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The symbiotic relationship between animals and their resident microorganisms has profound
effects on host immunity. The human microbiota comprises bacteria that reside in the
gastrointestinal tract and are involved in a range of inflammatory and autoimmune diseases.
The gut microbiota’s immunomodulatory effects extend to extraintestinal tissues, including
the central nervous system (CNS). Specific symbiotic antigens responsible for inducing
immunoregulation have been isolated from different bacterial species. Polysaccharide A
(PSA) of Bacteroides fragilis is an archetypical molecule for host-microbiota interactions.
Studies have shown that PSA has beneficial effects in experimental disease models,
including experimental autoimmune encephalomyelitis (EAE), the most widely used animal
model for multiple sclerosis (MS). Furthermore, in vitro stimulation with PSA promotes an
immunomodulatory phenotype in human T cells isolated from healthy and MS donors. In this
review, we discuss the current understanding of the interactions between gut microbiota and
the host in the context of CNS inflammatory demyelination, the immunomodulatory roles of
gut symbionts. More specifically, we also discuss the immunomodulatory effects of B. fragilis
PSA in the gut-brain axis and its therapeutic potential in MS. Elucidation of the molecular
mechanisms responsible for the microbiota’s impact on host physiology offers tremendous
promise for discovering new therapies.

Keywords: immunomodulation, microbiota, EAE (experimental autoimmune encephalomyelitis), multiple sclerosis,
symbiotic molecules, Bacteroides fragilis, polysaccharide A (PSA)
INTRODUCTION

Mammals have co-evolved with eons of resident microorganisms that play an integral role in
regulating the host immunity (1). These microorganisms live in a complex community called
microbiota, which is dominated by bacteria and includes archaea, fungi, and viruses (2). Analysis of
the composition and the human microbiota’s diversity has significantly improved by culture-
org May 2021 | Volume 12 | Article 6628071
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independent methods and next-generation sequencing (3, 4). An
updated catalog based on a metagenomic assembly of
microbiomes across world populations shows that over 150,000
bacterial genomes can be found in the human body (5). The
gastrointestinal tract harbors most of these microbes, some
producing immunomodulatory molecules to educate the host
immune system (6). The composition and gut microbiota
function can affect the susceptibility to and progression of a
wide range of diseases in the intestine and the extraintestinal
tissues such as the central nervous system (CNS) (7, 8). While
several microbial species have been identified concerning specific
pathologies in humans, the mechanistic understanding of how
the symbiotic molecules interact with the host is still limited.
Determining the molecular mechanisms of the microbial
molecules is crucial for the development of prophylactic and
therapeutic interventions. B. fragilis polysaccharide A (PSA) is a
prototypical symbiotic antigen that has been invaluable for
understanding the mechanisms directing microbiota–host
interactions (9). PSA mediates gut homeostasis by directing
cellular and physical development of the immune system (10),
stimulating Tregs (11) via plasmacytoid dendritic cells (PDCs)
(12), and protecting animals from experimental diseases like
colitis (11, 12), asthma (13), or pulmonary inflammation (14),
and experimental autoimmune encephalomyelitis (EAE) (15–
17). EAE is an animal model of multiple sclerosis (MS), an
inflammatory demyelinating CNS disease (18). MS is
characterized by inflammation and axonal damage resulting in
progressive disability due to neurodegeneration. Although the
disease’s etiology is not entirely understood, multiple genetic and
environmental factors have been implicated in MS’s onset and
progression. Mounting evidence suggests that microbiota plays
an essential role in the development of the disease (19).

In this review, we cover some of the most recent literature on
the gut-brain axis in the context of CNS inflammatory
demyelination. Because of the impact of gut microbes regulating
the immune system and the immune-mediated responses that
characterize EAE/MS, we hypothesize that the large pool of
microbes and microbial products present in the gut is an
excellent source of novel therapeutics. Furthermore, we propose
that PSA produced by B. fragilis is an identified symbiont factor
model for immunomodulation. PSA could be one of the possibly
numerous bacterial cellular components capable of promoting
protective responses against neuroinflammation. Accordingly, our
review will summarize how PSA regulates immune responses in
MS/EAE and discusses PSA’s therapeutic potential.
GUT MICROBIOTA

Although utero colonization is still debated (20), it is known that
microbial colonization starts mainly after birth (21). It is
suggested that establishing a diverse and balanced microbiota
in early life is essential for developing a healthy immune system
(22, 23). An imbalance in the microbiota’s composition and
function (dysbiosis) during this window of opportunity can have
long-lasting consequences later in life, causing a wide range of
Frontiers in Immunology | www.frontiersin.org 2
immune diseases (24). The microbial composition of the infant’s
gut depends on many factors (25), including the type of delivery
(26), gestational age (27), antibiotic use (28), and the mode of
feeding (29). Human milk oligosaccharides (HMOs) in breast
milk promote beneficial microbes like Bifidobacterium species in
breast-fed infants (30). Cessation of breast-feeding and
introducing solid foods drives the infant’s gut microbiome’s
maturation (31), gradually reaching an adult-like composition
after three years of life (32). Gut microbiota in adulthood is
dominated by Bacteroidetes and Firmicutes and includes
Actinobacteria, Proteobacteria, Verrucomicrobia, archaea,
viruses, fungi, and protozoa (33, 34). While the gut microbiota
in adults is more stable than in infants, the specific microbial
species can vary interpersonally, creating a unique composition
for every individual.

In homeostatic conditions, the host and the microbiota benefit
each other and coexist in a mutualistic symbiosis (35). The host
offers a nutrient-rich environment for the microbiota. In return,
the microbiota provides metabolites (36), vitamins (37), and other
micronutrients to the host by fermenting undigested dietary
components in the large intestine (38). The microbiota’s ability
to produce energy by digesting complex carbohydrates in the gut
has been an evolutionary driving force for establishing the host-
microbiota symbiotic relationship (39, 40). In addition, the gut
microbiota participates in the development of the host immune
system and balances defense and tolerance to maintain
homeostasis (41).

While the use of fecal microbiota transplantation (FMT) as a
treatment for gastrointestinal problems in Chinese medicine dates
back to the 4th century (42), the interconnectedness of gut
microbiota, CNS, and neuropsychiatric health is a concept from
the early 19th century (43). It is now known that the fundamental
impact of the microbiota on host physiology reaches far outside the
gastrointestinal tract and extends to CNS. Recently it is proposed
that there is a bidirectional relationship between the gut microbiota
and the CNS (44, 45). This reciprocal interaction occurs through
different routes involving endocrine, immune, and neural
mechanisms. The function of microbiota in the gut-brain axis is
believed to affect the etiology of a wide range of neuropsychiatric
disorders, including Parkinson’s disease (46, 47), Alzheimer’s
disease (48, 49), depression (50, 51), anxiety (52, 53), autism (54,
55), amyotrophic lateral sclerosis (56) and multiple sclerosis (57–
66). Increasing evidence points to alterations in the gut microbiota
composition in patients with neuropsychiatric disorders. However,
the molecular mechanisms by which the microbiota modulates
these diseases are not fully understood. A mechanistic
understanding of microbiota’s role in the gut–brain axis will help
develop prophylactic and therapeutic interventions for CNS
diseases that are increasingly affecting large populations.
GUT MICROBIOTA AND CNS
INFLAMMATORY DEMYELINATION

Multiple Sclerosis (MS) is an immune-mediated debilitating
disease initiated by the immune system attacking the neuron
May 2021 | Volume 12 | Article 662807
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protecting myelin sheet, which results in inflammation, chronic
demyelination, axonal degeneration, and loss of brain volume
(67, 68). MS affects around 400,000 people in the United States
(69) and 2.5 million worldwide, mainly living in higher latitudes
(70). MS is divided into four clinical types: Relapsing-Remitting
(RR-MS), Secondary Progressive (SP-MS), Progressive Relapsing
(PR-MS), and Primary Progressive (PP-MS), with the majority of
patients suffering from RR-MS type. There are various
environmental risk factors associated with disease onset and
progression (vitamin D, latitude, viral infections, smoking, diet)
and genetic disposition (71). The immunopathology of MS is
mainly driven by inflammatory CD4+ T cell responses
characterized by an increase in Th1 and Th17 cells (72) and
decreased or impairment in Treg cells (73). Increasing
importance is now appreciated for B cells’ role in both the
progression and modulation of this condition (74). CD20+ B
cells are targeted with monoclonal antibodies as approved MS
therapies (75). Cerebrospinal fluid (CSF) of MS patients contains
oligoclonal bands produced by plasmablasts and plasma cells
(76), some of them auto-reactive against myelin self-peptides
(77). B cells are present in CSF, CNS parenchyma, and meninges
of MS patients, and germinal centers were identified in MS CNS
(78). A recent study of single-cell RNA sequencing in CSF and
blood suggest that in MS patients, B cells are clonally expanded
and show an active inflammatory signature with memory plasma
cell or plasmablast phenotype (79). More significant to this
review’s context, IgA produced by B cells that cross-react with
gut microbes have been identified in the CNS of MS patients with
active lesions (80) and regulate neuroinflammation through IL-
10 production (81), highlighting the importance of B cells on the
gut-microbiota-brain axis. In addition to T and B cells, dendritic
cells and CD8+ T cells also play a role in modifying MS’s
pathology (82).

Gut microbiota is considered an environmental factor that
can promote protective roles in the development of multiple
sclerosis. Other environmental risk factors for MS, such as diet,
vitamin D, or geography, can directly affect the microbiota’s
composition. Gut microbiota can activate immune cells in the
intestine or secrete immunomodulatory molecules and
metabolites that orchestrate immune responses in the gut-
brain axis. Previous studies suggest a link between changes in
the composition of gut microbiota and MS pathogenesis. Limited
but accumulating evidence points to an altered microbiota in MS
patients compared to healthy individuals (57–66). The MS
patients’ microbiota shows a decreased abundance of
Bacteroides, Parabacteroides, Prevotella, and Lactobacillus
genera and increased Akkermansia Blautia, Ruminococcus, and
Bifidobacterium (83). The relative abundances of members of the
domain Archaea, such as Methanobrevibacter, are also increased
in MS patients’ gut and the bacteria such as Akkermansia, while
Butyricimonas is decreased when compared to healthy controls
(63). Recent findings link immunoglobulin (Ig) A (IgA)-coated
gut microbiota with MS. IgA is the major neutralizing Ig in
the human mucosa, including the gut, but is also found in
circulation and periphery and a recent paper reports elevated
IgA levels in cerebrospinal fluid of MS patients suffering active
Frontiers in Immunology | www.frontiersin.org 3
neuroinflammation (80). IgA+ B cells capable of recognizing gut
microbiota are present within active CNS lesions, where elevated
IL-10 transcripts are observed. Previous findings from the same
group indicate that IL-10 was a principal component of gut-
derived plasma cells ’ immunoregulatory role against
neuroinflammation (81). There is now increasing evidence for
the gut microbiota’s role in the associated neuroinflammatory
condition, neuromyelitis optica syndrome (84).

Despite the limitations of any experimental model of disease,
EAE mice offer a practical approach to elucidate the clinical
relevance of gut microbes in neuroinflammatory disorders, such
as MS. The oral administration of broad-spectrum antibiotics
reduces the severity of EAE (85–88). The treatment of C57BL/6
EAE mice with kanamycin, colistin, and vancomycin induced
protection mediated by invariant natural killer cells T (iNKT)
cells associated with reduced production of proinflammatory
cytokines (IFN-g, TNF-a, IL-6, and IL-17) in draining lymph
nodes (LN) and a reduction in the percentages of mesenteric LN
Th17 cells. In the mesenteric LNs of antibiotics-treated EAE
mice, the levels of proinflammatory cytokines were reduced
while IL-10 was increased (86). The treatment of SJL/J EAE
mice with vancomycin, metronidazole, ampicillin, and neomycin
induced protection against the disease that was associated with a
reduced production of proinflammatory cytokines (IFN-g, IL-17)
in draining lymph nodes and increased frequencies of Foxp3
expressing CD25+CD4+T cells and increased levels of IL-10 and
IL-13 (85). The ablation of CD25-expressing cells resulted in the
lack of protection with antibiotics, while the adoptive transfer of
CD25+CD4+ T cells with enhanced expression of Foxp3 isolated
from antibiotics-treated SJL/J mice reduced the severity of EAE
in recipient mice (85). The observation that antibiotics given
orally but not intraperitoneally can protect the animals from
disease emphasizes gut microbiota’s importance in EAE
pathophysiology. The results obtained after oral versus
intraperitoneal administration of ampicillin supported these
findings (87). A significant reduction in inflammatory antigen-
presenting cells (peripheral macrophages and resident microglia)
was also observed and associated with the protective effects
promoted by antibiotics against EAE (88). Mechanistically, the
protective effects induced by the oral treatment with antibiotics
could be associated with alterations in microbial populations
capable of triggering molecular mimicry pathways towards
autoimmunity (87). Studies in GF mice confirmed the impact
of the presence of gut microbiota in the severity of EAE. In GF
conditions, mice show reduced EAE severity and reduced
peripheral proinflammatory signals (89, 90). The causative
association between the gut microbiota and EAE remains to be
elucidated. EAE induction promotes alterations in the
composition of the gut microbiota at early phases of disease
(44), and disease results in alterations in the intestinal
permeability and intestinal proinflammatory responses (91).

The use of gnotobiotic mice in EAE studies helped identify a
few essential bacteria for positively or negatively modulating the
disease outcome. When GF mice are monocolonized with
Segmented Filamentous Bacteria (SFB), an increase in Th17
cell-mediated responses correlate with exacerbated EAE
May 2021 | Volume 12 | Article 662807
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severity (89). When the MS patients’ microbiota was transferred
to germ-free mice, it caused more severe symptoms in the EAE
(57) and spontaneous brain autoimmunity (58). Furthermore,
fecal microbiota transplantation (FMT) is reported to alleviate
disease symptoms in EAE mice (92) and MS patients (93–95).
Although it is still elusive if alterations in microbiota’s
composition and function are the cause or the result of the
disease, microbiome-based therapeutics offer promise for
MS treatment.

It has been shown that Prevotella histicola suppresses EAE
through Tregs (96), while Lactobacillus reuteri exacerbates the
disease through pathogenic CD4+ and CD8+ T cell responses
(97). The prophylactic administration of individual lactobacilli
strains reduces EAE severity through diminished myelin
oligodendrocyte glycoprotein (MOG)- T cell reactivity (98). In
contrast, the treatment with a mixture of three strains
(Lactobacillus paracasei DSM 13434, Lactobacillus plantarum
DSM 15312, and Lactobacillus plantarum DSM 15313) was able
to reduce the progression of established severe EAE in a
mechanism mediated by IL-10-producing Tregs (98). Single
species of Enterococci, Escherichia coli, and others have also
shown promising EAE study results (Table 1). The EAE model
has successfully addressed the protective role of probiotic
formulations with multiple species (105), some of which have
already been assessed in MS patients (Table 1). A systematic
review of the use of probiotic formulations in EAE and MS
studies has been recently published (111).
Frontiers in Immunology | www.frontiersin.org 4
As discussed above, gut microbiota modulates CNS inflammatory
demyelination inmurinemodels. In the following sections, we discuss
Bacteroides fragilis, and its capsular polysaccharide A (PSA),
identified as a member of the gut microbiota and microbial
product with immunomodulatory effects that we hypothesize can
regulate the extent of neuroinflammatory mechanisms associated
with CNS demyelinating diseases.
THE GUT MICROBIOTA AS A SOURCE
FOR IMMUNOMODULATORY FACTORS:
POLYSACCHARIDE A (PSA) PRODUCED
BY BACTEROIDES FRAGILIS

Bacteroides fragilis (B. fragilis), a prominent species of the genus
Bacteroides within the Gram-negative Bacteroidetes phylum is
part of the normal microbiota of the human colon. Bacteroides
species are among the most abundant and adept colonizers of the
human gut due to their ability to efficiently utilize complex host
and dietary glycans (112) and express different surface structures
by phase variation (113). B. fragilis, an obligate anaerobic Gram-
negative bacillus, colonizes the majority of healthy individuals
(114) and has profound effects on host physiology (115).
B. fragilis was initially identified as the most common anaerobe
in clinical isolates from abscesses caused by abdominal trauma
and bacteremia (116). When contained in the gut, B. fragilis plays
TABLE 1 | Single probiotic species and probiotic multi-species mixes evaluated for protection in murine EAE 1 and MS clinical studies.

Model of EAE/MS study Probiotic strains Primary mechanisms of action proposed Ref.

Prophylactic, in C57BL/6 EAE Escherichia coli Nissle Anti-inflammatory effects, reduction of Th1/Th17.
Restored intestinal barrier disruption

(99)

C57BL/6 EAE, during disease Lactobacillus reuteri Reduction of Th1/Th17, reduced proliferation of
autoreactive cells, restored dysbiosis

(100)

HLA-DR3.DQ8 double transgenic EAE Prevotella histicola Increased Treg, anti-inflammatory effects, and
reduction of Th1/Th17

(96,
101)

Prophylactic and therapeutic in C57BL/6 EAE Lactobacillus paracasei DSM 13434, L. plantarum
DSM 15312, and DSM 15313

Increased Treg, anti-inflammatory effects, and
reduction of Th1/Th17

(98)

Therapeutic, in C57BL/6 EAE Bifidobacterium animalis and Lactobacillus
plantarum

Increased Treg, anti-inflammatory effects, and
reduction of Th1/Th17

(102)

Wistar rats EAE, during the disease Enterococcus faecium L-3 Increased T cell function, with proposed involvement
of IL-10

(103)

Prophylactic, in C57BL/6 and SJL/J EAE Pediococcus acidilactici IL-10-producing regulatory Tr1 cells (104)
Therapeutic, in C57BL/6 EAE Lactibiane iki 2 Increased Treg (105)
Therapeutic, in Theiler’s murine encephalomyelitis
virus

Vivomixx 3 Anti-inflammatory responses, reduces astrogliosis,
increased Bregs

(106)

EAE in Lewis rats Lactobacillus plantarum NCIB 8826 and L. murines
CNRZ

Reduce cumulative disease burden: Mechanism of
action not evaluated

(107)

Prophylactic treatment in C57BL/6 EAE; ongoing
EAE.

IRT5 4 Increased IL-10 producing CD4+ T cells and IL-
producing CD11c+ monocytes

(108)

MS; RR-MS subjects on glatiramer acetate vs.
untreated and healthy controls

Vivomixx Reduced peripheral monocyte-mediated responses
and APC function

(109)

MS; Randomized, double-blind, placebo-
controlled trial

L. acidophilus, L. casei, L. fermentum,
Bifidobacterium bifidum

Improved EDSS, anti-inflammatory effects (110)
May 2021 | Volume 12 | Article 6
1 EAE protection studies performed with PSA and PSA-producing B. fragilis were not included since they are extensively discussed in the manuscript’s body.
2 Lactibiane iki: Bifidobacterium lactis LA 304, Lactobacillus acidophilus LA 201, and L. salivarius LA 302.
3 Vivomixx: Lactobacillus acidophilus DSM 24735, L. plantarum DSM 24730, L. paracasei DSM 24733, L. delbrueckii subsp. Bulgaricus DSM 24734, Bifidobacterium longumDSM 24736,
B. breve DSM 24732, B. infantis DSM 24737, and Streptococcus thermophilus DSM 24731.
4 IRT5: Lactobacillus casei, L. acidophilus, L. reuteri, Bifidobacterium bifidum, and Streptococcus thermophilus.
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an intricate role in the colon and develops a beneficial relationship
with the host (9). Monocolonization of germ-free mice with
B. fragilis leads to the immune system’s cellular and physical
development (10, 117, 118). B. fragilis can also alleviate intestinal
inflammation in animal models of colitis (12, 117, 119) and confer
protection against infections (120–124). Recent studies show that
B. fragilis exerts its beneficiary effects not only locally in the
intestine but also systemically in extraintestinal tissues (13, 14,
125, 126) including CNS (15, 54, 127).

The capsular polysaccharide structure of B. fragilis plays an
essential role in establishing a symbiotic relationship with its host
(128). A large part of the B. fragilis genome is allocated to enzymes
that degrade dietary polysaccharides and produce capsular
polysaccharides of the organism (129–132). B. fragilis produces
eight different distinct capsular polysaccharides, regulated by phase
variation at the promoter region (133, 134). Variable expression of
polysaccharides A through H creates a remarkable surface diversity
which is vital for symbiosis (135, 136) and immunomodulation
(112, 137). PSA is most abundantly expressed among those
polysaccharides, and its immunomodulatory properties are most
extensively studied (138).

PSA is a zwitterionic immunomodulatory polysaccharide
consisting of a tetrasaccharide repeating unit (139, 140). The
zwitterionic structure with a negative and a positive charge in
each repeating unit is essential for the immunological potency of
PSA (141, 142) and is required to activate T cells through the major
histocompatibility complex II (MHCII) pathway (143, 144). High-
resolution LC-MS/MS analysis shows that the terminal-reducing
end of PSA contains a covalently attached lipid moiety required to
activate antigen-presenting cells and protect against EAE (17). PSA
is processed by antigen-presenting cells (APCs) through
depolymerization in endocytic compartments in a nitric oxide-
dependent manner (145, 146) and presented through the MHCII
pathway to activate T cells (143, 147). The beneficial effects of PSA
on the host immune system are manifested through multiple
mechanisms. Microbial colonization in the gut is essential for host
health. Host-specific microbiota is required for the full maturation
of a functional immune system (148). Germ-free mice grown in
sterile conditions develop physical and functional defects in their
immune system, making them predisposed to infectious and
inflammatory diseases (149). Recolonizing germ-free (GF) mice
with PSA expressing B. fragilis mediates immune system
development and can correct germ-free animals’ deficiencies (10).
PSA-dependent colonization of B. fragilis in a unique mucosal niche
in the gut results in the induction of regulatory T cells and
suppression of Th17 cells (150). WT B. fragilis but not the DPSA
mutant induces anti-inflammatory CD4+ CD45Rblow T cell
population (119) and protects animals from the T cell transfer
model of experimental colitis. In addition, animals orally treated
with pure PSA (119) or PSA containing outer-membrane vesicles
(OMVs) from WT B. fragilis (151) can protect animals from
intestinal inflammation. PSA-mediated immunomodulation
requires tolerogenic plasmacytoid dendritic cells (pDCs) (12),
which activate a specific set of T cells defined as IL-10–producing
CD4+CD25+Foxp3+ Treg cells with an inducible phenotype (11).
Innate and adaptive immune responses initiated by PSA require
Frontiers in Immunology | www.frontiersin.org 5
toll-like receptor 2 (TLR2). TLR2 is necessary for inducing the genes
(e.g., iNOS, MHCII, and CD86) required for processing and
presenting PSA by APCs (152). As a result, PSA exposure of
APCs increases the antigen presentation capacity of the cells by
increasing the expression of MHCII and costimulatory signals,
including ICOSL (12). The enhanced production of IL-10
triggered by pDCs after PSA recognition is ablated in the absence
of ICOSL/ICOS signal (12). In addition, TLR2 expression on APCs
is necessary to induce IL-10 producing CD4+ T cells (12) and
protection against colitis (11, 12) and EAE (16, 17). PSA is
recognized by the TLR2/TLR1 heterodimer in collaboration with
Dectin-1 initiating a signaling cascade that involves the
phosphoinositide 3-kinase (PI3K) pathway (17). Activation of
PI3K pathway leads to phosphorylation and inactivation of
glycogen synthase kinase 3b (GSK3b), promoting cAMP response
element-binding protein (CREB)-dependent transcription of anti-
inflammatory genes. Furthermore, TLR2 directs the expansion of
CD39+CD4+ T cells in response to PSA, required for PSA-mediated
protection against EAE. PSA’s EAE protection is ablated in TLR2
(16, 17), TLR1, and Dectin-1 deficient mice (17).

The interactions between PSA and the host’s intestinal
dendritic cells are multifactorial. PSA recognition by colonic
dendritic cells through TLR4-TRIF (TIR domain-containing
adapter-inducing interferon-b) domain pathway, through the
activation of interferon regulatory factors (IRFs), induces the
production of IFN-b with anti-viral activity (153). The activation
of the TLR4/TRIF pathway depends on the presence of a
lipooligosaccharide (LOS) fraction linked covalently to the
polysaccharide, anchoring the macromolecule to the outer
membrane of B. fragilis (17). PSA produced by B. fragilis was
identified as a symbiont factor promoting IFN-b-dependent
protection against vesicular stomatitis virus infection. PSA’s
anti-viral effects were lost in the absence of both TLR4 and
IFN-b (153). Thus, the production of IFN-b by colonic dendritic
cells with CD103+CD11b- and CD103-CD11b+ phenotypes is
regulated by PSA and B. fragilis and likely by other commensal
microbiota (153). Figure 1 summarizes the recognition and
cellular signaling pathways triggered by PSA in dendritic cells
that result in the activation of immunomodulation dominated by
IL-10-producing CD4+ T cells and anti-viral responses.
PSA AGAINST NEUROINFLAMMATION

Studies demonstrating the impact of Bacteroides fragilis and PSA on
EAE pathology (15, 127) were the first mechanistic examples of
immunomodulation by gut microbiota in multiple sclerosis.
B. fragilis and PSA’s beneficial effects beyond the gastrointestinal
tract are observed most strikingly in the gut-brain axis using EAE.
When antibiotic-treated mice were colonized with WT B. fragilis
but not the DPSA mutant, they were protected from EAE (127).
Immunoprotection by PSA in EAE requires TLR2, TLR1, and
Dectin-1 (17) and a specific tolerogenic DC subset called
plasmacytoid dendritic cells (pDC), as shown in Figure 1 (12). In
the EAE model, WT B. fragilis protects by inducing Foxp3+ Tregs
and IL-10, whereas the DPSA mutant induces proinflammatory
May 2021 | Volume 12 | Article 662807
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cytokines IL-17 IL-6 and causes pathology. In addition,
CD103+CD11c+ DCs isolated from cervical lymph nodes of
DPSA-colonized animals are unable to convert Foxp3-CD4+

T cells into Foxp3+Treg cells (127). Furthermore, prophylactic
or therapeutic treatment with pure PSA is sufficient to protect
animals from EAE (15). PSA can induce accumulation of
CD11c+CD103+ DCs in cervical lymph nodes, which convert
naive CD4+ T cells into Foxp3+ Treg cells (15). IL-10–deficient
mice are not protected from EAE, showing that PSA’s
immunoprotection in the EAE model requires IL-10–producing
Treg cells induced by tolerogenic DCs (15). In addition,
PSA-induced regulatory T cells express CD39 independent of
their Foxp3 expression and require TLR2 for activation (16).
CD39 [nucleoside triphosphate diphosphohydrolase-1
(NTPDase 1)] is an ectoenzyme that degrades ATP released
from damaged cells to AMP and adenosine. Previous studies
have shown that CD39 is expressed by regulatory T cells (145)
and has an essential role in suppressing Th17 cells (154, 155).
CD39+ Tregs are reduced inMS patients (154), contributing to the
Th17-driven pathology in this disease. CD39 deficiency increases
IL-17 and decreases IL-10 production in mice and abrogates PSA-
induced immunoprotection in EAE (16).
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Furthermore, CD39 enhances the migratory capacity of CD4+

T cells, which results in PSA-dependent accumulation of CD39+

CD4+ Foxp3+ regulatory T cells in the CNS (156). In the DC-T
cell coculture system, using cells from healthy human peripheral
blood mononuclear cells (PBMCs), PSA induces IL-10
producing CD39+Foxp3+ cells in vitro (157). Furthermore, PSA
increases the expression of CD39 and IL-10 and enhances the
suppressive function of Foxp3+CD4+ cells (157). Similarly, PSA
drives differentiation of regulatory T cells and IL-10 production
using naïve T cells from MS patients (158). Notably, induced
expression of Foxp3 in response to PSA was higher in MS
patients than in healthy controls (158).

The protective effects of PSA against neuroinflammation were
also addressed in a murine model of viral encephalitis. The
induction of neuroinflammation with Herpes Virus was
controlled by PSA’s administration that promoted a protective
mechanism by IL-10 (126). The phenotypes of IL-10-producing
cells induced by the PSA treatment were heterogeneous, with
inductions of ICOS+CD39+CD37+CD4+ T cells, CD37+CD8+ T
cells, and IL-10-producing B cells. IL-10-producing Tregs were
increased in draining LNs of PSA-treated mice compared to PBS-
treated mice. The protection against neuroinflammation
FIGURE 1 | Recognition, cell signaling, and immunomodulatory pathways triggered by PSA in colonic dendritic cells. PSA is recognized by TLR1/TLR2 dimers that
result in NF-kB nuclear translocation and IRF-mediated activation of Type I IFN gene expression and enhanced antigen processing and presentation by increased
expression of iNOS, MHC class II molecules, and costimulatory signals mediated by CD86 and ICOSL. In addition, Dectin-1, a C-Type Lectin pattern recognition
receptor, contributes with TLR2 in the cell signal activation through the PI3K pathway, resulting in the nuclear phosphorylation and activation of CREB, triggering the
expression of anti-inflammatory genes. As a result, naïve CD4+ T cells are activated and differentiated in IL-10-producing immunomodulatory cells with Foxp3, CD39,
Tr1 phenotypes that might depend on the inflammatory condition (IBD, asthma, EAE, or other). PSA recognition by TLR4 dimers induces the production of IFN-b
with anti-viral activity through a MyD88 and TRIF-dependent pathway. The activation of TLR4/TRIF is dependent on the lipooligosaccharide (LOS) portion of the
polysaccharide. CREB, cAMP response element–binding protein; GSK3b, glycogen synthase kinase 3b; IFN, interferon; IL-10, interleukin 10; iNOS, inducible nitric
oxide synthase; IRF, interferon regulatory factors; MHC II, major histocompatibility complex class II; MyD88, myeloid differentiation primary response 88; NFkB,
nuclear factor-kB; PSA, polysaccharide A; PI3K, phosphoinositide 3-kinase; TLR, toll-like receptor; TRAP, tumor necrosis factor receptor-associated protein.
TRIF, TIR domain-containing adapter-inducing interferon-beta.
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triggered by the virus was also observed when mice were treated
with PSA-producing B. fragilis (126). Thus, it appears that PSA is
a potent modulator of neuroinflammation, in addition to the
protective effects observed against infections (120–124),
autoimmunity at the intestinal level (12, 117, 119), asthma
(13), or pulmonary inflammation (14). More work is necessary
to elucidate whether PSA’s phenotypes depend on the
inflammatory pathways triggered in specific target tissues of
the different disorders. A recent paper showed that PSA
promotes the activation of an interferon responsive gene (IRG)
signature responsible for producing inflammatory cytokines and
cellular signals resulting in PD1, Lag3, and Tim3 expression
(159). PSA regulates Type I interferons’ production by colonic
dendritic cells, specifically IFN-b by TLR4-TRIF domain
signaling mechanisms (153). The production of IFN-b directs
the anti-viral protective responses induced by PSA (153).
CONCLUSIONS

The microbiome research field had expanded continuously since
the early 2000s, which helped us understand the human
microbiome’s role in health and disease. In recent years, the
field’s scope shifted from the characterization of the microbiota
composition and its association to diseases to mechanistic and
causative understanding of microbes on human health.

The most prominent and most studied effect of gut
microbiota is on the immune system, which can influence a
wide range of infectious, inflammatory, metabolic, and
autoimmune diseases (160). The immune system plays an
essential role in the bidirectional communication within the
gut-brain axis and modulates diseases in the CNS, including
multiple sclerosis. Several different microbial species have been
associated with susceptibility to and progression of multiple
sclerosis. However, this is still an emerging field, and
researchers must address numerous challenges in their research.

Separating correlation from causation in microbiome-disease
association studies is one of the biggest challenges in the field.
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The literature has been dominated by associative studies
comparing differences in microbiomes of MS patients with
healthy controls. To translate these association studies into the
clinic, researchers need to discover which of these differences are
causing the disease. In addition, it is challenging to define
“healthy microbiota” since there is tremendous intrapersonal
and interpersonal variability in the composition of the human
microbiota. Dysbiosis referring to disturbances in the microbiota
structure is widely used without specific definitions of balanced
and imbalanced microbial communities’ compositions.
Furthermore, while the GF and gnotobiotic animals are
invaluable for microbiome research, animal studies ’
applicability to humans needs to be verified.

An accumulating body of research has proven the potential
use of gut symbionts as microbial therapeutics. Following the
success of FMT in treating C. difficile infections, several
companies are testing groups of microbes or individual
bacteria in clinical trials. However, understanding molecular
interactions that shape host-bacterial interactions is crucial for
the effective design of microbial therapeutics. This review
highlights the microbiota’s role in mediating immune
responses to multiple sclerosis, focusing on an archetypical
microbial molecule PSA. PSA is a hallmark of symbiotic
molecules with immunoregulatory functions. Although further
protection and toxicity studies are needed to address PSA’s
applicability as a therapeutic, we hypothesize that PSA, and
likely other unidentified gut symbiont factors, is a safe and
effective alternative for treating multiple sclerosis and other
CNS diseases.
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