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2.1 The new age of healthcare

Big data and machine learning are having an impact on most aspects of
modern life, from entertainment, commerce, and healthcare. Netflix
knows which films and series people prefer to watch, Amazon knows
which items people like to buy when and where, and Google knows
which symptoms and conditions people are searching for. All this data can
be used for very detailed personal profiling, which may be of great value
for behavioral understanding and targeting but also has potential for pre-
dicting healthcare trends. There is great optimism that the application of
artificial intelligence (Al) can provide substantial improvements in all areas
of healthcare from diagnostics to treatment. There is already a large
amount of evidence that Al algorithms are performing on par or better
than humans in various tasks, for instance, in analyzing medical images or
correlating symptoms and biomarkers from electronic medical records
(EMRs) with the characterization and prognosis of the disease [1].

The demand for healthcare services is ever increasing and many coun-
tries are experiencing a shortage of healthcare practitioners, especially phy-
sicians. Healthcare institutions are also fighting to keep up with all the
new technological developments and the high expectations of patients
with respect to levels of service and outcomes as they know it from con-
sumer products including those of Amazon and Apple |2]. The advances
in wireless technology and smartphones have provided opportunities for
on-demand healthcare services using health tracking apps and search plat-
forms and have also enabled a new form of healthcare delivery, via remote
interactions, available anywhere and anytime. Such services are relevant
for underserved regions and places lacking specialists and help reduce costs
and prevent unnecessary exposure to contagious illnesses at the clinic.

Artificial Intelligence in Healthcare © 2020 Elsevier Inc.
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Telehealth technology is also relevant in developing countries where the
healthcare system 1s expanding and where healthcare infrastructure can be
designed to meet the current needs [3]. While the concept is clear, these
solutions still need substantial independent validation to prove patient
safety and efficacy.

The healthcare ecosystem is realizing the importance of Al-powered
tools in the next-generation healthcare technology. It is believed that Al
can bring improvements to any process within healthcare operation and
delivery. For instance, the cost savings that Al can bring to the healthcare
system is an important driver for implementation of Al applications. It is
estimated that Al applications can cut annual US healthcare costs by USD
150 billion in 2026. A large part of these cost reductions stem from
changing the healthcare model from a reactive to a proactive approach,
focusing on health management rather than disease treatment. This is
expected to result in fewer hospitalizations, less doctor visits, and less
treatments. Al-based technology will have an important role in helping
people stay healthy via continuous monitoring and coaching and will
ensure earlier diagnosis, tailored treatments, and more efficient follow-ups.

The Al-associated healthcare market is expected to grow rapidly and
reach USD 6.6 billion by 2021 corresponding to a 40% compound annual
growth rate [4].

2.1.1 Technological advancements

There have been a great number of technological advances within the
field of Al and data science in the past decade. Although research in Al
for various applications has been ongoing for several decades, the current
wave of Al hype is different from the previous ones. A perfect combina-
tion of increased computer processing speed, larger data collection data
libraries, and a large Al talent pool has enabled rapid development of Al
tools and technology, also within healthcare [5]. This is set to make a par-
adigm shift in the level of Al technology and its adoption and impact on
society.

In particular, the development of deep learning (DL) has had an
impact on the way we look at Al tools today and is the reason for much
of the recent excitement surrounding Al applications. DL allows finding
correlations that were too complex to render using previous machine
learning algorithms. This is largely based on artificial neural networks and
compared with earlier neural networks, which only had 3—5 layers of
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connections, DL networks have more than 10 layers. This corresponds to
simulation of artificial neurons in the order of millions.

There are numerous companies that are frontrunners in this area,
including IBM Watson and Google’s Deep Mind. These companies have
shown that their Al can beat humans in selected tasks and activities
including chess, Go, and other games. Both IBM Watson and Google’s
Deep Mind are currently being used for many healthcare-related applica-
tions. IBM Watson is being used to investigate for diabetes management,
advanced cancer care and modeling, and drug discovery, but has yet to
show clinical value to the patients. Deep Mind is also being looked at for
applications including mobile medical assistant, diagnostics based on medi-
cal imaging, and prediction of patient deterioration [6,7].

Many data and computation-based technologies have followed expo-
nential growth trajectories. The most known example is that of Moore’s
law, which explains the exponential growth in the performance of com-
puter chips. Many consumer-oriented apps have experienced similar
exponential growth by offering affordable services. In healthcare and life
science, the mapping of the human genome and the digitization of medi-
cal data could result in a similar growth pattern as genetic sequencing and
profiling becomes cheaper and electronic health records and the like serve
as a platform for data collection. Although these areas may seem small at
first, the exponential growth will take control at some point. Humans are
generally poor at understanding exponential trends and have a tendency
to overestimate the impact of technology in the short-term (e.g. 1 year)
while underestimating the long-term (e.g. 10 years) effect.

2.1.2 Artificial intelligence applications in healthcare

It is generally believed that Al tools will facilitate and enhance human
work and not replace the work of physicians and other healthcare staft as
such. Al is ready to support healthcare personnel with a variety of tasks
from administrative workflow to clinical documentation and patient out-
reach as well as specialized support such as in image analysis, medical
device automation, and patient monitoring.

There are different opinions on the most beneficial applications of Al
for healthcare purposes. Forbes stated in 2018 that the most important
areas would be administrative workflows, image analysis, robotic surgery,
virtual assistants, and clinical decision support [8]. A 2018 report by
Accenture mentioned the same areas and also included connected
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machines, dosage error reduction, and cybersecurity [9]. A 2019 report
from McKinsey states important areas being connected and cognitive
devices, targeted and personalized medicine, robotics-assisted surgery, and
electroceuticals [10].

In the next sections, some of the major applications of Al in healthcare
will be discussed covering both the applications that are directly associated
with healthcare and other applications in the healthcare value chain such
as drug development and ambient assisted living (AAL).

2.2 Precision medicine

Precision medicine provides the possibility of tailoring healthcare interven-
tions to individuals or groups of patients based on their disease profile,
diagnostic or prognostic information, or their treatment response. The
tailor-made treatment opportunity will take into consideration the geno-
mic variations as well as contributing factors of medical treatment such as
age, gender, geography, race, family history, immune profile, metabolic
profile, microbiome, and environment vulnerability. The objective of pre-
cision medicine is to use individual biology rather than population biology
at all stages of a patient’s medical journey. This means collecting data from
individuals such as genetic information, physiological monitoring data, or
EMR data and tailoring their treatment based on advanced models.
Advantages of precision medicine include reduced healthcare costs, reduc-
tion in adverse drug response, and enhancing effectivity of drug action
[11]. Innovation in precision medicine is expected to provide great benefits
to patients and change the way health services are delivered and evaluated.

There are many types of precision medicine initiatives and overall,
they can be divided into three types of clinical areas: complex algorithms,
digital health applications, and “omics”’-based tests.

Complex algorithms: Machine learning algorithms are used with large
datasets such as genetic information, demographic data, or electronic
health records to provide prediction of prognosis and optimal treatment
strategy.

Digital health applications: Healthcare apps record and process data
added by patients such as food intake, emotional state or activity, and
health monitoring data from wearables, mobile sensors, and the likes.
Some of these apps fall under precision medicine and use machine learn-
ing algorithms to find trends in the data and make better predictions and
give personalized treatment advice.
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Omics-based tests: Genetic information from a population pool is used
with machine learning algorithms to find correlations and predict treat-
ment responses for the individual patient. In addition to genetic informa-
tion, other biomarkers such as protein expression, gut microbiome, and
metabolic profile are also employed with machine learning to enable per-
sonalized treatments [12].

Here, we explore selected therapeutic applications of Al including
genetics-based solutions and drug discovery.

2.2.1 Genetics-based solutions

It is believed that within the next decade a large part of the global popula-
tion will be offered full genome sequencing either at birth or in adult life.
Such genome sequencing is estimated to take up 100—150 GB of data
and will allow a great tool for precision medicine. Interfacing the genomic
and phenotype information is still ongoing. The current clinical system
would need a redesign to be able to use such genomics data and the bene-
fits hereof [13].

Deep Genomics, a Healthtech company, is looking at identifying pat-
terns in the vast genetic dataset as well as EMRs, in order to link the two
with regard to disease markers. This company uses these correlations to
identify therapeutics targets, either existing therapeutic targets or new
therapeutic candidates with the purpose of developing individualized
genetic medicines. They use Al in every step of their drug discovery and
development process including target discovery, lead optimization, toxic-
ity assessment, and innovative trial design.

Many inherited diseases result in symptoms without a specific diagnosis
and while interpreting whole genome data is still challenging due to the
many genetic profiles. Precision medicine can allow methods to improve
identification of genetic mutations based on full genome sequencing and
the use of Al

2.2.2 Drug discovery and development

Drug discovery and development is an immensely long, costly, and com-
plex process that can often take more than 10 years from identification of
molecular targets until a drug product is approved and marketed. Any fail-
ure during this process has a large financial impact, and in fact most drug
candidates fail sometime during development and never make it onto the
market. On top of that are the ever-increasing regulatory obstacles and



30 Artificial Intelligence in Healthcare

the difficulties in continuously discovering drug molecules that are sub-
stantially better than what is currently marketed. This makes the drug
innovation process both challenging and inefficient with a high price tag
on any new drug products that make it onto the market [14].

There has been a substantial increase in the amount of data available
assessing drug compound activity and biomedical data in the past few
years. This is due to the increasing automation and the introduction of
new experimental techniques including hidden Markov model based text
to speech synthesis and parallel synthesis. However, mining of the large-
scale chemistry data is needed to efficiently classify potential drug com-
pounds and machine learning techniques have shown great potential [15].
Methods such as support vector machines, neural networks, and random
forest have all been used to develop models to aid drug discovery since
the 1990s. More recently, DL has begun to be implemented due to the
increased amount of data and the continuous improvements in computing
power. There are various tasks in the drug discovery process where
machine learning can be used to streamline the tasks. This includes drug
compound property and activity prediction, de novo design of drug com-
pounds, drug—receptor interactions, and drug reaction prediction [16].

The drug molecules and the associated features used in the in silico
models are transformed into vector format so they can be read by the
learning systems. Generally, the data used here include molecular
descriptors (e.g., physicochemical properties) and molecular fingerprints
(molecular structure) as well as simplified molecular input line entry sys-
tem (SMILES) strings and grids for convolutional neural networks
(CNNs) [17].

2.2.2.1 Drug property and activity prediction

The properties and activity on a drug molecule are important to know in
order to assess its behavior in the human body. Machine learning-based
techniques have been used to assess the biological activity, absorption, dis-
tribution, metabolism, and excretion (ADME) characteristics, and physico-
chemical properties of drug molecules (Fig. 2.1). In recent years, several
libraries of chemical and biological data including ChEMBL and
PubChem have become available for storing information on millions of
molecules for various disease targets. These libraries are machine-readable
and are used to build machine learning models for drug discovery. For
instance, CNNs have been used to generate molecular fingerprints from a
large set of molecular graphs with information about each atom in the
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Figure 2.1 Machine learning opportunities within the small molecule drug discovery
and development process.

molecule. Neural fingerprints are then used to predict new characteristics
based on a given molecule. In this way, molecular properties including
octanol, solubility melting point, and biological activity can be evaluated
as demonstrated by Coley et al. and others and be used to predict new
features of the drug molecules [18]. They can then also be combined with
a scoring function of the drug molecules to select for molecules with
desirable biological activity and physiochemical properties. Currently,
most new drugs discovered have a complex structure and/or undesirable
properties including poor solubility, low stability, or poor absorption.

Machine learning has also been implemented to assess the toxicity of
molecules, for instance, using DeepTox, a DL-based model for evaluating
the toxic effects of compounds based on a dataset containing many drug
molecules [19]. Another platform called MoleculeNet is also used to
translate two-dimensional molecular structures into novel features/descrip-
tors, which can then be used in predicting toxicity of the given molecule.
The MoleculeNet platform is built on data from various public databases
and more than 700,000 compounds have already been tested for toxicity
or other properties [20].

2.2.2.2 De novo design through deep learning

Another interesting application of DL in drug discovery is the generation
of new chemical structures through neural networks (Fig. 2.2). Several
DL-based techniques have been proposed for molecular de novo design.
This also includes protein engineering involving the molecular design of
proteins with specific binding or functions.
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Figure 2.2 lllustration of the generative artificial intelligence concept for de novo
design. Training data of molecular structures are used to emit new chemical entities
by sampling.

Here, variational autoencoders and adversarial autoencoders are often
used to design new molecules in an automated process by fitting the
design model to large datasets of drug molecules. Autoencoders are a type
of neural network for unsupervised learning and are also the tools used to,
for instance, generate images of fictional human faces. The autoencoders
are trained on many drug molecule structures and the latent variables are
then used as the generative model. As an example, the program druGAN
used adversarial autoencoders to generate new molecular fingerprints and
drug designs incorporating features such as solubility and absorption based
on predefined anticancer drug properties. These results suggest a substan-
tial improvement in the efficiency in generating new drug designs with
specific properties [21]. Blaschke et al. also applied adversarial autoenco-
ders and Bayesian optimization to generate ligands specific to the dopa-
mine type 2 receptor [22]. Merk et al. trained a recurrent neural network
to capture a large number of bioactive compounds such as SMILES
strings. This model was then fine-tuned to recognize retinoid X and per-
oxisome proliferator-activated receptor agonists. The identified com-
pounds were synthesized and demonstrated potent receptor modulatory
activity in in vitro assays [23].

2.2.2.3 Drug—target interactions

The assessment of drug—target interactions is an important part of the
drug design process. The binding pose and the binding affinity between
the drug molecule and the target have an important impact on the
chances of success based on the in silico prediction. Some of the more
common approaches involve drug candidate identification via molecular
docking, for prediction and preselection of interesting drug—target
interactions.
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Molecular docking is a molecular modeling approach used to study
the binding and complex formation between two molecules. It can be
used to find interactions between a drug compound and a target, for
example a receptor, and predicts the conformation of the drug compound
in the binding site of the target. The docking algorithm then ranks the
interactions via scoring functions and estimates binding affinity. Popular
commercial molecular docking tools include AutoDock, DOCK, Glide,
and FlexX. These are rather simple and many data scientists are working
on improving the prediction of drug—target interaction using various
learning models [24]. CNNs are found useful as scoring functions for
docking applications and have demonstrated efficient pose/affinity predic-
tion for drug—target complexes and assessment of activity/inactivity. For
instance, Wallach and Dzamba build AtomNet, a deep CNN to predict
the bioactivity of small molecule drugs for drug discovery applications.
The authors showed that AtomNet outperforms conventional docking
models in relation to accuracy with an AUC (area under the curve) of 0.9
or more for 58% of the targets [25].

Current trends within Al applications for drug discovery and develop-
ment point toward more and more models using DL approaches.
Compared with more conventional machine learning approaches, DL
models take a long time to train because of the large datasets and the often
large number of parameters needed. This can be a major disadvantage
when data is not readily available. There is therefore ongoing work on
reducing the amount of data required as training sets for DL so it can learn
with only small amounts of available data. This 1s similar to the learning
process that takes place in the human brain and would be beneficial in
applications where data collection is resource intensive and large datasets
are not readily available, as is often the case with medicinal chemistry and
novel drug targets. There are several novel methods being investigated,
for instance, using a one-shot learning approach or a long short-term
memory approach and also using memory augmented neural networks
such as the differentiable neural computer [17].

2.3 Artificial intelligence and medical visualization

Interpretation of data that appears in the form of either an image or a
video can be a challenging task. Experts in the field have to train for
many years to attain the ability to discern medical phenomena and on top
of that have to actively learn new content as more research and
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information presents itself. However, the demand is ever increasing and
there is a significant shortage of experts in the field. There is therefore a
need for a fresh approach and Al promises to be the tool to be used to fill
this demand gap.

2.3.1 Machine vision for diagnosis and surgery

Computer vision involves the interpretation of images and videos by
machines at or above human-level capabilities including object and scene
recognition. Areas where computer vision is making an important impact
include image-based diagnosis and image-guided surgery.

2.3.1.1 Computer vision for diagnosis and surgery

Computer vision has mainly been based on statistical signal processing but
is now shifting more toward application of artificial neural networks as the
choice for learning method. Here, DL is used to engineer computer vision
algorithms for classifying images of lesions in skin and other tissues. Video
data is estimated to contain 25 times the amount of data from high-
resolution diagnostic images such as CT and could thus provide a higher
data value based on resolution over time. Video analysis is still premature
but has great potential for clinical decision support. As an example, a
video analysis of a laparoscopic procedure in real time has resulted in
92.8% accuracy in identification of all the steps of the procedure and sur-
prisingly, the detection of missing or unexpected steps [26].

A notable application of Al and computer vision within surgery tech-
nology is to augment certain features and skills within surgery such as
suturing and knot-tying. The smart tissue autonomous robot (STAR)
from the Johns Hopkins University has demonstrated that it can outper-
form human surgeons in some surgical procedures such as bowel anasto-
mosis in animals. A fully autonomous robotic surgeon remains a concept
for the not so near future but augmenting different aspects of surgery
using Al is of interest to researchers. An example of this is a group at the
Institute of Information Technology at the Alpen-Adria Universitit
Klagenfurt that uses surgery videos as training material in order to identify
a specific intervention made by the surgeon. For example, when an act of
dissection or cutting is performed on the patient’s tissues or organs, the
algorithm recognizes the likelihood of the intervention as well as the spe-
cific region in the body [27]. Such algorithms are naturally based on the
training on many videos and could be proven very useful for complicated
surgical procedures or for situations where an inexperienced surgeon is
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required to perform an emergency surgery. It is important that surgeons
are actively engaged in the development of such tools ensuring clinical
relevance and quality and facilitating the translation from the lab to the
clinical sector.

2.3.2 Deep learning and medical image recognition

The word “Deep” refers to the multilayered nature of machine learning
and among all DL techniques, the most promising in the field of image
recognition has been the CNNs. Yann LeCun, a prominent French com-
puter scientist introduced the theoretical background to this system by
creating LeNET in the 1980s, an automated handwriting recognition
algorithm designed to read cheques for financial systems. Since then, these
networks have shown significant promise in the field of pattern
recognition.

Similar to radiologists that during the medical training period have to
learn by constantly correlating and relating their interpretations of radio-
logical images to the ground truth, CNNs are influenced by the human
visual cortex, where image recognition is initiated by the identification of
the many features of the image. Furthermore, CNNs require a significant
amount of training data that comes in the form of medical images along
with labels for what the image is supposed to be. At each hidden layer of
training, CNNs can adjust the applied weights and filters (characteristics of
regions in an image) to improve the performance on the given training
data.

Briefly and very simply (Fig. 2.3), the act of convolving an image with
various weights and creating a stack of filtered images is referred to as a
convolutional layer, where an image essentially becomes a stack of filtered
images. Pooling is then applied to all these filtered images, where the
original stack of images becomes a smaller representation of themselves
and all negative values are removed by a rectified linear unit (ReLU). All
these operations are then stacked on top of one another to create layers,
sometimes referred to as Deep stacking. This process can be repeated mul-
tiple times and each time the image gets filtered more and relatively smal-
ler. The last layer is referred to as a fully connected layer where every
value assigned to all layers will contribute to what the results will be. If
the system produces an error in this final answer, the gradient descent can
be applied by adjusting the values up and down to see how the error
changes relative to the right answer of interest. This can be achieved by
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Figure 2.3 The various stages of convolutional neural networks at work. Adapted
from Lundervold AS, Lundervold A. An overview of deep learning in medical imaging
focusing on MRI. Z Med Phys. 2019;29:102—27.

an algorithm called back propagation that signifies “learning from mis-
takes.” After learning a new capability from the existing data, this can be
applied to new images and the system can classify the images in the right
category (Inference), similar to how a radiologist operates [28].

2.3.3 Augmented reality and virtual reality in the healthcare
space
Augmented and virtual reality (AR and VR) can be incorporated at every
stage of a healthcare system. These systems can be implemented at the
early stages of education for medical students, to those training for a spe-
cific specialty and experienced surgeons. On the other hand, these tech-
nologies can be beneficial and have some negative consequences for
patients.

In this section, we will attempt to cover each stage and finally com-
ment on the usefulness of these technologies.

2.3.3.1 Education and exploration

Humans are visual beings and play is one of the most important aspects of
our lives. As children the most important way for us to learn was to play.
Interaction with the surroundings allowed us to gain further understand-
ing of the world and provided us with the much-needed experience. The
current educational system is limited and for interactive disciplines such as
medicine this can be a hindrance. Medicine can be visualized as an art
form and future clinicians are the artist. These individuals require certain



The rise of artificial intelligence in healthcare applications 37

skills to fulfill the need for an ever-evolving profession. Early in medical
school, various concepts are taught to students without them ever
experiencing these concepts in real life. So game-like technologies such as
VR and AR could enhance and enrich the learning experience for future
medical and health-related disciplines [29]. Medical students could be pro-
vided with and taught novel and complicated surgical procedures, or learn
about anatomy through AR without ever needing to interact or involve
real patients at an early stage or without ever needing to perform an
autopsy on a real corpse. These students will of course be interacting with
real patients in their future careers, but the goal would be to initiate the
training at an earlier stage and lowering the cost of training at a later
stage.

For today’s training specialists, the same concept can be applied. Of
course, human interaction should be encouraged in the medical field but
these are not always necessary and available when an individual is under-
going a certain training regimen. The use of other physical and digital
cues such as haptic feedback and photorealistic images and videos can pro-
vide a real simulation whereby learning can flourish and the consequences
and cost of training are not drastic (Fig. 2.4).

In a recent study [30], two groups of surgical trainees were subjected
to different methods for Mastoidectomy, where one group (n=18)
would go through the standard training path and the other would train
on a freeware VR simulator [the visible ear simulator (VES)]. At the end
of the training, a significant improvement in surgical dissection was

Figure 2.4 Virtual reality can help current and future surgeons enhance their surgical
abilities prior to an actual operation. (Image obtained from a video still, OSSOR VR).
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observed for those who trained with VR. For real-life and precise execu-
tion, AR would be more advantageous in healthcare settings. By wearing
lightweight headsets (e.g., Microsoft HoloLens or Google Glass) that proj-
ect relevant images or video onto the regions of interest, the user can
focus on the task without ever being distracted by moving their visual
fields away from the region of interest.

2.3.3.2 Patient experience

Humans interact with their surroundings with audiovisual cues and utilize
their limbs to engage and move within this world. This seemingly ordinary
ability can be extremely beneficial for those who are experiencing debilitat-
ing conditions that limit movement or for individuals who are experiencing
pain and discomfort either from a chronic illness or as a side effect of a treat-
ment. A recent study, looking at the effect of immersive VR for patients
who had suffered from chronic stroke patients, found this technology to be
contributing positively to the state of patients. During the VR experience,
the patients are asked to grab a virtual ball and throw it back into the virtual
space [31]. For these patients, this immersive experience could act as a per-
sonal rehabilitation physiotherapist who engages their upper limb movement
multiple times a day, allowing for possible neuroplasticity and a gradual
return of normal motor function to these regions.

For others, these immersive technologies could help cope with the
pain and the discomfort of their cancer or mental health condition. A
study has shown that late-stage adult cancer patients can use this technol-
ogy with minimum physical discomfort and in return benefit from an
enhanced relaxed state, entertainment, and a much-needed distraction
[32]. These immersive worlds provide a form of escapism with their artifi-
cial characters and environments, allowing the individual to interact and
explore the surrounding while receiving audiovisual feedback from the
environment, much like all the activities of daily living.

2.4 Intelligent personal health records

Personal health records have historically been physician-oriented and often
have lacked patient-related functionalities. However, in order to promote
self-management and improve the outcomes for patients, a patient-centric
personal health record should be implemented. The goal is to allow ample
freedom for patients to manage their conditions, while freeing up time for
the clinicians to perform more crucial and urgent tasks.
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2.4.1 Health monitoring and wearables

For millennia individuals relied on physicians to inform them about their
own bodies and to some extent, this practice is still applied today.
However, the relatively new field of wearables is changing this. Wearable
health devices (WHDs) are an upcoming technology that allow for con-
stant measurement of certain vital signs under various conditions. The key
to their early adoption and success is their application flexibility—the users
are now able to track their activity while running, meditating, or when
underwater. The goal is to provide individuals with a sense of power over
their own health by allowing them to analyze the data and manage their
own health. Simply, WHD:s create individual empowerment (Fig. 2.5).

At first look, a wearable device might look like an ordinary band or
watch; however, these devices bridge the gap between multiple scientific
disciplines such as biomedical engineering, materials science, electronics,
computer programming, and data science, among many others [33]. It
would not be an exaggeration to refer to them as ever-present digital
health coaches, as increasingly it is encouraged to wear them at all times
in order to get the most out of your data. Garmin wearables are a good
example of this, with a focus on being active, they cover a vast variety of
sports and provide a substantial amount of data on their Garmin connect
application where users can analyze and observe their daily activities.
These are increasingly accompanied by implementation of gamification.

Gamification refers to utilization of game design elements for
nongame-related applications. These elements are used to motivate and
drive users to reach their goals [34]. On wearable platforms, data gathered
from daily activities can serve as competition between different users on
the platform. Say, that your average weekly steps are around 50,000 steps.
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Figure 2.5 Health outcome of a patient depends on a simple yet interconnected set
of criteria that are predominantly behavior dependent.
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Here, based on specific algorithms, the platform places you on a leader-
board against individuals whose average weekly steps are similar to yours
or higher, with the highest ranking member exceeding your current aver-
age weekly steps. As a result of this gamified scenario, the user can push
themselves to increase their daily activities in order to do better on the
leaderboard and potentially lead a healthier life. While the gamification
aspect of wearables and their application could bring benefits, evidence of
efficacy is scarce and varies widely with some claiming that the practice
might bring more harm than good.

Remote monitoring and picking up on early signs of disease could be
immensely beneficial for those who suffer from chronic conditions and
the elderly. Here, by wearing a smart device or manual data entry for a
prolonged period, individuals will be able to communicate to their health-
care workers without the need of disrupting their daily lives [35]. This is a
great example of algorithms collaborating with healthcare professionals to
produce an outcome that is beneficial for patients.

2.4.2 Natural language processing

Natural language processing (NLP) relates to the interaction between
computers and humans using natural language and often emphasizes on
the computer’s ability to understand human language. NLP is crucial for
many applications of big data analysis within healthcare, particularly for
EMRs and translation of narratives provided by clinicians. It is typically
used in operations such as extraction of information, conversion of
unstructured data into structured data, and categorization of data and
documents.

NLP makes use of various classifications to infer meaning from
unstructured textual data and allows clinicians to work more freely using
language in a “natural way” as opposed to fitting sequences of text into
input options to serve the computer. NLP is being used to analyze data
from EMRs and gather large-scale information on the late-stage compli-
cations of a certain medical condition [26].

There are many areas in healthcare in which NLP can provide sub-
stantial benefits. Some of the more immediate applications include [36]

1. Efficient billing: extracting information from physician notes and
assigning medical codes for the billing process.

2. Authorization approval: Using information from physician notes to
prevent delays and administrative errors.
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3. Clinical decision support: Facilitate decision-making for members of
healthcare team upon need (for instance, predicting patient prognosis
and outcomes).

4. Medical policy assessment: compiling clinical guidance and formula-
tion appropriate guidelines for care.

One application of NLP is disease classification based on medical notes
and standardized codes using International Statistical Classification of
Diseases and Related Health Problems (ICD). ICD is managed and pub-
lished by the WHO and contains codes for diseases and symptoms as well
as various findings, circumstances, and causes of disease. Here is an illustra-
tive example of how an NLP algorithm can be used to extract and iden-
tify the ICD code from a clinical guidelines description. Unstructured text
is organized into structured data by parsing for relevant clauses followed
by classification of ICD-10 codes based on frequency of occurrence. The
NLP algorithm is run at various thresholds to improve classification accu-
racy and the data is aggregated for the final output (Fig. 2.6).

2.4.3 Integration of personal records

Since the introduction of EMRs, there have been large databases of infor-
mation on each patient, which collectively can be used to identify health-
care trends within different disease areas. The EMR databases contain the
history of hospital encounters, records of diagnoses and interventions, lab
test, medical images, and clinical narratives. All these datasets can be used
to build predictive models that can help clinicians with diagnostics and
various treatment decision support. As Al tools mature it will be possible
to extract all kinds of information such as related disease effects and corre-
lations between historical and future medical events [37]. The only data
often missing is data from in between interventions and between hospital
visits when the patient is well or may not be showing symptoms. Such
data could help to construct an end-to-end model of both "health" and
"disease" for studying long-term eftects and further disease classifications.
Although the applications of Al for EMRs are still quite limited, the
potential for using the large databases to detect new trends and predict
health outcomes is enormous. Current applications include data extraction
from text narratives, predictive algorithms based on data from medical
tests, and clinical decision support based on personal medical history.
There is also great potential for Al to enable integration of EMR data
with various health applications. Current Al applications within healthcare
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IHlustrative example for Identlfylng XX ICD-10 mapping
ICD-10 code “H40.1121”

Disease Glaucoma is a chronic condition in which fluid buildup
category ™ causes increased pressure in the eye. This increased

H40) - . - Body part,
: pressure can affect the optic nerve, potentially causing — (02)
structural damage to the optic nerve fiber and visual field
loss. The most common form of glaucoma is called
Etiology open-angle glaucoma. Glaucoma can result in visual

(11) impairment when left untreated.
Intraocular pressure (IOP) is the only risk factor for
glaucoma that is currently treatable. Research has Extension
shown that lowering IOP can reduce the progression of ~ (990"
loss of vision.

N7
Text from clinical ICD-10
guidance extract nomenclature ICD-10

Glaucoma Disease category H40
Open angle Etiology 0.11
Eye Body part 0.002
Treatable Extension 0.0001

= H40.1121 (Glaucoma/Primary open-angle/
Left eye/Mild stage)

Figure 2.6 Example of ICD-10 mapping from a clinical guidelines’ description [36].

are often standalone applications, these are often used for diagnostics using
medical imaging and for disease prediction using remote patient monitor-
ing [38]. However, integrating such standalone applications with EMR
data could provide even greater value by adding personal medical data
and history as well as a large statistical reference library to make classifica-
tions and predictions more accurate and powerful. EMR providers such as
Cerner, Epic, and Athena are beginning to add Al functionality such as
NLP in their systems making it easier to access and extract data held in
their libraries [39]. This could facilitate the integration of, for instance,
Telehealth and remote monitoring applications with EMR data and the
data integration transfer could even go both ways including the addition
of remote monitoring data in the EMR systems.
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There are many EMR providers and systems globally. These use vari-
ous operating systems and approaches with more than a thousand EMR
providers operating in the United States alone. Integration of EMR
records on their own poses a great challenge and interoperability of these
systems 1is important to obtain the best value from the data. There are var-
ious international efforts in gathering EMR data across countries including
Observational Health Data Science and Informatics (OHDSI), who have
consolidated 1.26 billion patient records from 17 different countries [40].
Various Al methods have been used to extract, classify, and correlate data
from EMRs but most generally make use of NLP, DL, and neural
networks.

DeepCare is an example of an Al-based platform for end-to-end pro-
cessing of EMR data. It uses a deep dynamic memory neural network to
read and store experiences and in memory cells. The long short-term
memory of the system models the illness trajectory and healthcare pro-
cesses of users via a time-stamped sequence of events and in this way
allows capturing long-term dependencies [41]. Using the stored data, the
framework of DeepCare can model disease progression, support interven-
tion recommendation, and provide disease prognosis based on EMR
databases. Studying data from a cohort of diabetic and mental health
patients it was demonstrated that DeepCare could predict the progression
of disease, optimal interventions, and assessing the likelihood for readmis-
sion [37].

2.5 Robotics and artificial intelligence-powered devices

There are numerous areas in healthcare where robots are being used
to replace human workforce, augment human abilities, and assist
human healthcare professionals. These include robots used for surgical
procedures such as laparoscopic operations, robotic assistants for reha-
bilitation and patient assistance, robots that are integrated into
implants and prosthetic, and robots used to assist physicians and other
healthcare staft with their tasks. Some of these devices are being
developed by several companies especially for interacting with patients
and improving the connection between humans and machines from a
care perspective. Most of the robots currently under development
have some level of Al technology incorporated for better performance
with regard to classifications, language recognition, image processing,
and more.
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2.5.1 Minimally invasive surgery

Although many advances have been seen in the area surrounding surgery
measured by the outcomes of surgical procedures, the main practice of sur-
gery still remains a relatively low-tech procedure for the most part using
hand tools and instruments for “cutting and sewing.” Conventional surgery
relies greatly on sensing by the surgeon, where touching allows them to
distinguish between tissues and organs and often requires open surgery.
There is an ongoing transformation within surgical technology and focus
has especially been placed in reducing the invasiveness of surgical proce-
dure by minimizing incisions, reducing open surgeries, and using flexible
tools and cameras to assist the surgery [42]. Such minimally invasive sur-
gery is seen as the way forward, but it is still in an early phase with many
improvements to be made to make it "less of a big deal" for patients and
reduce time and cost. Minimal invasive surgery requires different motor
skills compared with conventional surgery due to the lower tactile feed-
back when relying more on tools and less on direct touching. Sensors that
provide the surgeon with finer tactile stimuli are under development and
make use of tactile data processing to translate the sensor input into data or
stimuli that can be perceived by the surgeon. Such tactile data processing
typically makes use of Al, more specifically artificial neural networks to
enhance the function of this signal translation and the interpretation of the
tactile information [43]. Artificial tactile sensing offers several advantages
compared with physical touching including a larger reference library to
compare sensation and standardization among surgeons with respect to
quantitative features, continuous improvement, and level of training.

An example where artificial tactile sensing has been used includes
screening of breast cancer, as a replacement for clinical breast examination
to complement medical imaging techniques such as x-ray mammography
and MRI. Here, the artificial tactile sensing system was built on data from
reconstruction of mechanical tissue measurements using a pressure sensor
as reference data. During training of the neural network, the weight of
the input data adjusts according to the desired output [44]|. The tactile
sensory system can detect mass calcifications inside the breast tissue based
on palpation of different points of the tissue and comparing with different
reference data, and subsequently determine whether there are any signifi-
cant abnormalities in the breast tissue. Artificial tactile sensing has also
been used for other applications including assessment of liver, brain, and
submucosal tumors [45].
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2.5.2 Neuroprosthetics

Our species has always longed for an eternal life, in the ancient Vedic tradi-
tion there exists a medicinal drink that provides “immortality” for those who
drink it. The Rig Veda, which was written some 5000 years ago, comments:
“We drank soma, we became immortal, we came to the light, we found
gods.” This is similar in ancient Persian culture, where a similar legendary
drink is called Hoama in the Zoroastrain sacred book, Avesta [46,47]. This
longing for “enhancement” and “augmentation” has always been with us,
and in the 21st century we are gradually beginning to move towards making
some past myths into reality. In this section, we will cover some recent inno-
vations that can utilize Al to assist and allow humans to function better. Most
research in this area is to assist individuals with preexisting conditions and
have not been implemented in normal functioning humans for the sake of
human augmentation; however, this can perhaps change in the coming years.

Neuroprosthetics are defined as devices that help or augment the subject’s
own nervous system, in both forms of input and output. This augmentation
or stimulation often occurs in the form of an electrical stimulation to over-
come the neurological deficiencies that patients experience.

These debilitating conditions can impair hearing, vision, cognitive, sen-
sory or motor skills, and can lead to comorbidities. Indeed, movement dis-
orders such as multiple sclerosis or Parkinson’s are progressive conditions
that can lead to a painful and gradual decline in the above skills while the
patient is always conscious of every change. The recent advances in brain
machine interfaces (BMIs) have shown that a system can be employed
where the subjects’ intended and voluntary goal-directed wishes (electro-
encephalogram, EEG) can be stored and learned when a user “trains” an
intelligent controller (an Al). This period of training allows for identifica-
tion of errors in certain tasks that the user deems incorrect, say that on a
computer screen, a square is directed to go left and instead it goes to right
and also in a situation where the BMI is connected to a fixed robotic
hand, the subject directs the device to go up and the signals are interpreted
as a down movement. Correct actions are stored, and the error-related
brain signals are registered by the Al to correct for future actions. Because
of this “reinforcement learning,” the system can potentially store single to
several control “policies,” which allow for patient personalization [48].
This is rather similar to the goals of the company Neuralink which aims to
bring the fields of material science, robotics, electronics, and neuroscience
together to try and solve multifaceted health problems [49].
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‘While in its infancy and very exploratory, this field will be immensely
helpful for patients with neurodegenerative diseases who will increasingly
rely on neuroprostheses throughout their lives.

2.6 Ambient assisted living

With the aging society, more and more people live through old age with
chronic disorders and mostly manage to live independently up to an old age.
Data indicates that half of people above the age of 65 years have a disability
of some sort, which constitutes over 35 million people in the United States
alone. Most people want to preserve their autonomy, even at an old age, and
maintain control over their lives and decisions [50]. Assistive technologies
increase the self~-dependencies of patients, encouraging user participation in
Information and Communication Technology (ICT) tools to provide remote
care services type assistance and provide information to the healthcare profes-
sionals. Assistive technologies are experiencing rapid growth, especially among
people aged 65—74 years [51]. Governments, industries, and various organi-
zations are promoting the concept of AAL, which enables people to live
independently in their home environment. AAL has multiple objectives
including promoting a healthy lifestyle for individuals at risk, increasing the
autonomy and mobility of elderly individuals, and enhancing security, sup-
port, and productivity so people can live in their preferred environment and
ultimately improve their quality of life. AAL applications typically collect data
through sensors and cameras and apply various artificially intelligent tools for
developing an intelligent system [52]. One way of implementing AAL is
using smart homes or assistive robots.

2.6.1 Smart home

A smart home is a normal residential home, which has been augmented
using different sensors and monitoring tools to make it “smart” and facili-
tate the lives of the residents in their living space. Other popular applica-
tions of AAL that can be a part of a smart home or used as an individual
application include remote monitoring, reminders, alarm generation,
behavior analysis, and robotic assistance.

Smart homes can be useful for people with dementia and several stud-
ies have investigated smart home applications to facilitate the lives of
dementia patients. Low-cost sensors in an Internet of Things (IoT) archi-
tecture can be a useful way of detecting abnormal behavior in the home.
For instance, sensors are placed in different areas of the house including
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the bedroom, kitchen, and bathroom to ensure safety. A sensor can be
placed on the oven and detect the use of the cooker, so the patient is
reminded if it was not switched off after use. A rain sensor can be placed
by the window to alert the patient if the window was left open during
rain. A bath sensor and a lamp sensor can be used in the bathroom to
ensure that they are not left on [53].

The sensors can transmit information to a nearby computing device
that can process the data or upload them to the cloud for further proces-
sing using various machine learning algorithms, and if necessary, alert rela-
tives or healthcare professionals (Fig. 2.7). By daily collection of patient
data, activities of daily living are defined over time and abnormalities can
be detected as a deviation from the routine. Machine learning algorithms
used in smart home applications include probabilistic and discriminative
methods such as Naive Bayes classifier and Hidden Markov Model, sup-
port vector machine, and artificial neural networks [54].

In one example, Markov Logic Network was used for activity recogni-
tion design to model both simple and composite activities and decide on

Camera WiFi
or Bluetooth
Sensor RE-ID

Monitoring activities

. Behavior
Environment analysis
Events
Expert advice Caretaker Alarm

or guidance

Figure 2.7 Process diagram of a typical smart home or smart assistant setup.
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appropriate alerts to process patient abnormality. The Markov Logic
Network used handles both uncertainty modeling and domain knowledge
modeling within a single framework, thus modeling the factors that influence
patient abnormality [55]. Uncertainty modeling is important for monitoring
patients with dementia as activities conducted by the patient are typically
incomplete in nature. Domain knowledge related to the patient’s lifestyle is
also important and combined with their medical history it can enhance the
probability of activity recognition and facilitate decision-making. This
machine learning-based activity recognition framework detected abnormality
together with contextual factors such as object, space, time, and duration for
decision support on suitable action to keep the patient safe in the given envi-
ronment. Alerts of different importance are typically used for such decision
support and can, for instance, include a low-level alarm when the patient has
forgotten to complete a routine activity such as switching oft the lights or
closing the window and a high-level alarm if the patient has fallen and
requires intervention by a caretaker. One of the main aims of such activity
monitoring approaches, as well as other monitoring tools, is to support
healthcare practitioners in identifying symptoms of cognitive functioning or
providing diagnosis and prognosis in a quantitative and objective manner
using a smart home system [56|. There are various other assistive technology
devices for people with dementia including motion detectors, electronic
medication dispensers, and robotic devices for tracking.

2.6.2 Assistive robots

Assistive robots are used to support the physical limitations of the elderly
and dysfunctional people and help them by assisting in daily activities and
acting as an extra pair of hands or eyes. Such assistive robots can help in
various activities such as mobility, housekeeping, medication management,
eating, grooming, bathing, and various social communications. An assistive
robot named RIBA with human-type arms was designed to help patients
with lifting and moving heavy things. It has been demonstrated that the
robot is able to carry the patient from the bed to a wheelchair and vice
versa. Instructions can be provided to RIBA either by using tactile sensors
using a method known as tactile guidance to teach by showing [57].

The MARIO project (Managing active and healthy Aging with use of
caring Service robots) is another assistive robot which has attracted a lot of
attention. The project aims to address the problems of loneliness, isola-
tion, and dementia, which are commonly observed with elderly people.
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This is done by performing multifaceted interventions delivered by service
robots. The MARIO Kompai companion robot was developed with the
objective to provide real feelings and emotions to improve acceptance by
dementia patients, to support physicians and caretakers in performing
dementia assessment tests, and promote interactions with the end users.
The Kompai robot used for the MARIO project was developed by
Robosoft and is a robot containing a camera, a Kinect motion sensor, and
two LiIDAR remote sensing systems for navigation and object identifica-
tion [58]. It further includes a speech recognition system or other control-
ler and interface technologies, with the intention to support and manage a
wide range of robotic applications in a single robotic platform similar to
apps for smartphones. The robotic apps include those focused on cogni-
tive stimulation, social interaction, as well as general health assessment.
Many of these apps use Al-powered tools to process the data collected
from the robots in order to perform tasks such as facial recognition, object
identification, language processing, and various diagnostic support [59].

2.6.3 Cognitive assistants

Many elderly people experience a decline in their cognitive abilities and have
difficulties in problem-solving tasks as well as maintaining attention and acces-
sing their memory. Cognitive stimulation 1s a common rehabilitation approach
after brain injuries from stroke, multiple sclerosis or trauma, and various mild
cognitive impairments. Cognitive stimulation has been demonstrated to
decrease cognitive impairment and can be trained using assistive robots.

Virtrael is one of such cognitive stimulation platforms and serves to
assess, stimulate, and train various cognitive skills that experience a decline
in the patient. The Virtrael program is based on visual memory training
and the project is carried out by three different key functionalities: config-
uration, communication, and games. The configuration mode allows an
administrator to match the patient with a therapist and the therapist to
configure the program for the patient. The communication tool allows
communication between the patient and the therapist and between
patients., The games are intended to train cognitive skills of the patient
including memory, attention, and planning (Fig. 2.8) [60)].

2.6.4 Social and emotional stimulation

One of the first applications of assistive robots and a commonly investi-
gated technology is companion robots for social and emotional
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Figure 2.8 Example of games used for training cognitive skills of patients [60].

stimulation. Such robots assist elderly patients with their stress or depres-
sion by connecting emotionally with the patient with enhanced social
interaction and assistance with various daily tasks. The robots vary from
being pet-like robots to more peer-like and they are all interactive and
provide psychological and social effects. The robotic pet PARO, a baby
seal robot, is the most widely used robotic pet and carries various sensors
to sense touch, sounds, and visual objects [61]. Another robot is the
Mario Kampii mentioned earlier, which focuses on assisting elderly
patients with dementia, loneliness, and isolation. Yet, another companion
robot Buddy, by Blue Frog Robotics, assists elderly patients by helping
with daily activities such as reminders about medication and appoint-
ments, as well as using motion sensors to detect falls and physical inactiv-
ity. Altogether, studies investigating cognitive stimulation seem to
demonstrate a decrease in the rate of cognitive decline and progression of
dementia.

2.7 The artificial intelligence can see you now

Al is increasingly becoming an integral part of all our lives. From smart-
phones to cars and more importantly our healthcare. This technology will
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continue to push boundaries and certain norms that have been dormant
and accepted as the status quo for hundreds of years, will now be directly
challenged and significantly augmented.

2.7.1 Artificial intelligence in the near and the remote

We believe that Al has an important role to play in the healthcare offer-
ings of the future. In the form of machine learning, it is the primary capa-
bility behind the development of precision medicine, widely agreed to be
a sorely needed advance in care. Although early efforts at providing diag-
nosis and treatment recommendations have proven challenging, we expect
that Al will ultimately master that domain as well. Given the rapid
advances in Al for imaging analysis, it seems likely that most radiology
and pathology images will be examined at some point by a machine.
Speech and text recognition are already employed for tasks like patient
communication and capture of clinical notes, and their usage will
increase.

The greatest challenge to Al in these healthcare domains is not
whether the technologies will be capable enough to be useful, but rather
ensuring their adoption in daily clinical practice. For widespread adoption
to take place, Al systems must be approved by regulators, integrated with
EHR systems, standardized to a sufficient degree that similar products
work in a similar fashion, taught to clinicians, paid for by public or private
payer organizations, and updated over time in the field. These challenges
will ultimately be overcome, but they will take much longer to do so
than it will take for the technologies themselves to mature. As a result, we
expect to see limited use of Al in clinical practice within 5 years and
more extensive use within 10 years.

It also seems increasingly clear that Al systems will not replace human
clinicians on a large scale, but rather will augment their efforts to care for
patients. Over time, human clinicians may move toward tasks and job
designs that draw on uniquely human skills like empathy, persuasion, and
big-picture integration. Perhaps the only healthcare providers who will risk
their careers over time may be those who refuse to work alongside Al.

2.7.2 Success factors for artificial intelligence in healthcare

A review by Becker [62] suggests that Al used in healthcare can serve
clinicians, patients, and other healthcare workers in four different ways.
Here, we will use these suggestions as inspirations and will expand on
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their contribution toward a successful implementation of Al in healthcare:
(Fig. 2.9)

1. Assessment of disease onset and treatment success.

2. Management or alleviation of complications.

3. Patient-care assistance during a treatment or procedure.

4. Research aimed at discovery or treatment of disease.

2.7.2.1 Assessment of condition

Prediction and assessment of a condition is something that individuals will
demand to have more control over in the coming years. This increase in
demand is partly due to a technology reliable population that has grown
to learn that technological innovation will be able to assist them in leading
healthy lives. Of course, while not all answers lie in this arena, it is an
extremely promising field.

Mood and mental health-related conditions are immensely important
topic in today’s world and for good reason. According to the WHO, one
in four people around the world experiences such conditions and as a
result can accelerate their path toward ill-health and comorbidities.
Recently, machine learning algorithms have been developed to detect
words and intonations of an individual’s speech that may indicate a mood
disorder. Using neural networks, an MIT-based lab has conducted
research onto the detection of early signs of depression using speech.
According to the researchers, the “model sees sequences of words/speak-
ing style” and decides whether these emerging patterns are likely to be
seen in individuals with and without depression [63]. The technique
employed by the researchers is often referred to as a sequence modeling,
where model sequences of audio and text from patients with and without
depression are fed to the system and as these accumulate, various text
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Assessment Manage Patient-care Medical
of disease complications assistance research

Figure 2.9 The likely success factors depend largely on the satisfaction of the end
users and the results that the Al-based systems produce.
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patterns could be paired with audio signals. For example, words such as
“low”, “blue,” and “sad” can be paired with more monotone and flat
audio signals. Additionally, the speed and the length of pauses can play a
major role in detection of individuals experiencing depression. An exam-
ple of this can be seen in Fig. 2.10 where within a period of 60 seconds
and based on the tone and words used, it is possible to measure an esti-

mated emotion.

2.7.2.2 Managing complications

The general feeling of being unwell and its various complications that
accompany mild illnesses are usually well tolerated by patients. However, for
certain conditions, it is categorically important to manage these symptoms as
to prevent further development and ultimately alleviate more complex
symptoms. A good example for this can be seen in the field of infectious dis-
eases. In a study published in the journal of trauma and acute care surgery,
researchers think that by understanding the microbiological niches (biomar-
kers) of trauma patients, we could hold the key to future wound infections
and therefore can allow healthcare workers to take the necessary arrange-
ments to prevent the worst outcome [64|. Machine learning techniques can

[Positive] [Neutral] [Negative] [Negative] [Neutral] [Positive]
Igotupinthe Then | spent the | felt very But then, | | thought to
morning remembered whole day upset aboutit  remembered myself let's do it
excited about  that | needed  procrastinating and nearly quit the reason for SCIENCE!
the day to submitthe  without why I'm doing

unfinished achieving research
manuscript much
Positive |

Neutral

Estimated Emotion

Negative
30 35 40 45 50 55 60
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Figure 2.10 Early detection of certain mood conditions can be predicted by analyz-
ing the trend, tone of voice, and speaking style of individuals.
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also contribute toward the prediction of serious complications such as neu-
ropathy that could arise for those suffering from type 2 diabetes or early car-
diovascular irregularities. Furthermore, the development of models that can
help clinicians detect postoperative complications such as infections will con-
tribute toward a more efficient system [65].

2.7.2.3 Patient-care assistance

Patient-care assistance technologies can improve the workflow for clini-
cians and contribute toward patient’s autonomy and well-being. If each
patient is treated as an independent system, then based on the variety of
designated data available, a bespoke approach can be implemented. This is
of utmost importance for the elderly and the vulnerable in our societies.
An example of this could be that of virtual health assistants that remind
individuals to take their required medications at a certain time or recom-
mend various exercise habits for an optimal outcome. The field of
Affective Computing can contribute significantly in this arena. Aftective
computing refers to a discipline that allows the machine to process, inter-
pret, simulate, and analyze human behavior and emotions. Here, patients
will be able to interact with the device in a remote manner and access
their biometric data, all the while feeling that they are interacting with a
caring and empathetic system that truly wants the best outcome for them.
This setting can be applied both at home and in a hospital setting to
relieve work pressure from healthcare workers and improve service.

2.7.2.4 Medical research

Al can accelerate the diagnosis process and medical research. In recent
years, an increasing number of partnerships have formed between biotech,
MedTech, and pharmaceutical companies to accelerate the discovery of
new drugs. These partnerships are not all based on curiosity-driven
research but often out of necessity and need of society. In a world where
certain expertise is rare, research costs high and effective treatments for
certain conditions are yet to be devised, collaboration between various
disciplines is key. A good example of this collaboration is seen in a recent
breakthrough for antibiotic discovery, where the researchers devised/
trained a neural network that actively “learned” the properties of a vast
number of molecules in order to identify those that inhibit the growth of
E. coli, a Gram negative bacterial species that is notoriously hard to kill
[66]. Another example is the recent research carried out regarding the
pandemic of COVID-19 all around the world. Predictive Oncology, a
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precision medicine company has announced that they are launching an Al
platform to accelerate the production of new diagnostics and vaccines, by
using more than 12,000 computer simulations per machine. This is com-
bined with other efforts to employ DL to find molecules that can interact
with the main proteases (MP™ or 3CLP™) of the virus, resulting in the dis-
ruption of the replication machinery of the virus inside the host [67,68].

2.7.3 The digital primary physician

As you walk into the primary care physician’s room, you are greeted by
the doctor. There is an initial eye to eye contact, then an exchange of
pleasantries follows. She further asks you about your health and how she
can be of help. You, the patient, have multiple medical problems: previ-
ous presence of sciatica, snapping hip syndrome, high cholesterol, an
above-average blood pressure, and chronic sinusitis. However, because of
the limited time that you have with the doctor, priorities matter [69].
You categorize your own conditions and tend to focus on the most
important to you, the chronic sinusitis. The doctor asks you multiple
questions about the condition and as you are explaining your symptoms,
she types it all in your online record, does a quick examination, writes a
prescription, and says to come back in 6 weeks for further examination.
For your other conditions, you probably need to book a separate appoint-
ment unless you live in a country that designates more than 20 minutes
per patient.

The above scenario is the normal routine in most countries. However,
despite the helpfulness of the physician, it is not an ideal system and it is
likely that if you were in the position of the above patient, you will walk
away dissatisfied with the care received. The frustration with such systems
has led to an immense pressure on the health workers and needs to be
addressed. Today, there are numerous health-related applications that uti-
lize and combine the power of Al with that of a remote physician to
answer some of the simple questions that might not warrant a physical
visit to the doctors.

2.7.3.1 Artificial intelligence prequalification (triage)

Prior to having access to an actual doctor, trained Al bots can qualify
whether certain symptoms warrant an actual conversation with a physi-
cian. Many questions are asked of the patient and based on each response;
the software encourages the user to take specific actions. These questions
and answers are often vigorously reviewed by medical professionals at
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each stage to account for accuracy. In important cases, a general response
of “You should see a doctor” is given and the patient is directed to book
an appointment with a primary care physician.

2.7.3.2 Remote digital visits

The unique selling point for these recent innovations is that they allow
remote video conversations between the patient and the physician.
Normally, the patient books an appointment for a specific time, often
during the same day. This provides them with ample time to provide as
much information as possible for the physician responsible to review and
carefully analyze the evidence before talking to the patient. The informa-
tion can be in the form of images, text, video, and audio. This is
extremely encouraging and creative as many people around the world
lack the time and resources to visit a physician and allows remote work
for the physician.

2.7.3.3 The future of primary care

In a recent study, when asked about the future of Al on primary care,
while acknowledging its potential benefits, most practitioners were
extremely skeptical regarding it playing a significant role in the future of
the profession. One main pain point refers to the lack of empathy and the
ethical dilemma that can occur between Al and patients [70]. While this
might be true for today, it is naive to assume that this form of technology
will remain dormant and will not progress any further. Humanity prefers
streamlining and creative solutions that are effective and take less out of
our daily lives. Combine this with the ever-increasing breakthroughs in
the field of smart healthcare materials [71] and Al, one could envisage
patients managing most of their own conditions at home and when neces-
sary get in touch with a relevant healthcare worker who will refer them
to more specialized physicians who could tend to their needs. It is also
very important to note that at the time of an epidemic, an outbreak, natu-
ral or manmade disaster, or simply when the patient is away from their
usual dwelling, a technology that allows humans to remotely interact and
solve problems will have to become a necessity. At the time of writing
(Early 2020), the threat of a SARS-COV-2 epidemic looms over many
countries and is expanding at an unprecedented rate. World experts spec-
ulate that the infection rate is high and has the potential to remain within
a population and cause many fatalities in many months to come. It is
therefore essential to promote remote healthcare facilities/technologies
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and to have permanent solutions in place to save lives in order to reduce

any unnecessary burden or risk on both healthcare workers and patients

alike.
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