect the viral and host dynamics in

Figure 5. Kinetic analysis of parameter perturbations on the
influenza production. For the seasonal and pandemic strains, the
kinetic behaviors of each parameter perturbations were simulated. The
parameter perturbations were performed 24 hours after infection, and
the relative reduction in the viral production compared to the control
simulations were measured after 50 hours of infection. The thin gray
dotted line indicates the 50% inhibition of the viral production.
doi:10.1371/journal.pone.0068235.g005

Quantitative Analysis of Influenza Infection
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Figure 6. Inhibitory effect of combinatorial perturbations on the viral production of the seasonal and pandemic strains. (A–C) The
perturbations were numerically performed 24 hours after infection. In addition to the 50-fold reduction of the kC value, a ten-fold increase of kI,rel (A)

Quantitative Analysis of Influenza Infection
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populations infected with influenza A virus. Combinatorial

treatments of various drugs have been widely studied to efficiently

control an infection with influenza virus [42–45]. As we predicted,

a combinatorial treatment of Oseltamivir with Ribavirin, which

inhibits the viral replication, exhibited increased efficacy in

MDCK cells infected with A/NewCaledonia/20/99 influenza

virus [41].

Perturbations in the cellular processes that control the viral

release are an effective way to control the influenza production

during the early stages of infection; however, our simulation also

proposed two alternate strategies to achieve stronger inhibitory

effects at later stages of infection (Figure 6). First, when performed

in addition to the reduction of kC, the reinforcement of the

intracellular immunity (kI,rel) dramatically suppressed the viral

production 50 hours after viral infection either strain. Because the

innate immunity against influenza virus is mainly mediated by the

RLR- IFNa/b signaling pathways, various approaches that

activate RIG-I or increase the production of type I IFNs might

be used in combination with agents that inhibit the viral release. It

has been previously reported that polyI:C, which is a synthetic

double stranded RNA that activates RLRs, or RIG-I aptamer,

stimulates the intracellular immune responses of infected host cells

and efficiently blocks viral production in influenza A/PR/8-

infected A549 cells [46]. In a mouse model, the intranasal

administration of poly-ICLC also suppressed the virus titers of

influenza A/PR/8 virus [47]. Second, an increase in the viral

attachment to the host cell surface (kV) greatly elevated the

inhibitory effect of the viral release (kC) on the dynamics of viral

production. It is somewhat puzzling phenomenon and there is

little physiological data that support this speculation. However, it is

noteworthy to mention that certain mutant strains of the Japanese

encephalitis virus, the Murray Valley encephalitis virus, and the

Venezuelan equine encephalitis virus that show a stronger binding

ability to the host cell surface membrane exhibit attenuated

virulence or accelerated clearance compared to the parental

strains [48,49]. Therefore, it might be interesting to further

investigate whether there is a negative correlation between the

binding affinity to the host cell surface and viral production.

In summary, we developed a model system to analyze the

quantitative dynamics of an influenza A-infected host cell system

and proposed a novel strategy to effectively control the viral

production in the infected host. Despites its value, our model

simulation has several limitations. First, in this model analysis, we

mainly focused on the immediate early kinetics of virus and

infected cells, in vitro. During the in vivo infection of influenza virus,

however, the primary infection occurs in the surface of respiratory

tract, and diverse innate and adaptive immune cells are recruited

to control the infection [28,50]. Second, in our simulation, we used

a fixed degree of perturbation to measure the effect. However,

local concentrations and the efficacy of the treated drugs are

expected to vary in vivo, in a spatial and temporal context

dependent manner. Therefore, this model may only be useful

for interpreting the early dynamics of influenza and cellular

response occurring in the limited space of infection, whose

quantitative dynamics is barely measured from in vivo experiments.

Nonetheless, it would be of great interest to apply these findings to

identify the main biological factors that control the binding affinity

of influenza to the host cell in the future.
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