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Abstract

Background: Bladder cancer (BLCA) is the fifth most common type of cancer worldwide, with high recurrence
and progression rates. Although considerable progress has been made in the treatment of BLCA through
accurate typing of molecular characteristics, little is known regarding the various genetic and epigenetic
changes that have evolved in stem and progenitor cells. To address this issue, we have developed a novel
stem cell typing method.

Methods: Based on six published genomic datasets, we used 26 stem cell gene sets to classify each dataset.
Unsupervised and supervised machine learning methods were used to perform the classification.

Results: We classified BLCA into three subtypes—high stem cell enrichment (SCE_H), medium stem cell
enrichment (SCE_M), and low stem cell enrichment (SCE_L)—based on multiple cross-platform datasets. The
stability and reliability of the classification were verified. Compared with the other subtypes, SCE_H had the
highest degree of cancer stem cell concentration, highest level of immune cell infiltration, and highest
sensitivity not only to predicted anti-PD-1 immunosuppressive therapy but also to conventional
chemotherapeutic agents such as cisplatin, sunitinib, and vinblastine; however, this group had the worst
prognosis. Comparison of gene set enrichment analysis results for pathway enrichment of various subtypes
reveals that the SCE_H subtype activates the important pathways regulating cancer occurrence, development,
and even poor prognosis, including epithelial-mesenchymal transition, hypoxia, angiogenesis, KRAS signal
upregulation, interleukin 6-mediated JAK-STAT signaling pathway, and inflammatory response. Two identified
pairs of transcription factors, GRHL2 and GATA6 and IRF5 and GATA3, possibly have opposite regulatory effects
on SCE_H and SCE_L, respectively.

Conclusions: The identification of BLCA subtypes based on cancer stem cell gene sets revealed the complex
mechanism of carcinogenesis of BLCA and provides a new direction for the diagnosis and treatment of BLCA.
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Background
Bladder cancer (BLCA), generally occurs in bladder
intraepithelial cells, is the fifth most common type of
cancer worldwide. Approximately 151,000 new cases of
BLCA and more than 52,000 related deaths worldwide
are reported annually [1-3]. Urothelial cancer is the
most common type of BLCA, accounting for approxi-
mately 90% of all BLCA cases [1]. Most BLCA cases can
be diagnosed at an early stage, but the rate of recurrence
and progression remains high, approximately 78% of pa-
tients relapse within 5 years [4]. Using various biological
detection technology, molecular typing of BLCA through
genetic analysis has shown differences in drug reactivity
and prognosis in patients with BLCA based on their bio-
logical heterogeneity, for example, molecular classifica-
tion of the Cancer Genome Atlas Quartile [5],
University of North Carolina Dichotomy [6], MD Ander-
son Cancer Center Trisection [7], and Lund University
Quintiles [8]. Although these classification methods re-
veal the pathogenic mechanism of BLCA at the molecu-
lar level, they do not fundamentally demonstrate the
origin of heterogeneity in tumors. New evidence sug-
gests that cancer stem cell (CSC) subpopulations are
characterized by a mixture of stem cells and cancer cells.
In addition to the abilities of self-renewal and differenti-
ation, CSCs can also act as tumors’ seeds [9, 10] and are
thus considered as the driving force of heterogeneity.

Tumors are complex integrated systems composed of
relatively differentiated tumor cells, infiltrating immune
cells, CSCs, tumor-associated endothelial cells, stromal
cells, and other cell types [11, 12]. The function and
plasticity of CSCs are induced by specific signals and cell
interactions in the tumor niche. Studies have shown that
stem cells in melanoma can preferentially inhibit T cell
activation and influence the induction of regulatory T
cells, thereby evading recognition by the immune system
[13]. In glioblastoma, CSCs suppress T cell responses by
generating immunosuppressive cytokines through the
STAT3 pathway and inducing T cell apoptosis, leading
to an increase in cancer stemness and carcinogenic po-
tential [14]. Additionally, some molecular signal trans-
duction pathways, which control stem cell balance, are
abnormally activated or inhibited to contribute to the
self-renewal, proliferation, survival, and differentiation
characteristics of CSCs. In a study using an experimental
model of colon cancer, elevated inflammatory nuclear
factor B signal transduction enhanced Wnt activation
and induced dedifferentiation of non-stem cells, which
acquired tumor-initiating ability [15]. These results indi-
cate that immune cells and their related cytokines and
signal transduction pathways can directly regulate and
enhance the CSC phenotype.

CD44 is a CSC surface marker [16], including BLCA
stem cells [17], and its overexpression is positively
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correlated with BLCA tumor aggressiveness. IL-6 can
regulate CD44 which is essential for the maintenance of
normal stem cells. In addition, abnormal activation of
the JAK-STAT signaling pathway induces tumors, while
the IL6/JAK/STATS3 signaling pathway helps to maintain
the plasticity of breast CSCs. Meanwhile, upon its activa-
tion, the mTORC1-STATS3 signaling pathway also helps
to maintain the stemness of BLCA stem cells [18, 19].
MYC influences somatic cell reprogramming and con-
trols embryonic stem cell self-renewal. Following MYC
inactivation, tumors undergo various proliferative ar-
rests, cell differentiation, and apoptosis, thus inhibiting
tumor occurrence. In liver tumor cells, Shachaf et al.
have demonstrated that MYC inactivation triggers stem
cell differentiation, while its reactivation can restore
their tumor characteristics. Therefore, although the in-
activation of oncogenes restores normal cells, some cells
retain their potential of becoming cancerous, possibly
existing in a tumor dormant state [20]. GATA3 influ-
ences the maintenance of BLCA stem cells. Yang et al.
[21] were the first to show that the KMT1A-GATA3-
STAT3 signaling pathway promotes BLCA stem cell
self-renewal. KMT1A protein directly catalyzes the tri-
methylation modification (H3K9me3) of the 9th lysine
of histone H3 in the promoter region of the GATA3
gene (- 1351 to approximately — 1172), thereby inhibit-
ing its transcription. The GATA3 protein can directly
bind to the promoter region (- 1710 to approximately -
1530) of the STAT3 gene inhibiting its transcription.
Therefore, the transcriptional repression of the GATA3
gene, mediated by histone methyltransferase KMTIA,
promotes the upregulation of STAT3 expression and ac-
tivation, ultimately achieving the maintenance of BLCA
stem cells.

In our study, we divided BLCA into high stem cell en-
richment (SCE_H), medium stem cell enrichment (SCE_
M), and low stem cell enrichment (SCE_L) subtypes,
using stem cell gene set collection. We have demon-
strated the stability and reliability of this classification
with six independent datasets using the unsupervised
clustering method. Importantly, we systematically exam-
ined the prognostic significance of BLCA stem cell sub-
types, relationship between immune cells and genes,
sensitivity of immune checkpoint inhibitor treatment,
and possible changes in the biological pathways and im-
portant transcriptional regulation factors/networks
(Fig. 1). Our study provides an insight into and a basis
of BLCA stem cells and helps to improve clinical diagno-
sis and treatment of BLCA.

Methods

Stem cell signature collection

The 26 human stem cell gene sets used in this study
were obtained from StemChecker (http://stemchecker.
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sysbiolab.eu/) [22]: expression checks (18), RNAi screens
(1), literal curation (2), computationally derived (2), and
TF target genes (3).

Data processing

The datasets used to identify the BLCA stem cell sub-
types were from three different platforms: The Cancer
Genome Atlas (TCGA), Gene Expression Omnibus
(GEO), and ArrayExpress databases. TCGA’s RNA-seq
data (fragments per kilobase of transcript per million
mapped reads (FPKM)) of 19 normal samples and 414
cancer samples, variant data of VarScan, and clinical in-
formation were downloaded from TCGA Knowledge
Base (https://portal.gdc.cancer.gov/repository). Gene an-
notation was performed using the Ensemble database.
The ArrayExpress database contains RNA-seq and clin-
ical data (n=476) for 476 cases of early urothelial car-
cinoma (E-MTAB-4321) FPKM from the European
Genome-phenome Archive. The expression matrices of
four GEO datasets, GSE13507 (1 = 165), GSE32548 (1 =
131), GSE31684 (1 =93), and GSE32894 (1 = 308), were
all quantile-normalized, and the genes were annotated in
their respective platform files Illumina human -6 v2.0

expression beadchip, Illumina HumanHT-12 V3.0 ex-
pression beadchip, [HG-U133_Plus_2] Affymetrix Hu-
man Genome U133 Plus 2.0 Array, and Illumina
HumanHT-12 V3.0 expression beadchip.

Identification of BLCA subtypes based on stem cell gene
sets

For each BLCA dataset, we used the GSVA package to
perform a single-sample gene set enrichment analysis
(ssGSEA) to quantify the enrichment level of each BLCA
sample in the 26 stem cell gene sets. The Consensu-
sClusterPlus package was used for consensus clustering
and stem cell subtype screening of the ssGSEA scores.
Briefly, k-means clustering was performed using 50 itera-
tions (each using 80% of samples). The best cluster
number was determined by the clustering score for the
cumulative distribution function (CDF) curve, and the
relative changes in the area under the CDF curve were
evaluated.

Survival analysis
The Kaplan—Meier curve was used to describe the differ-
ences in survival of patients with BLCA in different
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datasets for classifying stem cell subtypes. We compared
the survival prognosis of patients with BLCA (overall
survival  (OS), relapse-free survival (RFS), and
progression-free survival (PFS)). The log-rank test used
P <0.05 as the threshold to detect significant differences
in survival time.

Immune checkpoint inhibitor treatment response
prediction

Tumor immune dysfunction and exclusion is a calcula-
tion method for simulating tumor immune escape pri-
marily by examining how the expression of each gene in
the tumor interacts with the level of cytotoxic T cell
(CTL) infiltration to affect patient survival [23]. We used
TCGA’s FPKM RNA_seq expression profile combination
subclass mapping method to predict the clinical re-
sponse of BLCA stem cell subtypes to immune check-
point blockade [24].

Chemical response prediction

We used TCGA’s FPKM RNA seq expression profile to
predict the chemotherapy response of each sample based
on the largest publicly available pharmacogenomics
database (Genomics of Drug Sensitivity in Cancer
(GDSC), https://www.cancerrxgene.org/); six commonly
used chemotherapeutic agents were selected, namely,
cisplatin, doxorubicin, gemcitabine, sunitinib, metho-
trexate, and vinblastine. The prediction process was con-
ducted using the R package “pRRophetic” where the
half-maximum inhibitory concentration IC50 of the
sample was estimated using ridge regression, and the ac-
curacy of the prediction was evaluated using 10-fold
cross-validation, according to the GDSC training set. All
parameters were set to the default values, and the re-
peated gene expression was averaged.

Pathway enrichment analysis

We compared the biological changes in every two sub-
types in TCGA dataset and used h.all.v7.1.symbols.gmt
as the reference gene set for the gene set enrichment
analysis (GSEA). The analysis was performed using 1000
permutations, a < 0.05 false discovery rate (FDR) as the
screening threshold, and GSEA version 4.0.1.

Evaluation of immune cell infiltration level, tumor purity,
and stromal content in BLCA

ESTIMATE was used to evaluate the level of immune
cell infiltration, tumor purity, and stromal content in the
BLCA stem cell typing [25].

Comparison of immune cell fraction between BLCA stem
cell subtypes

CIBERSORT is an algorithm that deconvolves the ex-
pression matrix of 22 human immune cell subgroups
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and can be used to estimate the proportion of immune
cells [26]. We set the permutations to 1000 and used
P <0.05 as the screening threshold. The Kruskal-Wallis
test was used to compare the differences in immune cell
components of each BLCA stem cell subtype.

Gene co-expression network analysis

To identify key genes or gene networks that characterize
various stem cell subtypes in BLCA, we performed
weighted correlation network analysis (WGCNA) [27] to
detect gene modules associated with stem cell subtypes.
The gene matrix is composed of 4876 differential genes
in BLCA control normal tissues (the difference is gener-
ated by limma package in R, |log2 fold change|>1, P<
0.05). WGCNA network construction and module detec-
tion used the unsigned topological overlap matrix; the
best soft threshold (power) was set to 3, the minimum
number of genes in the module was 50, and the branch
merge interception height was 0.25. The hub gene was
defined as that which has a Pearson correlation (due to
the generally low value of the connection weight, the
Pearson correlation was used) of greater than 0.30, with
connections to at least 10 genes. The gene co-expression
network was visualized using the Cytoscape 3.7.1 soft-
ware. Wilcoxon tests were used to examine the expres-
sion differences of hub genes between stem cell
subtypes. The results of survival analysis were divided
into high and low groups based on the median expres-
sion of the transcription factor using the GEPIA (http://
gepia.cancer-pku.cn/) database [28]. The log-rank test
was used for survival distribution. Top 20 enrichment
pathways were obtained using Metascape (http://metas-
cape.org/gp/index.html#/main/stepl).

Statistical analysis

A comparison of the estimated IC50 of BLCA stem cell
subtypes was performed using the Kruskal-Weallis test.
CD274 expression differences between stem cell sub-
types were evaluated using ANOVA in R. All tests were
two-tailed, and P<0.05 was considered as statistically
significant.

Results

BLCA subtypes identified based on stem cell gene sets
We collected 26 stem cell gene sets representing unique
self-regenerating properties (Supplementary Table 1)
and quantified the scores of 26 stem cell gene sets in
each sample using ssGSEA. We used the Consensu-
sClusterPlus package to divide all tumor samples into k
(k=2-9) different subtypes. The CDF curve based on
the consensus scores achieves the best division when
k = 3. Additionally, the principal component analysis re-
sults indicated that the ssGSEA scores, based on the 26
stem cell gene sets, were divided into 3 subtypes


http://www.cancerrxgene.org/
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(Fig. 2a—d), which were defined as SCE_H, SCE_M, and
SCE_L (Fig. 2e). Similarly, we performed the same clus-
tering and subtyping for the remaining datasets E-
MTAB-4321, GSE13507, GSE31684, GSE32548, and
GSE32894 (Supplementary Figure 1).

When using ESTIMATE to evaluate the level of im-
mune infiltration in all datasets, we found that the SCE_
H immune score in all 6 datasets was much higher than
that for other subtypes, and SCE_L showed the lowest
immune score (Supplementary Figure 2). The compari-
son of the stromal content showed the same trend
(SCE_H > SCE_M > SCE_L). However, the comparison
of tumor purity of the BLCA stem cell subtypes showed
opposite results. SCE_H and SCE_L showed the lowest
and highest tumor purity (SCE_L > SCE_M > SCE_H),
respectively. This is consistent with the results observed
for most HLA genes and immune cell marker genes
evaluated, such as CD8A (CD8 T cells), GZMA (cyto-
toxic cells), IFNG (Thl cells), PMCH (Th2 cells), CD68
(macrophages), and IL17A (Th17 cells), among others,
which were significantly upregulated and downregulated
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in SCE_H and SCE_L, respectively (Supplementary Fig-
ure 3).

Due to the close association between BLCA stem cell
subtypes and immunity, we focused on the differential
expression of CD274 (PD-L1) in each subtype (Fig. 3). In
all six datasets, SCE_H and SCE_L showed the highest
and lowest expression levels, respectively, indicating that
the BLCA subtype SCE_H was more sensitive to anti-
PD-1 immunotherapy than the remaining subtypes. Sub-
sequent immune checkpoint inhibitor treatment re-
sponse prediction and survival analysis have both
confirmed these results.

Survival of patients with different BLCA stem cell
subtypes

Since BLCA is a heterogeneous disease with a high re-
currence rate, exploring the association between subtype
classification and clinical prognosis is beneficial for
prognosis assessment and clinical management of BLCA.
We performed OS, RES, and PFS analysis on the six
datasets. Unexpectedly, all datasets showed consistent
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trends (Fig. 4). SCE_H and SCE_L showed the worst and
best survival in the prognostic analysis (SCE_L > SCE_
M > SCE_H), respectively. The P values of the log-rank
for the OS of TCGA, GSE31684, GSE32548, and
GSE32849 were 5.631e-4, 0.038, 2.158e-4, and 8.755e
-6, respectively. The P values for the log-rank of PFS for
TCGA, E-MTAB-4321, and GSE13507 were 0.004,
3.976e-9, and 7.046e—4, respectively, and the log-rank P
value of TCGA RFS was 0.032.

Prediction of therapeutic response of BLCA stem cell
subtypes to immune checkpoint inhibitors

Based on the above results, we further evaluated the
responses of the three subtypes to immunotherapy.
At present, 5 PD-1/PD-L1 immunotherapy drugs have
been approved by the Food and Drug Administration
for treating BLCA. This includes nivolumab and pem-
brolizumab (both PD-I inhibitors) approved in 2016
and 2017 for treating patients with locally advanced
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or metastatic urothelial cancer who were administered
first-line platinum-containing chemotherapy for 1 year
[29-34]. We used the tumor immune dysfunction and
exclusion algorithm to predict the likelihood of a re-
sponse to immunotherapy. The results showed signifi-
cant differences in the responses to immunotherapy
among the SCE_H (20%, 32/158), SCE_M (42%, 71/
168), and SCE_L groups (61%, 54/88) (P =2.951e-10).
We further performed subclass mapping to compare
the expression profiles of the three stem cell subtypes
which were defined using another published dataset
containing 47 patients with melanoma who responded
to immunotherapy [35]. In a pairwise comparison of
the three subtypes, more promising results were ob-
served in SCE_H for the anti-PDI and anti-CTLA4
treatments compared to the other subtypes (Fig. 5a—
¢) (anti-PDI therapy: SCE_H vs SCE_L, FDR =0.036;
SCE_H vs SCE_M, P=0.046; SCE.M vs SCE_L,
FDR =0.048; anti-CTLA4 therapy: SCE_H vs SCE_L,
FDR =0.036; SCE_H vs SCE_M, FDR=0.008). We
further correlated the BLCA stem cell typing results
with the published molecular typing and immunotyp-
ing results in TCGA cohort. SCE_H primarily corre-
sponded to the molecular subtypes luminal-infiltrated
and basal squamous and Cl1 and C2 for immune
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subtypes; SCE_L primarily corresponded to luminal-
papillary and C1-C4, and SCE_M showed a wide dis-
tribution of molecular and immune subtypes (Fig. 5d).

Differences in sensitivity of stem cell subtypes to
chemotherapy

Since chemotherapy is a common treatment strategy
for patients with BLCA, we selected six chemothera-
peutic agents (cisplatin, doxorubicin, gemcitabine,
sunitinib, methotrexate, and vinblastine) and evalu-
ated the response of the three subtypes. We de-
signed the prediction model on the GDSC cell line
dataset using ridge regression and evaluated the sat-
isfactory prediction accuracy using 10-fold cross-
validation. We estimated the IC50 of each sample in
TCGA dataset based on the prediction models of
these six chemotherapeutic agents. For cisplatin, su-
nitinib, and vinblastine, SCE_L was the least sensi-
tive while SCE_H was the most sensitive compared
to the other subtypes. For doxorubicin, SCE_M was
the most sensitive, while for gemcitabine and metho-
trexate, SCE_M was the most sensitive and SCE_L
was the least sensitive relative to the other subtypes
(Fig. 6).
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0.05). d Sankey chart showing the distribution of BLCA stem cell subtypes in C1-C6 (C5 was not available for BLCA) and molecular subtypes.
BLCA, bladder cancer; SCE_H, high stem cell enrichment; SCE_M, medium stem cell enrichment; SCE_L, low stem cell enrichment
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Differences among 22 human immune cell subgroups of
BLCA stem cell subtypes in CIBERSORT

To explain the difference in survival of patients with dif-
ferent BLCA stem cell subtypes, we used the CIBER-
SORT algorithm to calculate the proportions of 22
immune cells in each subtype of the six datasets, with
P<0.05 as the threshold for screening. The results
showed that the proportions of macrophages M0, M1,
and M2 had an upward trend in the SCE_H subtype (ex-
cept for GSE13507) and the proportion of regulatory T
cells (Tregs) was significantly (P <0.05) increased in the
SCE_H subtype (Supplementary Figure 4A—F). We also
used the ssGSEA scores of immune cells in each cohort
as continuous variables and a performed univariate Cox
analysis (Supplementary Table 2). Further, we divided
the median value of the corresponding data’s ssGSEA
scores into groups with high and low scores. A high
score indicated that patients with a high macrophage
MO content had a worse prognosis. This is consistent
with the poor clinical prognosis of patients with the
SCE_H subtype compared to that of patients with the
other subtypes. The trend for macrophages M2 was
similar to that of macrophages MO, whereas macro-
phages M2 and Tregs showed opposite trends

(Supplementary Figure 4G-L). This indicates that com-
pared to Tregs, macrophages M0 and M2 have completely
opposite regulatory mechanisms during BLCA prognosis.

Correlation of CD274 with stemness genes and risk
observation of stem cell subtype populations

We identified an important immune role for CD274 in
the stem cell subtypes, and thus, we further explored the
correlation between CD274 and the identified stemness
genes. Figure 7a—g shows the scatter plots of the expres-
sion of CD274 and stemness genes CD44, GATA3,
HIF1A, ID1, MYC, SOX9, and CXCL8 in the BLCA
TCGA cohort. Among them, CD274 was negatively cor-
related with IDI and GATA3 and positively correlated
with CD44, HIFIA, MYC, SOX9, and CXCL8 (Fig. 7h).
We divided the patients according to the optimal expres-
sion cutoff of CD274 and each stemness gene into risk
groups I, I, III, and IV (for example, CD274 and CD44
corresponded to CD274°“CD44'°%, CD274"¢"CD44"",
CD274"°" CD44"#" and CD274™¢" CD44MsM). Accord-
ing to the scatter plot, for each pair of risk groups di-
vided by CD274 and the optimal threshold of stemness
gene expression, patients with stem cell subtypes pri-
marily belonged to groups I and III (87—-88%), while the
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SCE_L subtype was primarily concentrated in risk group
III of the CD274 and GATA3 and ID1I pairs, and in the
CD274 and CD44, finally, the HIFIA, MYC, SOX, and
CXCL8 gene pairs were concentrated in risk group I
Further survival analysis of groups I and III of each gene
pair showed that patients with the higher SCE_L subtype
had better survival than those with a lower SCE_L sub-
type (Fig. 7i—o). This is consistent with the observation

that patients in the SCE_L group had the longest sur-
vival duration.

GSEA for BLCA stem cell subtypes

To explore the biological changes caused by differences
in the enrichment of stem cells, we conducted a pairwise
comparison of the GSEA results for each subtype.
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By selecting at least one pathway with an FDR < 0.05,
we found that as the enrichment of stem cells increased,
the epithelial-mesenchymal transition (EMT) became
more significant. EMT is considered as a signal of malig-
nant transformation in all cancers, giving cells the ability
to metastasize and invade, by imparting stem cell char-
acteristics, reducing apoptosis and aging, and resisting
chemical and immunotherapy [36, 37] (Supplementary
Table 3). EMT can also activate multiple pathways; regu-
late cell metabolism, angiogenesis, proliferation, and mi-
gration; and enable cells to respond to hypoxic
environments. Pathways are also significantly enriched,
for example, during hypoxia, angiogenesis, inflammatory
response, IL6-mediated JAK-STAT signaling pathway,
and KRAS signal upregulation (Fig. 8). These pathways
together constitute a vicious circle of cancer occurrence,
proliferation, invasion, and metastasis.

Somatic mutation landscape of BLCA stem cell subtypes
with identified pathways

The tumor suppressor genes, TP53 and RBI, play an im-
portant role in regulating cell division [38]. Inactivation,
mutations, and deletions of TP53 and RBI are one of the
primary causes of BLCA [39]. The mutation frequency
of TP53 and RBI in SCE_L (31% and 4%) was much
lower than that in SCE_ M (56% and 25%) and SCE_H
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(47% and 18%). However, the mutation frequency of
STAG2, one of the most commonly mutated genes in
BLCA [40], in SCE_L (24%) was significantly higher than
that of SCE_M (11%) and SCE_H (9%). In the identified
EMT pathways, the mutation frequency of COL6A3,
LRPI, and FBN2 in SCE_L (12%, 12%, and 13%, respect-
ively) was significantly higher than that of SCE_M (3%,
6%, and 5%, respectively) and SCE_H (7%, 4%, and 4%,
respectively). In the hypoxia pathway, no MYH9 muta-
tion was observed in SCE_L (0%), while the mutation
frequencies in SCE_M and SCE_H were 5% and 8%, re-
spectively. In addition, the mutation frequencies of
CDKNIA in SCE_L, SCE_M, and SCE_H were 13%,
11%, and 6%, respectively, and in the KRAS signaling
pathway, the mutation frequencies of RELN in SCE_L,
SCE_M, and SCE_H were 12%, 6%, and 5%, respectively
(Fig. 9). High-frequency gene mutations during angio-
genesis and inflammation and in the IL6/JAK/STAT sig-
naling pathway were not obtained.

Key gene networks identified in BLCA stem cell subtypes

WGCNA is used to describe correlation patterns be-
tween genes. Using microarray gene expression data, or
RNA-seq gene expression data, WGCNA can be used to
identify highly correlated gene sets (module), which are
randomly assigned with different colors. The colors are
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only used to distinguish different modules with no prac-
tical meaning or associated value. WGCNA promotes a
network-based genetic screening method that can be
used to identify candidate biomarkers or therapeutic tar-
gets. A total of 14 gene modules were generated based
on WGCNA. Among them, brown and black modules
showed the strongest association with stem cell sub-
types. The brown module was positively correlated with
SCE_L and negatively correlated with SCE_H and SCE_
M, while the black module was positively correlated with
SCE_H and negatively correlated with SCE_M and SCE_
L (Fig. 10a). We intersected the genes in the black mod-
ule most correlated with SCE_H and the genes in the
brown module most correlated with SCE_L with human
transcription factors identified using Cistrome (http://
cistrome.org/). Two pairs of transcription factor regula-
tors were identified in the brown and black modules
(Fig. 10b, c), IRF5 and GATA3 and GRHL2 and GATAS6.
IRFS is a key transcription factor regulating the differen-
tiation of M1 macrophages into M2, enabling its anti-
inflammatory role; these cells also influence tissue repair
and reconstruction as well as cancer occurrence [41-
43]. GATA3 is a type 2 helper T cell (Th2) cytokine-
specific transcription factor and a key stemness gene
that regulates cell differentiation. It enables Th2 to ex-
press IL-4 and other cytokines, promotes antibody pro-
duction, mediates humoral immunity, and suppresses
anti-tumor immunity [21, 44, 45]. Therefore, GATA3
may act as a tumor suppressor gene in BLCA. GRHL2
and GATAG6 play various regulatory roles during embry-
onic development, damage repair, epidermal barrier for-
mation, tracheal epithelial formation, and neural tube
development. They also play an important role in the oc-
currence and development of tumors, cell proliferation,
invasion, and metastasis, which were verified by the rele-
vant pathways identified in the black module [46-52]

(Fig. 10d—e). Thus, we identified GATA3 and GATA6 as
important transcription factors with opposite expression
and effects on tumor prognosis in patients with different
BLCA stem cell subtypes (Fig. 10f—i).

Discussion

BLCA is one of the primary malignant tumors that en-
dangers human health. Although several molecular
genotyping schemes for BLCA have been proposed, they
remain in their infancy stage compared with those of
breast cancer [53-56]. A unified, well-developed, and
highly feasible molecular typing scheme is required for
better diagnosis and treatment of BLCA. Additionally, to
date, no studies have classified BLCA based on stem cell
gene sets, and thus, we used specific stem cell gene sets
to identify and verify our new classification for BLCA.
BLCA can be divided into three stable subtypes: SCE_H,
SCE_M, and SCE_L. Among them, the SCE_H subtype
showed the highest degree of immune infiltration and
lowest tumor purity relative to the other subtypes. Pa-
tients with this subtype have the worst prognosis. This
appears to contradict the previous suggestions that a
higher degree of tumor immune infiltration is associated
with a better prognosis. Using the CIBERSORT analysis
of the immune cell fraction of stem cell subtypes, we
found that the proportion of various cells associated
with cytotoxicity in the SCE_H subtype was significantly
lower than that in the other subtypes, such as resting
NK cells, CD8 T cells, and CD4 T cells. The number of
macrophages M0, M1, and M2 was significantly in-
creased. The composition of immune cells in the
tumor microenvironment is complex and has different
roles in various stages of tumor progression. Among
them, macrophages show the highest content in
tumor tissues and had the most significant regulatory
effect on tumors. These cells, which can promote the
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proliferation, invasion, and metastasis of tumor cells
and induce tumor cells to develop immune tolerance,
are known as tumor-associated macrophages (TAMs)
(most studies have suggested that TAMs are primarily
the M2 type) [57]. TAMs are often distributed around
CSCs, and the amount of infiltration is closely corre-
lated to the tumor histological grade and number of
CSCs. Jinushi et al. [58, 59] found that the growth

factor and inflammatory cytokine MFG-E8 and IL-6
secreted by TAM activate the STAT3 and sonic
hedgehog signaling pathways, thus inducing CSC for-
mation and enhance CSC tumorigenesis and resist-
ance to chemotherapy. This is consistent with our
survival analysis showing high ssGSEA scores for
macrophage MO and M2 and predicting a poor prog-
nosis for patients with BLCA.
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In addition, the immune checkpoint molecule, CD274
(PD-L1), was significantly upregulated in the SCE_H
subtype. This molecule suppresses the proliferation and
differentiation of T lymphocytes, promotes the differen-
tiation of Tregs, and induces the secretion of cytokines,
thereby suppressing the immune response [57]. Predic-
tion of the anti-PD-1 treatment response showed that
SCE_H is more sensitive to anti-PD-1 than other sub-
types, indicating that CD274 is highly expressed in
tumor/tumor stem cells and may be involved in the
tumor immune escape process. SCE_H primarily corre-
sponds with the luminal-infiltrated and basal-squamous
molecular subtypes of BLCA. These two types of tumors
exhibit high levels of immune infiltration and respond
well to immune checkpoint therapy (PD-1, PD-LI1, and
CTLA4). This demonstrates that the stem cell classifica-
tion we defined is closely correlated with the existing
molecular typing of BLCA. For locally advanced/meta-
static patients, the standard first-line treatment strategy
is combination chemotherapy (MVAC) consisting of
methotrexate, vinblastine, doxorubicin, and cisplatin,
and dual therapy (GC) consisting of gemcitabine and cis-
platin [60, 61]. Compared with other subtypes, SCE_H
had the highest sensitivity to cisplatin, sunitinib, and
vinblastine, while SCE_L was more sensitive to metho-
trexate and gemcitabine than the other subtypes. Metho-
trexate, an anti-folate chemotherapeutic agent, inhibits
tumor cell DNA synthesis by inhibiting dihydrofolate re-
ductase, thus halting tumor growth and reproduction.
This effect may be attributed to the lower mutation rate
of TP53 and RBI during cell cycle in the SCE_L sub-
types than other subtypes. Patients of SCE_H and other
subtypes of BLCA may benefit from a combination of
chemotherapy and immunotherapy.

Next, we explored the biological changes caused by
different levels of BLCA stem cell enrichment and
showed that SCE_H was positively correlated with EMT,
hypoxia, angiogenesis, and inflammatory response acti-
vation in the tumor microenvironment. Studies have
confirmed that early tumor cells are in an epithelioid
state, and as the tumor progresses, more mesenchymal
features are gradually obtained, such mesenchymal cells
are resistant to therapy. In addition, activation of EMT
in tumor cells induces the initial stages of tumors, also
known as the CSC state, suggesting that EMT is an inte-
gral process in the progression of all types of malignant
tumors [62]. In a breast tumor progression model, Morel
et al. [63, 64] showed that following activation by the
Ras-mitogen-activated protein kinase pathway, EMT in-
duction can drive breast epithelial cells to obtain stem
cell and tumorigenic properties of CSC. In addition,
COL6A3 may be involved during the EMT process in-
duced by TGF-B/Smad. COL6A3 silencing inhibits cell
proliferation and angiopoiesis [65], which is consistent
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with COL6A3 having a lower mutation rate in SCE_H
and SCE_M, and a higher mutation rate in SCE_L. Add-
itionally, activation of the hypoxic pathway helps cancer
cells to be more adaptable to the hypoxic environment.
Under hypoxic conditions, the hypoxia-inducible factor
(HIF-1a) pathway is activated to promote the release of
vascular endothelial growth factor and platelet-derived
growth factor, inducing endothelial cells from the ori-
ginal tumor blood vessels to proliferate, bud, and gener-
ate new tumor blood vessels, allowing tumors to invade
and metastasize. Notably, immune cells infiltrating the
tumor microenvironment can secrete a large number of
cytokines and chemokines to promote EMT in tumor
cells. Further, uncontrollable inflammatory lesions can
regulate EMT in tumor cells, and a positive feedback
loop can be formed between the inflammatory lesions
and EMT, allowing the EMT process and uncontrollable
inflammatory state to continue. These common path-
ways constitute a vicious circle of tumorigenesis, devel-
opment, drug resistance, and poor prognosis.

Conclusion

By identifying BLCA subtypes based on stem cell gene
sets, we systematically analyzed the relationship between
these subtypes in the tumor microenvironment and im-
mune cells, immunotherapy/chemotherapy response,
corresponding pathways, and key genes. These results
provide a basis and reference for the clinical diagnosis
and treatment of BLCA.
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1186/513287-020-01973-4.
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GSE32894, and best cut-off for (K) E-MTAB-4321 cohort in OS for macro-
phage MO, together with median ssGSEA score for (L) TCGA in OS for
macrophage M2. BLCA: bladder cancer; TCGA: The Cancer Genome Atlas.
Table S2. Univariate Cox analysis for all six datasets. Table $3. GSEA for

BLCA stem cell subtypes.
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