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The rise of oxygen on the early Earth about 2.4 billion years ago
reorganized the redox cycle of harmful metal(loids), including that
of arsenic, which doubtlessly imposed substantial barriers to the
physiology and diversification of life. Evaluating the adaptive
biological responses to these environmental challenges is inher-
ently difficult because of the paucity of fossil records. Here we
applied molecular clock analyses to 13 gene families participating
in principal pathways of arsenic resistance and cycling, to explore
the nature of early arsenic biogeocycles and decipher feedbacks
associated with planetary oxygenation. Our results reveal the
advent of nascent arsenic resistance systems under the anoxic
environment predating the Great Oxidation Event (GOE), with the
primary function of detoxifying reduced arsenic compounds that
were abundant in Archean environments. To cope with the
increased toxicity of oxidized arsenic species that occurred as
oxygen built up in Earth’s atmosphere, we found that parts of
preexisting detoxification systems for trivalent arsenicals were
merged with newly emerged pathways that originated via conver-
gent evolution. Further expansion of arsenic resistance systems
was made feasible by incorporation of oxygen-dependent enzy-
matic pathways into the detoxification network. These genetic
innovations, together with adaptive responses to other redox-
sensitive metals, provided organisms with novel mechanisms for
adaption to changes in global biogeocycles that emerged as a
consequence of the GOE.
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One of life’s earliest challenges was coping with the toxicity of
harmful metal(loids) (1). Understanding the nature and

timing of the onset of protective mechanisms is essential for the
study of early evolution of Earth and life, yet limited information
is available. Arsenic is the most ubiquitous toxic metalloid in
nature, with two biologically relevant oxidation states: trivalent
arsenite and pentavalent arsenate. Arsenite is generally more
toxic than arsenate, and perturbs the physiology of prokaryotes
at micromolar levels (2, 3). Relatively high amounts (>20 μM) of
dissolved arsenic are nowadays frequently found in oceanic hy-
drothermal vents or hot springs, environments that may have
conditions analogous to similar niches of primordial Earth. For
this reason, resistance pathways for transport and bio-
transformation of arsenic are believed to have emerged early in
the evolution of life on Earth (4–6). Environmentally, the rise of
atmospheric oxygen during the Great Oxidation Event (GOE)
∼2.4 billion years ago (Bya) is thought to have fundamentally
changed arsenic chemistry in the Earth’s surface and oceans (2,
7). Prior to the GOE, reduced arsenic species (i.e., arsenite)
would have predominated over oxidized arsenics (i.e., arsenate)
because the atmosphere and oceans were anoxic and reducing (4,
6, 8). Continental weathering of arsenic at this time is negligible

under an atmosphere with very low oxygen levels (<<0.001%
compared with present atmospheric level) (9). The rise of atmo-
spheric oxygen (∼1% of present atmospheric levels) during the
GOE between 2.4 and 2.3 Bya most likely led to intense oxidative
weathering of arsenic-bearing minerals that liberated continental
arsenic, predominantly as arsenate, for delivery to oceans from
rivers (3, 10). These processes would have resulted in the wide-
spread appearance of oxidized arsenic species in the environment.
We hypothesized that these dramatic shifts in the redox state of
arsenicals and their bioavailability imposed a strong selective
pressure on ancient microorganisms toward acquisition of novel
enzymatic systems conferring arsenic resistance. Current microbial
fossil records lack the power to resolve the timing and causes of
the origin of these tolerance and detoxification mechanisms.
Molecular and genetic studies have identified many arsenic

resistance (ars) genes in extant organisms (SI Appendix, Table
S1). These include efflux permeases, redox enzymes, methyl-
transferases, and transcriptional repressors. Arsenite efflux is
catalyzed by two evolutionarily unrelated groups of arsenite
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efflux permeases: ArsB and Acr3 (11). Arsenate detoxification is
catalyzed by reductases (ArsC), with homology to the gluta-
redoxin family (ArsC1), to low-molecular-weight phosphatases
(ArsC2), or by members of the CDC25 family of dual-specific
phosphatases (Acr2), respectively (12). These enzymes reduce
intracellular arsenate to arsenite, the substrate of the two arse-
nite efflux permeases. Additionally, arsenite can be methylated
by ArsM, an arsenite S-adenosylmethionine (SAM) methyl-
transferase, to the more toxic species methylarsenite and dime-
thylarsenite. In air, these are oxidized nonenzymatically to the
largely nontoxic pentavalent species. However, methylarsenite
can be also detoxified by active extrusion from cells catalyzed by
the methylarsenite-specific efflux permease ArsP (13), oxidation
to methylarsenate by the methylarsenite-specific oxidase ArsH
(14, 15), or demethylation to less toxic arsenite by the ArsI C-As
lyase that cleaves the carbon–arsenic bond in methylarsenite
(16). Arsenic resistance genes are usually organized in ars op-
erons, which are nearly always under control of an ArsR tran-
scriptional repressor. Four different ArsRs, in which each an
arsencial binding site is located at a different place in the protein
structure, have been described, with three (ArsR1, ArsR2, and
ArsR3) regulated selectively by arsenite (17) and one (ArsR4) by
methylarsenite (18).
Here, we estimate the geological birth date of 13 arsenic re-

sistance genes in relation to the GOE, using molecular clock
analyses. The detailed evolutionary histories for each gene family
were reconstructed by comparing their gene phylogenies with the
phylogeny of organisms (the tree of life) under an explicit model
of macroevolution events including gene birth, transfer, dupli-
cation, and loss. The occurrence of each arsenic detoxification
gene was examined with respect to the taxonomy and physiology
of the host microorganisms to provide independent evidence for
our molecular dating analysis.

Results
Phylogenetic Distribution of Arsenic Detoxification Genes. Protein
sequences of the 13 arsenic resistance genes were acquired
from genomes of 645 bacteria, 88 archaea, and 53 eukaryotes,
representative of phylogenetic diversity across the three do-
mains of life (19). The presence/absence of arsenic resistance
genes in each of the sampled taxa were collapsed at phylum
level and plotted against a reference tree reconstructed from a
concatenated alignment of 16 ribosomal proteins (Fig. 1). The
distinct phyletic patterns divide the 13 genes into three sets
(A-C). Genes in set A, including arsM, acr3, arsC2, arsP, and
arsR1, are widely distributed among major lineages of bacteria,
archaea, and/or eukaryotes, whereas set B comprises seven
genes (arsI, arsB, arsR3, arsH, arsC1, arsR2, and arsR4) found
mostly in aerobes that are more sparsely distributed compared
with those in set A. Set C comprised a single gene, acr2, with
homologs detected only in eukaryotes. The descent patterns
suggest that the genes in set A may have emerged as the earliest
arsenic detoxification systems, followed by those in sets B and
C. However, promiscuous horizontal gene transfer (HGT) of
arsenic resistance genes across species (20, 21), as exemplified
by apparent incongruousness between individual gene phylog-
eny and the organism backbone (SI Appendix, Figs. S1–S14 and
Table S2), obscured our capability to coordinate these genes
along the geological timeline with merely phyletic patterns (22).

Gene Birth Date of Arsenic Detoxification Genes. To estimate the
timing of the origin of the 13 arsenic resistance genes, we con-
ducted a series of Bayesian molecular clock analyses, using a tree
reconciliation algorithm, which explicitly models HGT and gen-
erates gene birth dates by mapping gene phylogeny onto a chro-
nogram of species. We tested gene ages against chronograms
modeled with autocorrelated rate (analyses 1 to 6) and in-
dependent rate clock (analyses 7 to 12). For each clock model, a

set of six independent analyses were performed to evaluate the
robustness of the results to prior assumptions of root age (analyses
1 and 7), subsampling of fossil calibrations (analyses 3, 4, 9, and
10), and alternative topologies (analyses 5, 6, 11, and 12). Median
gene ages under 12 analytical scenarios are shown in Tables 1 and
2, and the uncertainties associated with the results from all these
analyses were integrated over to provide composite credibility
interval for each gene family (Fig. 2). Although the timing of
arsM and acr3 varied under different prior assumptions, all
analyses consistently recovered 95% credibility intervals en-
tirely within the Archean eon, suggesting that they originated
before the GOE. For arsC2, arsR1, and arsP, we estimate that
the median gene ages are before or at the beginning of the
Paleoproterozoic period, with composite 95% confidence in-
tervals overlapping with the GOE. In contrast, arsB, arsI, arsH,
arsR2, arsR3, arsC1, acr2, and arsR4 are estimated to have
evolved near the end of or significantly after the GOE. To
assess the sensitivity of our results to alternative species to-
pologies, we also reconciled gene families against 100 reference
trees reconstructed from ribosomal proteins or small subunit
ribosomal RNA (SSU rRNA). The results show only slightly
differences in estimates of gene ages (SI Appendix, Fig. S20),
which further supports our initial interpretation of the data.
Overall, our analyses are consistent with an expansion of mi-
crobial arsenic resistance systems in response to the rise of
atmospheric oxygen.

Physiology Bears Out the Age of Arsenic Detoxification Genes. We
attempted to further validate these conclusions by analyzing the
physiology of the host microorganisms. Organisms were classi-
fied either as aerobes (including facultative anaerobes) or an-
aerobes, based on their capability to utilize oxygen as a terminal
electron acceptor. We found that all the genes predicted to
originate in an oxic environment after the GOE are over-
represented in aerobes, but are nearly absent in strict anaerobes
(Fig. 3). Furthermore, the genes predicted to have a more an-
cient origin were found among both anaerobes and aerobes,
including the ancient lineages of methanogens and acetogens
(Fig. 3). This implies an early origin of these genes in an anoxic
or microaerobic environment before or at the beginning of the
GOE. They dispersed into the oxic environment after the rise of
oxygen, as predicted by our evolutionary model. To further
probe the robustness of our predictions, we tested the correla-
tion of arsenic resistance systems with the physiology of the host
microorganisms on a more densely sampled set of taxa encom-
passing more than 2,000 species. We found similar patterns of
gene distribution across anaerobes/aerobes, suggesting that our
results are broadly conserved independent of taxonomic sam-
pling (SI Appendix, Fig. S21).

Discussion
Arsenic Detoxification Systems before the GOE. Our molecular
clock analyses indicate that enzymatic pathways acting on
trivalent arsenite, including arsenite efflux and arsenite
methylation, constituted the core of microbial arsenic re-
sistance systems before the rise of atmospheric oxygen
(Fig. 4). Our results are consistent with geochemical models
that predict the predominance of reduced arsenic compounds
in the anoxic Archean biosphere (2, 3, 6, 10). Formation of
traces of arsenate in the Archean, creating a selective pres-
sure before the GOE (6), could have occurred via microbial
mediated arsenite oxidation processes such as anoxygenic
photosynthesis (5) or nitrate-dependent respiration (23). Al-
ternatively, arsenate could have been formed during transient
atmospheric oxygenation events documented back to ∼3.0 Bya
(9, 24–28). However, our molecular clock analyses placed the
earliest origin of the arsenate resistance system coincident
with the onset of GOE (Fig. 2). This is consistent with recent
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analysis on marine shales, suggesting that arsenate began to
accumulate in the ocean only after the Archean eon (10), and
compatible with the causal role of the GOE in altering the
arsenic chemistry on Earth’s surface and driving the genetic
expansion of arsenic resistance system.
The early origin of the arsenite efflux permease encoded by

acr3, together with its wide distribution among living organisms
(Fig. 1), underpins the fundamental role of efflux mechanisms in
heavy metal resistance (29, 30). In contrast, the physiological
function of arsenite methylation in anoxic Archean environments
remains unclear. The higher toxicity of the trivalent methylated
product methylarsenite calls into question the commonly held
assumption that methylation is a detoxification process. An at-
tractive hypothesis is that the transient oxygenation of the Ar-
chean atmosphere (25, 26) and the existence of oxygen oases in
local, shallow marine settings (24, 31) could have provided
niches where microbial arsenite methylation could have operated
as a detoxification pathway. Alternatively, methylation has been
proposed as an antibiotic-producing process in Archean envi-
ronments, with methylarsenite being a primitive antibiotic (32,
33). Further studies will clarify the function of ArsM in anoxic

environments and its contribution to arsenic cycling and overall
toxicity in ancient ecosystems.

Expansion of the Arsenic Resistance Network as a Consequence of the
GOE. The rise of oxygen in Earth’s atmosphere since the GOE
both triggered global-scale oxidation of reduced arsenic species
and led to widespread bioavailability of arsenate (3, 10). Our
analyses indicate that the ancient arsenic resistance networks,
optimized for detoxification of reduced arsenic in the anoxic
Archean Earth, expanded to accommodate these environmental
shifts (Fig. 4). In the face of the these challenges, components of
arsenate reduction systems (including a new efflux permease,
ArsB, and arsenate reductases) evolved independently through
convergent evolution after the GOE. The recurrent innovation
of counterparts of ancient arsenate resistance devices is in
agreement with enhanced arsenate stress because of gradually
increasing oxygen levels after the Archean (3, 8). With the ap-
pearance of molecular oxygen, the ancient arsenic detoxification
pathways were remodeled for detoxification of inorganic arsenic.
For example, arsenite methylation process catalyzed by ArsM
could be recruited as a detoxification pathway under oxic set-
tings. Its products, the toxic trivalent methylarsenite and
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dimethylarsenite, would be oxidized nonenzymatically by
dioxygen into relatively innocuous methylarsenate and dime-
thylarsenate. However, the influence of dioxygen did not stop
here. Our results further suggest that two new obligate oxygen-
dependent methylarsenite resistance enzymes, ArsH and ArsI,
arose during or after the GOE. Concurrent with the evolution
of these new oxygen-dependent methylarsenite detoxification
enzymes, recurrent expansion of ArsR families after the GOE

resulted in formation of diverse ars operons present in extant
prokaryotes and enabled regulatory fine-tuning of ars genes
throughout different ages of the Earth evolution (17).

Conclusion and Implications. The timing we propose for the birth of
arsenic resistance gene-families supports a shifted marine arsenic
cycle across Archean–Proterozoic boundary. We observed an early
origin of metabolic functions including methylation and excretion

Table 1. Birth Age of 13 arsenic resistance genes estimated under analytical scenarios 1 to 6

Analysis 1 2 3 4 5 6

Model assumptions and calibrations
Rate model* Autocorrelated Autocorrelated Autocorrelated Autocorrelated Autocorrelated Autocorrelated
Calibration† Full set Full set −Cyanobacteria −Rhodophyta Full set Full set
Root prior‡ U(3.35,4.38) Γ(3.95;0.23) U(3.35,4.38) U(3.35,4.38) U(3.35,4.38) U(3.35,4.38)
Topology§ ML ML ML ML MT Three-domain tree

Gene age (Gyr){

arsM 3.55 (3.27–3.72) 3.59 (3.31–3.79) 3.69 (3.45–3.89) 3.50 (3.28–3.76) 3.57 (3.29–3.83) 3.62 (3.40–3.86)
acr3 2.97 (2.71–3.09) 3.10 (2.77–3.31) 3.18 (2.87–3.38) 2.99 (2.77–3.30) 3.08 (2.78–3.34) 3.00 (2.81–3.23)
arsC2 2.70 (2.34–2.89) 2.74 (2.39–2.95) 2.82 (2.44–2.98) 2.64 (2.41–2.91) 2.74 (2.42–3.01) 2.73 (2.50–3.01)
arsR1 2.79 (2.45–2.97) 2.83 (2.45–3.03) 2.91 (2.55–3.10) 2.73 (2.49–2.98) 2.83 (2.52–3.09) 2.82 (2.61–3.08)
arsP 2.79 (2.45–2.97) 2.83 (2.45–3.03) 2.91 (2.55–3.10) 2.73 (2.49–2.98) 2.83 (2.52–3.09) 2.82 (2.61–3.08)
arsB 2.07 (1.57–2.36) 2.10 (1.57–2.41) 2.16 (1.58–2.46) 2.03 (1.61–2.39) 2.10 (1.60–2.47) 2.10 (1.73–2.47)
arsI 2.26 (1.78–2.47) 2.27 (1.94–2.54) 2.36 (1.99–2.61) 2.19 (1.85–2.51) 2.26 (1.90–2.62) 2.28 (1.90–2.58)
arsH 1.91 (1.79–2.04) 1.92 (1.79–2.03) 1.93 (1.80–2.05) 1.90 (1.79–2.04) 1.82 (1.59–2.00) 1.91 (1.80–2.06)
arsR2 1.80 (1.70–1.91) 1.81 (1.70–1.91) 1.81 (1.70–1.92) 1.79 (1.70–1.91) 1.86 (1.50–2.14) 1.80 (1.70–1.93)
arsR3 1.71 (1.48–1.84) 1.71 (1.51–1.90) 1.77 (1.55–1.93) 1.63 (1.49–1.86) 1.91 (1.69–2.09) 1.71 (1.54–1.94)
arsC1 1.72 (1.48–1.85) 1.73 (1.53–1.94) 1.79 (1.57–1.92) 1.64 (1.51–1.89) 1.74 (1.54–1.97) 1.72 (1.58–1.95)
acr2 0.97 (0.80–1.11) 0.99 (0.80–1.16) 1.02 (0.78–1.11) 0.95 (0.79–1.13) 1.00 (0.85–1.16) 1.17 (0.99–1.40)
arsR4 1.14 (0.97–1.26) 1.15 (0.98–1.31) 1.18 (1.02–1.28) 1.08 (0.97–1.26) 1.00 (0.81–1.16) 1.14 (1.02–1.32)

*Autocorrelated, autocorrelated rate model; Uncorrelated, uncorrelated rate model.
†−Cyanobacteria, subsampled calibration points without Cyanobacteria; −Rhodophyta, subsampled calibration points without Rhodophyta.
‡U, uniform distribution (upper, lower); Γ: Gamma distribution (mean; SD).
§ML, maximum likelihood tree of ribosomal proteins; MT: alternative topology reflecting minority bipartitions; Three-domain tree: tree topology where
archaea and eukaryotes are sister group.
{Median age estimates of gene birth nodes, with 95% confidence intervals in parentheses; Gyr, billion years.

Table 2. Birth Age of 13 arsenic resistance genes estimated under analytical scenarios 7 to 12

Analysis 7 8 9 10 11 12

Model assumptions and calibrations
Rate model* Uncorrelated Uncorrelated Uncorrelated Uncorrelated Uncorrelated Uncorrelated
Calibration† Full set Full set −Cyanobacteria −Rhodophyta Full set Full set
Root prior‡ U(3.35,4.38) Γ(3.95;0.23) U(3.35,4.38) U(3.35,4.38) U(3.35,4.38) U(3.35,4.38)
Topology§ ML ML ML ML MT Three-domain tree

Gene age (Gyr){

arsM 3.40 (3.23–3.61) 3.37 (3.23–3.72) 3.44 (3.03–3.68) 3.40 (3.24–3.73) 3.40 (3.24–3.72) 3.45 (3.24–3.76)
acr3 2.79 (2.55–2.96) 2.77 (2.59–3.05) 2.86 (2.51–3.06) 2.79 (2.56–3.04) 2.78 (2.60–3.04) 2.81 (2.59–3.04)
arsC2 2.39 (2.03–2.68) 2.39 (2.03–2.76) 2.45 (2.04–2.72) 2.38 (2.01–2.76) 2.40 (2.06–2.76) 2.39 (2.07–2.74)
arsR1 2.47 (2.12–2.75) 2.46 (2.09–2.86) 2.53 (2.12–2.79) 2.46 (2.06–2.84) 2.47 (2.12–2.83) 2.46 (2.17–2.82)
arsP 2.47 (2.12–2.75) 2.46 (2.09–2.86) 2.53 (2.12–2.79) 2.46 (2.06–2.84) 2.47 (2.12–2.83) 2.46 (2.17–2.82)
arsB 1.99 (1.70–2.21) 1.99 (1.73–2.34) 2.04 (1.71–2.30) 1.98 (1.68–2.30) 2.00 (1.73–2.30) 2.01 (1.75–2.28)
arsI 1.36 (0.84–2.02) 1.40 (0.84–2.04) 1.42 (0.79–2.01) 1.37 (0.78–2.00) 1.39 (0.82–2.15) 1.38 (0.79–2.05)
arsH 1.70 (1.61–1.81) 1.61 (1.43–1.82) 1.70 (1.61–1.82) 1.70 (1.61–1.84) 1.58 (1.41–1.78) 1.64 (1.43–1.83)
arsR2 1.63 (1.57–1.73) 1.63 (1.56–1.76) 1.63 (1.56–1.74) 1.63 (1.57–1.77) 1.63 (1.56–1.73) 1.63 (1.57–1.75)
arsR3 1.53 (1.33–1.70) 1.53 (1.34–1.74) 1.57 (1.31–1.73) 1.53 (1.37–1.73) 1.69 (1.53–1.88) 1.56 (1.36–1.77)
arsC1 1.31 (0.93–1.58) 1.29 (1.02–1.59) 1.35 (0.95–1.58) 1.31 (1.00–1.59) 1.30 (1.01–1.58) 1.34 (1.02–1.62)
acr2 1.11 (0.92–1.29) 1.11 (0.96–1.31) 1.17 (0.95–1.32) 1.09 (0.93–1.28) 1.10 (0.94–1.28) 1.18 (1.01–1.38)
arsR4 1.02 (0.89–1.14) 1.02 (0.92–1.19) 1.05 (0.89–1.17) 1.02 (0.90–1.19) 0.79 (0.65–0.94) 1.05 (0.93–1.19)

*Autocorrelated, autocorrelated rate model; Uncorrelated, uncorrelated rate model.
†−Cyanobacteria, subsampled calibration points without Cyanobacteria; −Rhodophyta, subsampled calibration points without Rhodophyta.
‡U, uniform distribution (upper, lower); Γ: Gamma distribution (mean; SD).
§ML, maximum likelihood tree of ribosomal proteins; MT: alternative topology reflecting minority bipartitions; Three-domain tree: tree topology where
archaea and eukaryotes are sister group.
{Median age estimates of gene birth nodes, with 95% confidence intervals in parentheses; Gyr, billion years.
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of arsenic during the Archaean eon, which is in accord with
the fossil evidence indicating the occurrence of microbial
arsenic metabolism and cycling 2.72 Bya (34). Our predic-
tion of continuous innovation of gene families toward de-
toxification of oxidized arsenic species is in agreement with
recent analysis of marine shales that inferred a sharp increase
of dissolved arsenate from ∼2.48 Bya onward (10). The
persistence of ars genes among distinct microbial lineages
over billions of years implies a temporal continuity of arsenic
stress (2).
The genetic expansion of arsenic resistance systems across the

GOE would have entailed fitness advantages leading to success
and diversification of life in the new redox landscape, which in
turn remodeled the transition of metal chemistry on the Earth’s
surface. Our molecular analysis, together with the innovations of
protective mechanisms against other elements (35, 36) (e.g., Cu
and Zn), provides a crucial constraint on the response of global
biosphere to the major transitions in cycles of toxic, redox-
sensitive metals.

Methods
Genomic Sampling and Reconstruction of Species Tree. A previously reported
tree of life was used as template for reconstruction of species tree (19). A total
of 786 representative species with a completely sequenced genome were
sampled from the original dataset (see Dataset S1 for accession number).
The ribosomal protein tree was inferred with RAxML v8.4.1 (37), using the
PROTGAMMALG evolution model. To reconstruct the SSU rRNA tree, an
alignment was generated from SSU rRNA genes of the sampled organisms,
using the SINA alignment algorithm (38). One representative SSU rRNA gene
was selected for species with multiple copies. Phylogenetic trees were cal-
culated under the GTRCAT model, using RAxML. A total of 204 and 300
bootstrap replicates were conducted for ribosomal protein and SSU rRNA
gene phylogenies, respectively, according to extended majority-rule con-
sensus (MRE)-based bootstopping criteria. The oxygen requirement for each
selected species was retrieved from Genomes OnLine Database (GOLD) (39)
and literature reviews.

Molecular Dating of the Tree of Life. The divergence time of species tree was
estimated with PhyloBayes, using a fixed RAxML phylogeny of ribosomal
proteins, a CAT20 substitutional model, a birth–death process, and four
gamma categories (40). The CAT20 model was chosen because preliminary

ARCHEAN PROTEROZOIC PHANEROZOIC
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Oxygen conc. GOE

Fig. 2. Gene birth date for each of 13 arsenic detoxification genes. Gene ages were derived from reconciliation results (cycle), using fully dated species trees
(n = 1200) sampled from 12 PhyloBayes analyses. The median age estimates under each analytical scenario (Tables 1 and 2) were shown as diamond. The
uncertainties associated with the results from all PhyloBayes analyses were integrated as 95% composite confidence intervals (whisker of the boxplot). Age
estimates of genes evolved before, around, and after GOE were shown as blue, yellow, and green, respectively. Atmospheric oxygen content throughout
Earth’s history was overlaid on the gene’s age (red line) (9). Right y axis, pO2, relative to the present atmospheric level (PAL); left y axis, gene names. Genes
found in both anaerobes and aerobes, or only in aerobes were denoted as blue and green, respectively (Fig. 3). Oxygen-dependent genes (arsI and arsH) were
indicated by star. AsIII, AsV, and MAsIII were used to delineate genes acting on inorganic arsenite, arsenate, or methylarsenite, respectively. Ga, billions
of years.

arsM
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Fig. 3. Distribution of 13 arsenic detoxification genes among strict anaerobes and aerobes. Species were classified either as aerobes (including facultative
anaerobes) or anaerobes based on their capability to use oxygen as a terminal electron acceptor. Each black tick indicated the presence of the corresponding
gene in a taxon. Genes evolved before or at beginning of GOE were denoted as blue, and those after as green. Oxygen-dependent genes (arsI and arsH) were
indicated with the star symbol.
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tests showed that analyses using a full CAT model failed to converge within
a reasonable time (>2 mo). Both the autocorrelated lognormal (-ln) and
uncorrelated gamma multiplier (-ugam) relaxed clocks were applied to
model the rate variation across lineages (41). Bayesian cross-validation
implemented in PhyloBayes was used to test whether one of two clock
models fits the data better.

The clocks were calibrated with eight sets of temporal constraints (SI Ap-
pendix, Fig. S15 and Table S4) that are directly linked to fossil and geochemical
evidence, as described previously (22, 42). The age of the last universal com-
mon ancestor (root) was constrained between 4.38 Bya (approximating earliest
habitability evidence) (43, 44) and 3.35 Bya (fossil records from the Strelley
Pool Formation) (42, 45, 46), using a uniform distribution. Gamma-distributed
root prior (3.95 ± 0.23 Bya), assuming the maximum probability of the root
age falling in the midway between the calibrations, was applied to test the
effects of root prior distribution (analyses 2 and 8). Geochemical evidence from
the Manzimnyama Banded Iron Formation, Fig Tree Group, South Africa, in-
dicates the presence of free oxygen being produced by Cyanobacteria before
3.2 Bya (42, 47), and this was used as a minimum age for total-group of
Cyanobacteria. However, as the Banded Iron Formation at 3.2 Bya may have
been also formed via anaerobic processes [i.e., UV oxidation (48) and anoxy-
genic photosynthesis (49, 50)], PhyloBayes analyses without the constraint on
Cyanobacteria (analyses 3 and 9) were performed to test how inclusion of this
constraint impacts the results. The time constraint on Rhodophyta was derived
from the oldest fossil records of Bangiale red algae, which occurred in 1.20 Bya
Hunting Formation (51). To evaluate whether this assumption is so stringent to
overdetermine the estimated divergence times, analyses were performed with
reduced sets of calibrations by precluding constraints on Rhodophyta (analyses
4 and 10). Comparisons of estimated confidence intervals suggested that

varying root priors or subsampling of calibrations resulted in minimal changes
of estimated divergence times (SI Appendix, Fig. S19).

For all molecular clock analyses, two independent PhyloBayes Markov
chain Monte Carlo (MCMC) chains were run in parallel up to 1 mo (∼60,000
model cycles). The convergence of MCMC chains was checked by comparing
the posterior distributions of independent runs, using tracecomp program
implemented in PhyloBayes (effective sizes >100, and maximum discrepancy
between chains <0.3). A state of the MCMC chain was sampled every 20
cycles after 20% initial generations discarded as burn-in. All PhyloBayes
analyses were also run under the prior conditions by removing the sequence
data, to verify that the estimated divergence time is not solely driven by
fossil records (SI Appendix, Fig. S18).

In addition, ribosomal protein phylogeny and SSU rRNA gene phylogeny
were converted to ultrametric tree, using TreePL under a penalized likelihood
model (52). The rate smoothing parameters were set to 10-based values
between 1 and 10,000 with cross-validation procedure and the χ2 test en-
abled in TreePL. The full set of temporal constraints (SI Appendix, Fig. S16
and Table S4) was used.

To evaluate the effect of phylogenetic uncertainty on the results, alternative
tree topologies reflecting alternative arrangements/bipartitions for taxa of
uncertain relationships were generated. Conflicting bipartitions (n = 32) of
RAxML ribosomal protein tree that are substantially represented (>40%) in
bootstrap replicates were retrieved using RAxML (37) (option -f t, internode
certainty analysis). The alternative minority-bipartition topology was obtained
by editing the RAxML tree to reflect all conflicting bipartitions via subtree
prune and regraft (analyses 5 and 11). A three-domain tree placing Archaea as
a sister group of Eukaryotes was built similarly (analyses 6 and 12). Both al-
ternative topologies were dated with full alignment of ribosomal proteins,
using PhyloBayes. Furthermore, we built 100 alternative chronograms using

A

B

Fig. 4. Arsenic resistance systems before (A) and after (B) the GOE. As(III), arsenite; As(V), arsenate; MAs(III), trivalent methylarsenite; MAs(V), pentavalent
methylarsenate; SAM, S-adenosylmethionine; GSH, reduced glutathione; GSSG, oxidized glutathione; Grxred: reduced glutaredoxin; Grxox, oxidized gluta-
redoxin; Trxred, reduced thioredoxin; Trxred, oxidized thioredoxin.
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TreePL (SI Appendix, Fig. S20), based on alternative topologies containing 50%
of randomly selected minority bipartitions (Bipartition-Jackknife analysis).
Branch length of these alternative topologies were re-estimated by RAxML
(option -f e), using full alignment of ribosomal proteins.

Identification of Arsenic Resistance Genes. A hidden Markov model (HMM)-
based search was performed to identify arsenic resistance genes in se-
lected genomes. To develop HMM profiles, reference protein sequences
were downloaded from Uniprot or National Center for Biotechnology In-
formation (NCBI) (SI Appendix, Table S3) and aligned using MAFFT v7.310
(53) with linsi option. Sequence alignment was visualized by ClustalX (54),
and the ambiguously aligned regions were removed using TrimAl v1.2
(55). HMM profiles were built on curated alignments using hmmbuild in
HMMER v3.1b2 package (56).

To collect homologs of arsenic resistance genes, each HMM profile was
searched against 786 genomes, using hmmsearch with an E-value cutoff of
0.1. Hit scores were retrieved, and the corresponding sequences were ex-
amined for conserved domains, using protein family (PFAM) database (57).
With profile searches for Acr3, ArsB, ArsH, ArsI, ArsM, and ArsP (SI Appendix,
Figs. S22–S27), the retrieved hits were partitioned into two distinct groups:
one exhibited significantly higher scores that consist of reference proteins,
and another showed a much lower score that included distant homologs.
The separation of scoring values permitted us to distinguish these arsenic
resistance genes from their remote relatives, and we annotated the se-
quences showing better scoring values as the target proteins. To determine
whether these sequences are truly arsenic resistance proteins, hits from
hmmsearch were aligned with MAFFT (multiple sequence alignment based
on fast Fourier transform), and phylogenetic trees were constructed using
RAxML under the PROTGAMMAAUTO model with 100 nonparametric
bootstraps. The results from these tree-building trails indicated that se-
quences with significant higher scores formed a moderate- to strong-
supported monophyletic clade among the functional characterized pro-
teins (SI Appendix, Figs. S22–S27), which provided evidence that the arsenic
resistance proteins were correctly annotated.

In contrast, HMM profiles showed lower ability to distinguish ArsCs from
their distant relatives (SI Appendix, Figs. S28–S30), probably because of their
short protein lengths and absence of highly conserved domains. Therefore,
we identified prokaryotic arsenate reductase genes (ArsC1 and ArsC2) by
taking genomic contexts into account. The hmmsearch scoring threshold for
each arsenate reductase (ArsC1 and ArsC2) was optimized to include se-
quences from the phylogenetic clade containing both reference proteins
and homologs located within ars operon (SI Appendix, Figs. S28 and S29).
Eukaryotic arsenate reductases (Acr2) were determined via a phylogenetic
method. Branches within a well-supported clade consisting known Acr2
were selected as putative Acr2 (SI Appendix, Fig. S30).

ArsR homologs were classified into four families on the basis of a reported
phylogenetic tree (18). Reference alignment and phylogenetic tree of ArsRs
were built as described previously (18). For each ArsR family, homologs
extracted by HMM profiles were added to reference alignment using MAFFT
(–add and –keeplength) and assigned to a reference tree with evolutionary
placement algorithm in RAxML. Sequences that were placed within the
corresponding clade of the reference tree were identified as ArsR (SI Ap-
pendix, Fig. S31).

Sequences retrieved here were further screened for presence of key
catalytic residues (SI Appendix, Table S1). Homologs passed through these
criteria were regarded as functional orthologs involved in arsenic resistance,
which were used for subsequent analysis. The same identification pipeline

was further applied to fetch protein sequences of arsenic resistance genes in
2,031 organisms included in EggNOG Database (v4.5.1).

Phylogenetic Analysis of Arsenic Resistance Genes. The protein sequences of
each arsenic detoxification gene family were aligned with five different
methods [MUSCLE (58), ClustalW (54), T-Coffee (59), MAFFT (53) and Prob-
Cons (60)]. Consensus alignment of genes was calculated on the basis of the
consistency of output from individual alignment programs using M-Coffee,
provided in the T-Coffee package (61). The poorly aligned regions were
excised using TrimAl v1.2 (55) with -automated1 option. The best-fit evolu-
tionary model for each gene family (Acr3: LG+I+G; ArsB: LG+I+G; ArsC1:
WAG+I+G; ArsC2: LG+I+G; Acr2: LG+I+G; ArsH: LG+I+G; ArsI: WAG+I+G;
ArsM: LG+I+G; ArsP: LG+I+G; ArsR1: LG+I+G; ArsR2: Dayhoff+G+F; ArsR3:
LG+I+G; ArsR4: LG+G) was determined by ProtTest3 (62), according to
Akaike information criterion and Bayesian information criterion. Inference
of maximum likelihood tree was performed under best-fit evolutionary
model, using RAxML. Nonparametric bootstrap analysis for each gene tree
was conducted under a corresponding evolutionary model with 100 repli-
cates. The pairwise phylogenetic distances were calculated by summing up
all of the branches linking two taxons in maximum-likelihood phylogeny.
The congruence between gene tree and species tree (ribosomal protein
phylogeny) was assessed by scatterplots of pairwise phylogenetic distances
calculated from corresponding trees.

Gene Birth Date Inference. Gene birth dates were inferred using a reconcili-
ation algorithm implemented in ecceTERA (63, 64). An ensemble (n = 10) of
nonparametric bootstrapped trees were used as a gene tree set to resolve
the uncertainty in deep-branching phylogenies, using amalgamation algo-
rithm (option amalgamate = 1). Fully dated species tree (option dated = 2)
reconstructed by either PhyloBayes or TreePL was provided to restrict the
HGT events among only chronological overlapped lineages. Gene birth was
parsed as the earliest split event that led to the gene clade. Posterior esti-
mates of gene age (i.e., median and 95% highest posterior density interval)
were calculated over the course of 1,200 reconciliation analyses, using fully
dated species trees (n = 100) sampled from each of PhyloBayes MCMC
analysis (Tables 1 and 2). To assess the sensitivity of our results to reconcil-
iation algorithms, the gene ages were also estimated using the Analyzer of
Gene and Species Trees (AnGST) program (22). AnGST was run with default
parameters (event cost: HGT = 3.0, DUP = 2.0, and LOS = 1.0; ultrametric =
True) with 10 bootstrapped gene trees. Due to computation limitations,
AnGST was performed only on consensus species trees of 12 Bayesian mo-
lecular clock analyses (SI Appendix, Fig. S20 and Tables 1 and 2).

Data Availability. Accession numbers of all genomes used in this study are
listed in Dataset S1. Protein sequence alignments and maximum-likelihood
trees of 13 arsenic resistance genes are available in Dataset S2. Species trees
based on alignment of concatenated ribosomal proteins or SSU rRNA are
included in Dataset S3.
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