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Abstract

Background: N6-methy1adenosine (m®A) modification is one of the critical gene reg-
ulatory mechanisms implicated in cancer biology. However, the roles of m°A regula-
tors in ovarian cancer are still poorly understood.

Methods: We integrated multiple databases including Gene Expression Omnibus
(GEO), ROC Plotter, Kaplan-Meier Plotter, and Tumor Immune Estimation Resource
(TIMER) to explore clinicopathological significance of m®A regulators in ovarian
cancer.

Results: We showed that alterations in the expression of m°A regulators were re-
lated to the malignancy and poor prognosis of ovarian cancer. We found decreased
YTHDCI1 and increased RBM 15 expressions were associated with ovarian cancer cell
metastases and HNRNPC was a predictor of paclitaxel resistance. Moreover, dysreg-
ulated m°A regulators were enriched in the activation of cancer-related pathways. Our
results further demonstrated that the level of immune cell infiltration and the expres-
sion of various immune gene markers were closely associated with the expressions of
specific miA regulators (RBM15B, ZC3H13, YTHDF1, and IGF2BP1).
Conclusions: Our study establishes a new prognostic profile of ovarian cancer pa-
tients based on m°A regulators, and highlights the potential roles of m®A regulators in

ovarian cancer development.
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1 | INTRODUCTION

Ovarian cancer is the first leading cause for death of gy-
necological cancers worldwide, with an estimated 295,000
new cases and 185,000 deaths in 2018 (Bray et al., 2018).
Although the therapy modalities have been greatly im-
proved, more than 70% of patients with advanced stages
still have tumor recurrence, and the 5-year overall survival
rate of ovarian cancer patients is still very low (Lheureux
et al., 2019). Tumor-related immune modulation plays an
important role in ovarian cancer. Tumor-infiltrating lym-
phocytes (TILs), including CD8" T cells, macrophages,
neutrophils, and dendritic cells affect the prognosis and
efficacy of immunochemotherapy (Santoiemma & Powell,
2015). Therefore, it is an urgent need to find new biomark-
ers and immune-related targets for the prognosis and treat-
ment of ovarian cancer.

N6-methyladenosine (m6A) is the most common
post-transcriptional modification in mRNA. It affects RNA
metabolism, such as alternative splicing, translation, and
degradation (Roundtree et al., 2017). The modification of
mPA is catalyzed by different types of regulators, includ-
ing miA methyltransferases (METTL3/14, RBM15/15B,
VIRMA, WTAP, and ZC3H13, termed as ‘writers’), de-
methylases (FTO and ALKBHS, termed as ‘erasers’),
and RNA binding proteins (HNRNPA2B1, HNRNPC,
IGF2BP1/2/3, YTHDC1/2, YTHDF1/2/3, and RBMX,
termed as ‘readers’) (Meyer & Jaffrey, 2017; Zaccara et al.,
2019). The dynamic modification in m®A mediated by
these regulators not only plays important roles in the devel-
opment of oocytes and cerebellum but also plays essential
roles in regulating cell proliferation and migration, leading
to the malignant progression of various cancers and treat-
ment resistance (Chen et al., 2019; Lan et al., 2019). The
latest studies also revealed the connection between m°A
regulators and tumor immune-cell infiltration (Han et al.,
2019; Li et al., 2020; Wang et al., 2019, 2020; Winkler
et al., 2019). For example, inhibition of METTL3/14 pro-
moted IFN-y-STATI1-IRF1 signaling and enhanced re-
sponse to anti-PD-1 treatment in colorectal cancer (Wang
et al., 2020). ALKBHS inhibitor could heighten the effi-
cacy of cancer immunotherapy (Li et al., 2020). In recent
years, comprehensive analysis of the clinical relevance and
molecular characteristics of m®A regulators across several
cancer types has been reported (Chai et al., 2019; Kwok
et al., 2017; Li et al., 2019; Su et al., 2019; Zhou et al.,
2019). However, their roles in ovarian tumorigenesis re-
main unclear.

Here, we systematically assessed the expression pattern,
clinicopathological, and prognostic relevance of m°A regula-
tors through extensive bioinformatics analyses. We revealed
the predictive value and clinical significance of m°A regula-
tors in ovarian cancer. Importantly, our results also indicated

that the level of immune cell infiltration and the expression
of various immune gene markers were closely related to the
expression of specific m®A regulators.

2 | MATERIALS AND METHODS

2.1 | Data acquisition

The TCGA-OV dataset used in our study were down-
loaded from The Cancer Genome Atlas (TCGA) data por-
tal (https://cancergenome.nih.gov/). Genetic data were
obtained from cBioPortal (https://www.cbioportal.org/)
(Cerami et al., 2012; Gao et al., 2013). Nine sets of mi-
croarrays (GSE14407, GSE12470, GSE69428, GSE84829,
GSE28979, GSE9891, GSE73168, GSE30587, and
GSE51373) were extracted from the Gene Expression
Omnibus (GEO) datasets (http://www.ncbi.nlm.nih.gov/
geo/).

2.2 | Selection of RNA m°A
methylation regulators

We collated a list of 20 m®A regulators from recently pub-
lished literature, including 11 readers, 7 writers, and 2 eras-
ers (Yang et al., 2018). We extracted the available mRNA
expression data in GEO datasets of these genes and the clin-
icopathological information of the samples for subsequent
bioinformatics analysis.

2.3 | Bioinformatic analysis of
expression profiles

Genetic status data available at TCGA database were as-
sessed using the cBioPortal to investigate the genomic profil-
ing of m°A regulators in ovarian cancer. The GEO datasets
were used to evaluate the expression alterations of m®A
regulators in normal and tumor tissues. GSE14407 evaluated
the differential gene expression between 12 laser capture mi-
crodissected serous ovarian cancers and 12 ovarian surface
epithelial cells. GSE12470 evaluated the differential gene
expression between 43 serous ovarian cancer and 10 normal
peritoneum samples. GSE69428 compared gene expres-
sion profiles of high-grade serous ovarian cancer (HGSOC)
and paired normal oviduct samples from 10 independent
patients. GSE84829 assessed gene expression patterns in 3
ascitic fluid-isolated mesothelial cell samples obtained from
stage III/IV ovarian serous carcinoma patients and 3 control
peritoneal mesothelial cell samples isolated from omentum
obtained from non-oncologic patients. GSE28979 assessed
gene expression patterns in 3 normal mouse fallopian tube
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oviduct and 3 early tumors from fallopian tubes of Dicer/
PTEN knockout mice. GSE9891 analyzed the correlation
between pathological grades/stages and expression level of
mPA regulators in 285 ovarian cancer samples. GSE73168
evaluated the differential gene expression between 12
HGSOC primary tumor cells and 12 HGSOC ascites tumor
cells. GSE30587 assessed gene expression patterns in 9
matched pairs of primary ovarian tumors and metastases
from the omentum. GSE51373 evaluated the differential
gene expression between 12 chemotherapy-resistant and 16
chemotherapy-sensitive HGSOC samples.

2.4 | Receiver operating characteristics
(ROC) Plotter

The ROC Plotter online platform (http://www.rocplot.org/)
was used to identify specific m®A regulators which predicts
benefit from chemotherapy (Fekete & Gyorffy, 2019). The
platform integrates multiple gene expression datasets at tran-
scriptome level and contains 2369 ovarian cancer patients
with treatment and response data.

2.5 | Kaplan-Meier Plotter analysis
Kaplan-Meier plotter database (http://kmplot.com/analysis/)
was used to investigate the prognostic value of m°A regula-
tors in patients with ovarian cancer (Nagy et al., 2018). The
hazard ratio (HR) with 95% confidence intervals (CI) and
log-rank p-value were estimated.

2.6 | TIMER database analysis

The TIMER online tool (https://cistrome.shinyapps.io/
timer/) is a comprehensive resource for systematic analysis
of immune infiltrates and contains 10,897 samples across
32 cancer types from TCGA (Li et al., 2016; Li, Fan, et al.,
2017). It was used to analyze the correlation of m®A regu-
lators with the abundance of immune cell infiltrates, in-
cluding B cells, CD4" T cells, CD8" T cells, neutrophils,
macrophages, and dendritic cells. Additionally, correla-
tions between the expression of m°A regulators and vari-
ous immune gene markers were explored via correlation
modules. The gene expression level was displayed with
log2 RSEM.

2.7 | Gene set enrichment analysis

The biological functions potentially regulated by m°A reg-
ulators in ovarian cancer were evaluated by GSEA v3.0
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software (Mootha et al., 2003; Subramanian et al., 2005).
Hallmark gene sets and KEGG gene sets deposited in the
GSEA Molecular Signatures Database v7.0 (MSigDB)
were used.

2.8 | Statistical analysis

One-way ANOVA was used to compare the expression
level of normal and tumor samples in GEO dataset. Student
paired t test was used to compare the expression level in
ovarian cancer for grade and stage. Chi-square tests were
used to compare the distribution of grade and stage between
high- and low-expression level groups. The expression of
m°A regulators and therapy response were compared using
ROC and Mann—-Whitney tests. Survival rates were as-
sessed using Kaplan—Meier curves and the log-rank test.
The correlation of m°A regulators with immune infiltration
level and various immune gene markers was determined
by Spearman's correlation. The data were analyzed using
GraphPad Prism version 6.01 (GraphPad Software, Inc.)
and presented as mean + SD. p-values <0.05 were consid-
ered statistically significant.

3 | RESULTS
3.1 | Expression profiles and clinical
relevance of m°A regulators in ovarian cancer

In light of the crucial biological functions of m°A regula-
tors in tumorigenesis, we systematically explored the ge-
netic status and expression profile of each individual m°A
regulator in ovarian cancer. We selected 20 well-charac-
terized m®A regulatory genes for analysis in current study,
including 11 readers, 7 writers, and 2 erasers (Figure la).
The genetic alteration of m°A regulators was first deter-
mined in the ovarian cancer patient cohort from TCGA
database using cBioPortal. We found that IGF2BP2,
YTHDFI, and VIRMA showed higher percentage of am-
plification, whereas the other m°A regulators had the lower
frequency of overall mutation, ranging from 0.9 to 8.0%
(Figure 1b-e). In contrary to the relatively rare genetic mu-
tations, more than half of m®A regulators showed signifi-
cant alterations in mRNA expression level between normal
and cancer samples.

Two GEO databases demonstrated that 7 readers
(HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3, RBMX,
YTHDC2, and YTHDF2) and 3 writers (METTL3,
RBM15, and RBM15B) were more highly expressed in
ovarian cancer than in ovarian surface epithelium or normal
peritoneum tissues (GEO14407 and GEO12470, Figure
2a,b). Besides that, HNRNPA2B1, YTHDC1, METTL14,
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FIGURE 1 Genetic profiles of m”A regulators in ovarian cancer. (a) Diagram of m”A regulators analyzed in current study. (b) Genetic

alterations of m®A regulators in ovarian cancer available at TCGA database by using cBioPortal (http://cbioportal.org). (c—e) Genetic alterations of
IGF2BP2 (c), YTHDF]1 (d), and VIRMA (e) across 23 cancer types. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA,
breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangio carcinoma; COAD,
colon adenocarcinoma; DLBC, diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and
neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular
carcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic
adenocarcinoma; PRAD, prostate adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC,

uterine corpus endometrial carcinoma; UVM, uveal melanoma

WTAP, and ZC3H13 were downregulated in cancer tissues,
whereas VIRMA had opposite alterations between these
two databases (Figure 2a,b). Given the theory implicating
the distal oviduct as a common source for epithelial ovarian
cancer, we analyzed the GSE69428 data and showed that
the expression of IGF2BP2, IGF2BP3, RBMX, YTDHFI,
and RBM15 was also higher in ovarian cancer than in nor-
mal oviduct (Figure 2c). Moreover, IGF2BP1, IGF2BP2,
and ALKBHS5 were upregulated in ascitic fluid isolated
mesothelial cells than in normal peritoneal mesothelial cell
(GSE84829, Figure 2d). In addition, tumors from fallopian
tubes of Dicer/PTEN knockout mice revealed alterations
in expression of 7 readers (HNRNPA2B1, HNRNPC,
IGF2BP3, RBMX, YTHDC2, YTHDF2, and YTHDF3),
2 writers (RBM15 and WTAP) and 2 erasers (FTO and
ALKBHS5) in comparison with normal mouse fallopian
tube oviduct (GSE28979, Figure 2e).

To determine the clinical relevance of m°A regulators in
ovarian cancer, we analyzed the relationship between expres-
sion alteration of m®A regulators and ovarian cancer clinico-
pathological features. As the pathological grade increased,
the expression of YTHDF3 enhanced, while HNRNPC and
ZC3H13 decreased (GSE9891, Figure 2f; see also File S1).
The significant correlation between pathological stages

and expression levels of YTHDF1 and RBM15 was con-
firmed in GSE9891 data (Figure 2g; see also Table S1).
We also noticed that decreased expression of YTHDCI
and increased expression of RBM15 were correlated with
the status of ovarian cancer cell metastasis (GSE73168 and
GSE30587, Figure 2h,i). Moreover, as the combination of
platin plus paclitaxel is the standard first-line chemotherapy
for patients with ovarian cancer, we analyzed the relation-
ship between expression pattern of m®A regulators and che-
motherapy sensitivity. We found that HNRNPC, METTLS3,
and RBM15 were downregulated in chemotherapy-resistant
group, while RMBX and METTL14 were increased (Figure
2j). Importantly, the ROC curve showed that increased ex-
pression of HNRNPC could perfectly predict response to
paclitaxel for ovarian cancer patients based on relapse-free
survival (RFS) at 6 months (AUC =0.839, p = 5.0e-6,
Figure 2k and Table 1), RFS at 12 months (AUC =0.802,
p = 2.4e-4, see also Table S2) and pathological response
(AUC =0.803, p = 2.4e-4, Figure 2I), while decreased ex-
pression of YTHDC1 could predict response to paclitaxel on
RFS at 6 months (AUC =0.707, p = 1.5e-3, Table 1). These
data indicated that m°A regulators may play critical roles in
ovarian tumorigenesis and function as a predictor of metas-
tasis and chemoresponsiveness.
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FIGURE 2 Expression profiles and clinical relevance of mA regulators in ovarian cancer. (a—j) Analysis of differential gene expression

of m°A regulators between ovarian cancer and ovarian surface epithelial cells in GSE14407 (a), between ovarian cancer and normal peritoneum
samples in GSE12470 (b), between HGSOC and paired normal oviduct samples in GSE69428 (c), between ascitic fluid-isolated mesothelial cells
and normal peritoneal mesothelial cells in GSE84829 (d), between early tumors from fallopian tubes of Dicer/PTEN knockout mice and normal
mouse fallopian tube oviduct in GSE28979 (e), between different grades in GSE9891 (f), between different stages in GSE9891 (g), between
primary ovarian cancer cells and ascites tumor cells in GSE73168 (h), between primary ovarian tumors and metastases from the omentum in
GSE30587 (i), and between chemotherapy-resistant and -sensitive samples in GSE51373 (j). (k and 1) ROC curves and box-plots of HNRNPC
validated for paclitaxel resistance based on RFS at 6 months (k) and pathological response (). Error bar + SD, *p < 0.05

3.2 | Prognostic value of m®A regulators in
ovarian cancer

Next, we sought to evaluate the predictive value of mPA
regulators for prognosis in ovarian cancer. Kaplan-Meier
log-rank analysis revealed that high expressions of YTHDF1
(p = 0.0024, HR = 1.23, 95% CI = 1.08-1.41), YTHDF2
(p = 0.0006, HR = 1.26, 95% CI = 1.10-1.43), WTAP
(p = 1.5e-6, HR = 1.39, 95% CI = 1.21-1.59), FTO
(p =0.001, HR = 1.26,95% CI = 1.10-1.44), and ALKBHS5
(p = 0.0003, HR = 1.48, 95% CI = 1.20-1.83) were sig-
nificantly correlated with poor overall survival (OS) (Figure
3a). Besides these genes, high expressions of HNRNPA2B1
(p = 0.0018, HR = 1.36, 95% CI = 1.12-1.65), IGF2BP1
(p = 6.9e-6, HR = 1.53, 95% CI = 1.27-1.85), YTHDCI

(p = 0.0001, HR = 1.28, 95% CI = 1.13-1.46), YTHDF3
(p = 0.001, HR = 1.24, 95% CI = 1.09-1.41), METTL3
(p = 1.4e-5, HR = 1.32, 95% CI = 1.16-1.5), RBM15B
(»p = 0.008, HR = 1.31, 95% CI = 1.07-1.6), and VIRMA
(p = 0.0015, HR = 1.37, 95% CI = 1.13-1.66) were corre-
lated with worse progression-free survival (PFS) (Figure 3b).
We also evaluated the prognostic value for each m®A regula-
tor in ovarian cancer patients with different clinicopathologic
features. Among these m°A regulators, YTHDC1, YTHDF3,
WTAP, FTO, and ALKBHS were risk prognostic factors with
HR >1 for both OS and PFS in patients with TP53 mutation
(Figure 3c,d). HNRNPC, YTHDF1, YTHDF2, YTHDF3,
and WTAP were correlated with poor OS and PFS with the
status of CA125 level below lower quartile (Figure 3e,f). In
addition, several risk factors of miA regulators for OS and
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TABLE 1 Predictive value of m°A regulators in response to chemotherapy in ovarian cancer based on relapse-free survival at 6 months

Paclitaxel Platin
ROC Mann-Whitney test ROC Mann-Whitney

AUC p-value p-value AUC p-value test p-value
HNRNPA2B1 0.556 0.31 0.65 0.535 0.17 0.32
HNRNPC 0.839 5.0e-6 0.0037 0.502 0.48 0.95
IGF2BP1 0.619 0.15 0.31 0.539 0.13 0.27
IGF2BP2 0.578 0.13 0.25 0.508 0.39 0.79
IGF2BP3 0.565 0.19 0.34 0.546 0.062 0.11
RBMX 0.61 0.052 0.11 0.548 4.2e-02 0.094
YTHDCI1 0.707 1.5¢-03 0.0024 0.636 5.8e-06 1.6e-06
YTHDC2 0.634 3.0e-02 0.049 0.625 4.5¢-06 1.1e-05
YTHDF1 0.571 0.16 0.3 0.599 2.5e-04 4.8e-04
YTHDE2 0.566 0.15 0.33 0.657 3.6e-09 3.2e-08
YTHDF3 0.66 1.3e-02 0.019 0.579 3.9e-03 0.0057
METTL3 0.648 2.1e-02 0.03 0.669 3.1e-08 1.4e-06
METTL14 0.544 0.36 0.72 0.502 0.47 0.94
RBM15 0.517 0.41 0.8 0.575 3.6e-03 0.0085
RBMI15B 0.663 1.5e-03 0.017 0.577 2e-03 0.0071
VIRMA 0.522 0.43 0.87 0.527 0.24 0.45
WTAP 0.543 0.27 0.52 0.569 5.4e-03 0.015
ZC3H13 0.511 0.43 0.87 0.545 4.9¢-02 0.11
FTO 0.606 3.8e-02 0.12 0.563 1.2e-02 0.027
ALKBHS5 0.636 0.12 0.24 0.502 0.48 0.97

PFES in ovarian cancer patients with different grade, stage,
and chemotherapy were assessed (Figure 3g). For instance,
compared with YTHDF2'™ group, YTHDF2"¢" group had
shorter OS and PFS in patients treated with platin or Taxol,
whereas no differences were found in patients with low path-
ological stage. Besides, high expression of ALKBHS was a
risk factor for OS and PFS in patients with high pathological
grade and stage (Figure 3g). These results highlighted poten-
tial roles of m®A regulators as prognostic markers in ovarian
cancer patients.

3.3 | Oncogenic pathways regulated by m°A
regulators in ovarian cancer

To better understand the functions of m°A regulators in ovarian
cancer, we first analyzed the correlation among these regula-
tors. As shown in Figure 4a, the expressions of m®A regulators
were not only correlated with several regulators in the same
functional type but also among different types. For example,
the expression of HNRNPA2B1 was positively correlated with
the expressions of IGF2BP3, YTHDC1, YTHDF2, RBM15,
and ZC3HI3 in ovarian cancer. Similarly, the expression of
HNRNPC was positively correlated with RBMX and METTL3,
and negatively correlated with YTHDC2 and ZC3H13.

Then, we investigated the oncogenic pathways potentially
regulated by m®A regulators in ovarian cancer. GSEA analy-
sis demonstrated that the expressions of METTL3, YTHDCI,
RBM15B, HNRNPC, IGF2BP2, RBMX, and ZC3H13 were
correlated with a higher number of multiple Hallmark path-
ways in ovarian cancer (Figure 4b). Upregulated expressions
of m°A regulators were enriched in the activation of several
cancer-related pathways, such as mitotic spindle, Hedgehog
signaling, MYC targets, G2M checkpoint, and E2F target,
whereas reactive oxygen species pathway, oxidative phos-
phorylation, p53 pathway, inflammatory response, adipo-
genesis, IL6/JAK/STAT3 signaling, fatty acid metabolism,
apoptosis, and peroxisome were negatively correlated with
the expression of m®A regulators (Figure 4c). We also per-
formed KEGG pathway enrichment to recognize biological
processes regulated by m°A regulators. Similarly, the expres-
sions of HNRNPC, METTL3, RBMX, ZC3H13, YTHDCI,
IGF2BP2, and RBM15B were correlated with a higher num-
ber of KEGG pathways (Figure 4b). Our results also indicated
that upregulated m°A regulators were positively enriched in
ubiquitin-mediated proteolysis, cysteine and methionine me-
tabolism, lysine degradation, and homologous recombina-
tion, whereas oxidative phosphorylation, NOD-like receptor
signaling pathway, proteasome, natural killer cell-mediated
cytotoxicity, pyrimidine metabolism, and Toll-like receptor
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FIGURE 3 Prognostic value of m°A regulators in ovarian cancer. (a and b) The distribution of hazard ratios of OS and PFS across m°A
regulators in ovarian cancer patients from Kaplan—Meier plotter database (http://kmplot.com/analysis/). (c and d) The distribution of hazard ratios
of OS and PFS in patients with TP53 mutation. (e and f) The distribution of hazard ratios of OS and PFS in patients with the status of CA125 level
below lower quartile. (g) The distribution of hazard ratios of OS and PFS in patients with different grades, stages, and chemotherapy

we explored whether the expression of m°A regulators was
correlated with immune infiltration levels in ovarian cancer.
The results showed that several m°A regulators, including
4 readers (IGF2BP1, IGF2BP2, YTHDF]I, and YTHDC2),
3 writers (ZC3H13, RBM15B, and WTAP), and 1 eraser

signaling pathway were negatively correlated with the ex-
pression of m®A regulators (Figure 4d).

3.4 | Correlation between immune cell

infiltration and the expression of m°A
regulators in ovarian cancer

Infiltration of lymphocytes is an independent predictor of
ovarian cancer patient survival and chemoresistance. Hence,

(ALKBHS) had significant correlations with immune cell
infiltration levels (Figure 5a). In particular, IGF2BP1 ex-
pression level had significant negative correlation with in-
filtrating of B cells (Cor = —0.167, p = 2.4e-4), CDS' T
cells (Cor = —0.192, p = 2.3e-5), neutrophils (Cor = —0.220,
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FIGURE 4 Oncogenic pathways regulated by m°A regulators in ovarian cancer. (a) Correlation among the expression of m°A regulators.

The scatter plot shows the correlation between METTL3 and HNRNPC, RBMX and HNRNPC, and VIRMA and YTHDF3. (b) The number of
Hallmark gene sets (upper panel) and KEGG gene sets (lower panel) is correlated with individual mPA regulators. (c) The correlation between m°A
regulators and Hallmark gene sets. (d) The correlation between mPA regulators and KEGG gene sets

p = 1.2e-6), and dendritic cells (Cor = —0.232, p = 2.7e-
7) (Figure 5b). RBMI5B expression level had signifi-
cantly negative correlation with infiltrating of CD8" T cells
(Cor = —-0.156, p = 6.2e-4), macrophages (Cor = —0.280,
p = 4.2e-10), neutrophils (Cor = —0.220, p = 1.2e-6), and
dendritic cells (Cor —0.180, p = 7.5e-5) (Figure 5c).
Similarly, the expression of ZC3H13 was significantly
negatively correlated with infiltrating level of CD8" T cells
(Cor = —0.184, p = 4.9¢-5), CD4* T cells (Cor = —0.121,
p = 8.2e-3), macrophages (Cor = —0.199, p = 1.1e-5), neu-
trophils (Cor = —0.322, p = 4.5e-13), and dendritic cells
(Cor = —0.265, p = 3.6e-9) (Figure 5d). The expression of
YTHDF1 was significantly negatively correlated with infil-
trating level of CD8" T cells (Cor = —0.263, p = 5.2e9),
neutrophils (Cor = —0.182, p = 6.0e-5), and dendritic cells

(Cor = —0.198, p = 1.2e-5) (Figure 5e). Moreover, similar
correlations were also observed across different types of
cancers (see Figure S1). These findings propose that the ex-
pressions of specific m®A regulators may be correlated with
immune cell infiltration in ovarian cancer.

We further investigated the relationship between these
immune infiltration-related m°®A regulators and immune
marker genes of diverse immune cells, including B cells, T
cells (general), CDS8* T cells, Thl cells, Th2 cells, Treg cells,
tumor-associated macrophages (TAM), M1 and M2 macro-
phages, neutrophils, natural killer (NK) cells, and dendritic
cells in ovarian cancer. As shown in Table 2, the expression
of RBM15B was significantly correlated with most immune
marker genes of different T cells and various immune cells.
ZC3H13 expression had correlation with immune marker
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FIGURE 5 Correlation between immune cell infiltration and the expression of m°A regulators in ovarian cancer. (a) Correlation between the
expression of m°A regulators and infiltrating levels of B cells, CD8" T cells, CD4™ T cells, macrophages, neutrophils, and dendritic cells in ovarian
cancer. (b—e) Correlation between the expression of specific mA regulators (IGF2BP1, RBM15B, ZC3H13, and YTHDF1) and infiltrating levels
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of B cells, CD8" T cells, CD4* T cells, macrophages, neutrophils, and dendritic cells in ovarian cancer

genes of CD8+ T cells, TAM, M2 macrophages, and den-
dritic cells. The expression of YTHDF1 was correlated with
immune marker genes of T cells (general), CD8* T cells, and

020

dendritic cells, whereas IGF2BP1 expression had correlation
only with dendritic cells. Our results also showed signifi-
cant correlations between two immune infiltration-related
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TABLE 2 Correlation analysis between m®A regulators and related gene markers of immune cells
ZC3H13 RBM15B IGF2BP1 YTHDF1
Gene - - B
Immune cells markers Cor P Cor p Cor )/ Cor P
B cell CD19 —-0.02 0.73 —-0.02 0.69 0.19 wE 0.10 0.08
CD79A —-0.03 0.56 -0.13 0.02 0.02 0.67 0.03 0.63
T cell (general) CD2 —0.16 = —-0.31 SR -0.14 0.14 —0.20 o
CD3D —0.18 & —0.31 SRS -0.13 0.02 —0.22 E
CD3E —0.12 0.03 —0.29 SR —0.14 0.01 -0.21 o
CD8+ T cell CD8A -0.16 * -0.32 o —-0.10 0.08 -0.15 *
CD8B -0.16 * -0.27 ok 0.05 0.37 —-0.03 0.64
Thl IFN-y -0.15 0.01 —0.30 RS —0.09 0.13 —-0.15 &
TBX21 —-0.11 0.04 —0.24 XS -0.12 0.03 -0.19 @
TNF-« —0.06 0.28 —0.14 0.02 0.02 0.77 —-0.16 0.04
Th2 GATA3 0.07 0.22 -0.13 0.03 0.03 0.65 —-0.09 0.12
STAT6 0.05 0.38 0.00 0.96 -0.15 0.01 -0.14 0.01
IL13 0.02 0.70 —-0.05 0.41 —0.05 0.37 -0.12 0.04
Treg CCRS —0.09 0.13 —0.14 0.02 0.01 0.83 —0.11 0.06
FOXP3 —0.09 0.13 -0.21 o 0.00 0.96 —0.06 0.28
STAT5B 0.34 RIS 0.20 RS 0.08 0.16 0.14 0.15
TAM CD68 —-0.25 ok -0.32 ok -0.09 0.14 -0.15 *
CCL2 -0.21 o -0.25 ok -0.15 0.01 -0.23 ok
IL10 -0.15 0.01 -0.24 ok 0.00 0.91 —-0.10 0.08
M1 macrophage NOS2 —-0.02 0.75 0.00 0.99 0.19 & 0.10 0.10
PTGS2 0.04 0.52 —0.02 0.72 0.03 0.63 —0.09 0.13
IRF5 —0.15 0.01 -0.22 R —-0.03 0.66 —0.06 0.28
M2 macrophage CD163 -0.12 0.04 -0.23 o -0.02 0.79 —0.08 0.16
MS4A4A -0.21 wE -0.33 o -0.07 0.26 -0.15 0.01
VSIG4 -0.25 ok -0.31 owok —-0.06 0.28 -0.09 0.12
Neutrophils CCR7 —-0.07 0.24 —-0.19 e —-0.05 0.36 —-0.20 R
CEACAMS 0.27 RS 0.00 0.89 0.07 0.23 0.02 0.76
ITGAM —-0.11 0.05 -0.20 o —-0.07 0.23 -0.14 0.13
NK cell KIR2DL1 0.03 0.64 —0.10 0.08 —-0.01 0.91 —-0.09 0.13
KIR2DL3 —0.06 0.28 -0.18 * -0.21 o -0.13 0.03
KIR3DL1 0.00 0.97 -0.15 * -0.12 0.04 -0.07 0.20
KIR3DL2 —0.02 0.74 -0.15 0.01 —0.10 0.10 -0.13 0.02
Dendritic cell HLA-DPB1 -0.31 REE —0.26 RS —0.30 ShA —0.26 R
HLA-DQBI1 —0.175 g -0.21 R —0.23 SR —0.19 o
HLA-DRA —0.36 S -0.32 RS -0.31 SR -0.27 S
ITGAX —0.08 0.16 -0.22 S —0.11 0.05 —-0.18 &
T-cell exhaustion PDCD1 -0.16 * -0.28 oAk —0.04 0.53 -0.12 0.04
CD274 -0.17 * -0.25 ok -0.14 0.01 -0.21 o
CTLA4 -0.22 o -0.29 oAk -0.07 0.20 —-0.10 0.08
LAG3 -0.22 o -0.32 HokE —0.06 0.28 -0.12 0.04
GZMB -0.20 o -0.33 HoAE -0.14 0.01 —0.19 *

Abbreviation:TAM, tumor-associated macrophage; Th, T helper cells; Treg, regulatory T cells; NK, natural killer; Cor, R value of Spearman’s correlation
“(p <0.01).
“(p < 0.001).

“(p < 0.0001).
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m®A regulators (RBM15B and ZC3H13) and marker genes
of T-cell exhaustion, including PDCD1 (PD-1), CD274 (PD-
L1), CTLA4, LAG3, and GZMB (Table 2). Moreover, we
found that the expression of these immune infiltration-re-
lated m°A regulators was also significantly correlated with
several interleukins (IL1B, IL7, IL15, and IL18), CC and
CXC chemokines (CCL2, CCL5, CXCL10, CXCL11, and
CXCL17), and human leukocyte antigens (HLA-A, HLA-B,
HLA-C, HLA-E, and HLA-F) (Figure 6; see also Table S3).
Therefore, these data confirmed the findings that the expres-
sions of specific m®A regulators were associated with tumor
immune cell infiltration.

4 | DISCUSSION

Herein, we demonstrated that changes in mA regulator ex-
pression were associated with malignancy and prognosis of
ovarian cancer. Increased expression of YTHDF3, WTAP,
FTO, and ALKBHS5 was associated with shorter OS and PFS
regardless of the status of TP53 mutation. We found that a
decrease in YTHDC1 and an increase in RBM 15 expressions
were correlated with ovarian cancer cell metastases. We also
suggested that HNRNPC was a predictor of paclitaxel resist-
ance. In addition, GSEA analysis showed that the mechanism

Open Access,

of m°A regulators regulating ovarian cancer was related to
a variety of tumor-related pathways. Importantly, our data
showed that immune cell infiltration levels and various im-
mune gene markers were closely associated with the expres-
sion of m®A regulators, suggesting that RBM15B, ZC3H13,
YTHDF1, and IGF2BP1 might play the role of immune in-
filtration-related m®A regulators in ovarian cancer. Thus, our
current study provided insights into the value of m®A regula-
tors in the determination of prognosis and understanding of
their potential roles in ovarian cancer immunology.

RNA m°A methylation is a widespread modification that
regulates selective control of gene expression (Dominissini
et al., 2012; Li, Tong, et al., 2017; Yue et al., 2015). Research
on the roles of m°A readers, writers, and erasers have im-
proved our understanding of physiological and pathological
significance of RNA methylation (Meyer & Jaffrey, 2017).
Accumulating evidences suggest that these mA methylation
regulators function as oncogenes or tumor-suppressor genes
and are involved in the proliferation, differentiation, invasion,
and metastasis of cancer cells (Lan et al., 2019). Recent years,
the clinical relevance and molecular characteristics of m®A
regulators in different cancer types have been reported (Chai
etal.,, 2019; Kwok et al., 2017; Li et al., 2019; Su et al., 2019;
Zhou et al., 2019). Although some studies have demonstrated
that the m®A writer METTL3, reader IGF2BP1, and eraser
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ALKBHS are involved in the development of ovarian cancer
(Hua et al., 2018; Miiller et al., 2019; Zhu et al., 2019), little
is known about the role of other m°A regulators in ovarian
cancer.

Here, we comprehensively evaluated the expression
alterations of 20 m°A regulators in different databases.
Compared with normal ovarian surface epithelium, peri-
toneum, and oviduct tissues, increased or decreased ex-
pression of several specific m°A regulators were found in
ovarian cancer tissues and ascitic fluid-isolated cells. The
relationship between the expression of m®A regulators
and clinicopathological characteristics, such as grading,
staging, metastasis,, and chemotherapy response was also
confirmed in our study. Moreover, HNRNPC, a member
of ubiquitously expressed heterogeneous nuclear ribonuc-
leoproteins (hnRNPs) family, which influences pre-mRNA
processing and mRNA transport and metabolism (Fischl
etal., 2019), was downregulated in chemotherapy-resistant
group and upregulated in paclitaxel response group. The
ROC/AUC score was also high, indicating its predictive
value of paclitaxel response in ovarian cancer. Our study
also revealed that m°A regulators might be correlated with
several tumor-related signaling pathways and biological
processes in ovarian cancer, including Hedgehog signal-
ing, p53 pathway, Myc-dependent pathway, reactive oxy-
gen species pathway, IL6/JAK/STAT3 signaling, apoptosis,
mitotic spindle, proteolysis, amino acid metabolism, ho-
mologous recombination, etc.

Previous studies have shown that alterations in m°A
regulators are associated with poor patient outcome (Chai
et al., 2019; Kwok et al., 2017; Li et al., 2019; Su et al.,
2019; Zhou et al., 2019). In our current study, according
to the Kaplan—Meier plotter database, when YTHDFI,
YTHDF2, WTAP, FTP, and ALKBHS5 were highly ex-
pressed in ovarian cancer, they were validated as valuable
prognostic risk factors for low OS and PFS with high HR.
This observation supports our hypothesis that specific
m®A regulators are promising candidate biomarkers for
predicting the prognosis of patients with ovarian cancer.
Moreover, we also established some m°A regulators for
the prognostic value of ovarian cancer with the status of
TP53 mutation, CA125 level, different grades/stages, and
chemotherapy. Additionally, our analysis showed opposing
correlations between members with similar functional di-
rectionality and ovarian cancer patient outcomes, indicat-
ing the functional diversity of m°A regulators.

Ovarian cancer microenvironment plays a critical role
in controlling the cancer cell fate, treatment, and progno-
sis (Yin et al., 2019). In recent studies, a new concept of
immune regulatory function of m°A regulatory factor has
been proposed. Han et al. (2019) reported that the loss of
the reader YTHDF1 in dendritic cells restricted the expres-
sion of lysosomal proteases, promoted cross-presentation

of tumor antigens, improved cross-priming of CD8" T
cells, and enhanced therapeutic efficacy of PD-L1 block-
ade. The writer METTL3 has been revealed to catalyze
m®A of membrane co-stimulatory molecules CD40, CD80,
and TLR signaling adaptor TIRAP during dendritic cells
maturation, and enhanced their translation for promot-
ing T-cell activation (Wang et al., 2019). Besides that,
METTL3 and YTHDEF?2 also served as negative regulators
of type I interferon response to control the innate immune
response (Winkler et al., 2019). Hence, the important as-
pect of our study is to emphasize the role of m®A regulators
in immune cell infiltration and immune escape in ovarian
cancer. We demonstrated four immune infiltration-related
m°A regulators in ovarian cancer, including RBMI15B,
ZC3H13, YTHDF1, and IGF2BP1. Specifically, (1) GSEA
analyses revealed that inflammatory response, interferon
response, NOD-like receptor, and Toll-like receptor path-
ways were negatively correlated with high expression of
these m°A regulators. (2) There was a strong association of
the expression level of these m°A regulators with the infil-
tration level of immune cells (B cells, CD8" T cells, CD4*
T cells, macrophages, neutrophils, and dendritic cells). (3)
The expression level of these m®A regulators had a strong
correlation with diverse immune marker genes, interleuk-
ins, CC and CXC chemokines, and human leukocyte anti-
gens. (4) The increased expression of these m®A regulators
correlates with the expression of T-cell exhaustion markers
(PD-1, CD274, CTLA4, LAG3, and GZMB). Therefore,
the cross-talk between the expressions of m°A regula-
tors and tumor microenvironment might be an important
mechanism for the development and progression of ovarian
cancer. Nevertheless, more functional and mechanism ex-
periments are needed for further verification.

In summary, our results systematically demonstrated ex-
pression alterations and prognostic value of m°A regulators
in ovarian cancer. The expressions of several specific m®A
regulators were correlated with cancer-related pathways,
tumor metastasis, and chemotherapy resistance. In addition,
the expressions of m®A regulators might be involved in the
regulation of immune cell infiltration and immune escape.
Therefore, our study provides new insights into the role of
m®A regulators in ovarian cancer.
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