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Abstract: To cope with amphibian die-offs caused by ranavirus, it is important to know the underlying
ranavirus prevalence in a region. We studied the ranavirus prevalence in tadpoles of two native
and one introduced anuran species inhabiting agricultural and surrounding areas at 49 locations
across eight provinces of South Korea by applying qPCR. The local ranavirus prevalence and the
individual infection rates at infected locations were 32.6% and 16.1%, respectively, for Dryophytes
japonicus (Japanese tree frog); 25.6% and 26.1% for Pelophylax nigromaculatus (Black-spotted pond
frog); and 30.5% and 50.0% for Lithobates catesbeianus (American bullfrog). The individual infection
rate of L. catesbeianus was significantly greater than that of D. japonicus. The individual infection rate
of P. nigromaculatus was related to the site-specific precipitation and air temperature. The individual
infection rate gradually increased from Gosner development stage 39, and intermittent infection
was confirmed in the early and middle developmental stages. Our results show that ranavirus is
widespread among wild amphibians living in agricultural areas of South Korea, and mass die-offs by
ranavirus could occur at any time.

Keywords: amphibian; agricultural areas; infectious disease; introduced species

1. Introduction

Ranavirus is an infectious agent that affects ectothermic organisms such as fish, am-
phibians, and reptiles [1–3]. Ranavirus is known as one of the main causes of the global
decline in amphibians, in addition to chytrid fungi [4–7]. As a major threat to various
amphibians, ranavirus, for example, has caused mass die-offs of the endangered giant sala-
mander in China [8], the larval group of endangered gold-spotted pond frogs in Korea [9],
and the abundance of common frogs in England [10]. Despite being a continuous threat,
ranaviruses are much less well studied than the amphibian chytrid fungus [11–13]. Since
ranavirus was first discovered in the United States [14], it has spread and is now found on
five continents [3,7,15]. Recently, the number of cases of discovery and mass die-offs due to
ranavirus infection has also increased in Asia.

Among Asian countries, China has had the highest number of published studies, with
153 registered publications in the Web of Science database between 2010 and 2019 [10]. In
addition to China, cases of ranavirus infection or mass die-offs due to ranavirus infection
have been reported in eight Asian countries and regions, including Taiwan, Hong Kong,
Japan, Korea, Thailand, Singapore, Malaysia, and India [16]. To date, ranavirus infection
or mass mortality reports have been made for five amphibian species in South Korea,
including larval Rana huanrenensis [17], adult R. uenoi [18], adult Kaloula borealis [19], larval
P. chosenicus [12], and larval D. japonicus [19]. To predict the possibility of ranavirus-caused
mass die-offs according to species and region, it is important to determine the ranavirus
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prevalence in various amphibian species in a wide area. While ranavirus-caused mass die-
offs have been frequently reported in various countries [20,21], few studies have screened
ranavirus prevalence on a regional scale [21–23]. Even within China, where the most
research has been performed, screening was performed only in Heilongjiang Province and
some areas of northeastern China, and the studies included only a few species, such as
R. dybowskii and R amurensis [24,25]. Such background studies have not been conducted in
most Asian countries.

To determine the ranavirus prevalence in amphibian species inhabiting agricultural
and surrounding areas, such as wetlands, ponds, and reservoirs, we screened the ranavirus
prevalence in three anuran species: the introduced L. catesbeianus and the native D. japonicus
and P. nigromaculatus. Our study covered 49 locations across eight provinces in South Korea.
In addition, the relationship between the individual ranavirus infection rate and habitat
characteristics was explored.

2. Materials and Methods
2.1. Sampling Locations and Tissue Collection

The selected three species (D. japonicus, P. nigromaculatus, and L. catesbeianus) are
commonly distributed in agricultural areas in South Korea [26]. We selected L. catesbeianus
because it is an introduced species widely inhabiting the central and southern parts of the
Korean Peninsula [27], and there have been many reports of ranavirus infection in this
species in many countries [28–30]. Dryophytes japonicus and P. nigromaculatus largely share
distribution ranges and habitats with L. catesbeianus, and they are also representative anuran
species in rice paddies [26]. To identify sampling locations, we first selected the areas where
all three species or at least two native species have been reported within a 3 km radius
based on the results of the third (2006–2012) and fourth (2013–2018) “National Ecosystem
Surveys (NESs)”. The South Korean Ministry of Environment has conducted three NESs
since 1986, and the data are available from EcoBank [31]. After the confirmation of species
presence by directly visiting the locations, we finally selected 49 locations across eight
provinces (Figure 1; Table 1). Considering the effective collection of samples over a wide
range, we collected tadpoles of the three species using a dip net, seine or trap between June
2020 and October 2021. To prevent potential transmission of ranavirus between sampling
locations, we sanitized all collecting equipment using the following protocol: brushing
off mud and vegetation, spraying 10% bleach (Yuhan Clorox, Seoul, South Korea) and
cleaning with tap water, spraying 70% ETOH, and completely air-drying all field equipment
after each collection [32]. We individually preserved sampled tadpoles (Voucher number
G01621DJ-G03995LC) in 99% ETOH after euthanasia by submerging them for more than
15 min in 0.5% MS222 [33]. In the laboratory, we randomly subsampled a maximum of
eight tadpoles of each species from each location, determined their Gosner developmental
stage [34], extracted liver tissues, and preserved the tissues at −80 ◦C.

2.2. DNA Extraction and qPCR

DNA extraction from liver tissue was performed with the DNeasy Blood and Tissue
kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. The extracted DNA
was quantified with a Qubit3 Fluorometer (Invitrogen, Waltham, MA, USA) using the
Qubit 1X dsDNA HS Assay Kit (Invitrogen, Waltham, MA, USA) and then stored at −80 ◦C
until qPCR experiments. We used RVMCPKim3_F and RVMCPKim3_R qPCR primers to
determine ranavirus infection [35]. The composition of the amplification reaction solution
for qPCR included 10 µL of power SYBR green PCR master mix (Applied Biosystems,
Waltham, MA, USA), 0.5 µL of forward primer, 0.5 µL of reverse primer, and 4 ng of DNA.
We adjusted the volume to a final value of 20 µL using molecular biology grade water.
qPCR was performed in QuantStudio 1 (Applied Biosystems, Waltham, MA, USA) at 95 ◦C
for 10 min, followed by 40 cycles of 95 ◦C for 15 s and 62.5 ◦C for 20 s. qPCR of all samples
was performed in triplicate with a negative control (sterile, molecular grade water) and a
positive control. The positive control was PCR-amplified ranavirus MCP DNA from Kaloula
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borealis, and this sample was obtained and verified for ranavirus infection in 2016 [19]. If
a positive reaction was detected in two or more wells of the three replicate samples, the
melting temperature (Tm) value of the melting curve coincided with the positive control,
and the cycle threshold (CT) value was 35 or less, then we considered the tadpole to be
infected with ranavirus (Figure S1A–H). If a positive reaction was confirmed in only one
well, the test was rerun, and only when the above conditions were satisfied was it judged
to be an infected tadpole.
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Figure 1. Local ranavirus infection in larvae of three anuran species (Dryophytes japonicus, green circles;
Pelophylax nigromaculatus, blue circles; Lithobates catesbeianus, red circles) at 49 locations across eight
provinces in South Korea. Filled circles indicate the confirmation of at least one ranavirus-infected
tadpole of the species at the location.
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Table 1. Sampling locations and ranavirus infection rates in larvae of three anuran species (Dryophytes
japonicus, Pelophylax nigromaculatus, Lithobates catesbeianus) across 49 sampling locations in South Korea.

Province
Sampling Location

(Abbreviation)

Infection Rate (%) (No. of Infected/Tested Tadpoles)

D. japonicus P. nigromaculatus L. catesbeianus

Gangwon

Sokcho (SC) None None -
Gangneung (GaN) 12.5 (1/8) None -

Inje (InJ) 12.5 (1/8) None -
Yanggu (YG) None 12.5 (1/8) -

Chuncheon1 (CC1) 12.5 (1/8) None -
Chuncheon2 (CC2) None None -
Hongcheon1 (HC1) None None -
Hongcheon2 (HC2) None None -
Hongcheon3 (HC3) 25.0 (2/8) 75.0 (6/8) -

Gyeonggi Yeoju (YJ) None None -
Goyang (GY) None - -

Chungbuk
Cheongju1 (CJ1) 12.5 (1/8) None -
Cheongju2 (CJ2) None - -
Okcheon (OkC) None None -

Chungnam

Yesan (YS) - - None
Seosan (SS) 12.5 (1/8) None None
Taean (TA) 37.5 (3/8) None None
Sejong (SeJ) None None 50.0 (1/2)

Cheongyang (CY) None None 25.0 (2/8)
Seocheon (SuCh) None 25.0 (2/8) None

Gyeongbuk

Mungyeong (MK) None None None
Sangju (SJ) None None -

Uisung (UiS) None None -
Gimcheon (KiC) None None 100.0 (1/1)

Seongju (SuJ) None 12.5 (1/8) 12.5 (1/8)
Daegu (DG) 12.5 (1/8) 12.5 (1/8) None
Pohang (PH) None 37.5 (3/8) -

Gyeongnam

Ulsan (UlS) None None -
Busan1 (BS1) - - None
Busan2 (BS2) 12.5 (1/8) None -

Sacheon (SaC) None 37.5 (3/8) None
Jinju (JJ) None None None

Jeonbuk

Iksan (IS) 12.5 (1/8) None None
Gimjae (KJ) None None 75.0 (6/8)

Jeongup (JuU) 12.5 (1/8) None None
Imsil (ImS) None 12.5 (1/8) -

Sunchang (SuCa) None None -

Jeonnam

Jangseong (JS) 12.5 (1/8) None None
Gokseong (GoS) None None -

Muan (MA) 12.5 (1/8) 25.0 (2/8) None
Imja (IJ) - None 50.0 (4/8)

Sinan1 (SAB) None None -
Sinan2 (SABC) None 12.5 (1/8) None
Sinan3 (SAGI) - - None
Sinan4 (SAJD) - None 37.5 (3/8)
Sinan5 (SAJU) - - None
Yeongam (YA) None 25.0 (2/8) None
Haenam (HN) 25.0 (2/8) None None

Goheung (GoH) None None 50.0 (4/8)

Average
(No. of infected/tested tadpoles) 49 locations 16.1%

(18/344)
26.1%

(23/342)
50.0%

(22/187)
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2.3. Weather Factors and Habitat Characteristics

To investigate the relationship between the ranavirus infection rate and habitat charac-
teristics, we analyzed 16 habitat characteristics at each sampling location. The land cover
rate (urban area, agricultural area, forest area, grass area, wetland area, bare area, hydro-
sphere area) within a radius of 3 km2 from the mid-sampling point was calculated on the
2020 South Korean land cover map [36]. From the land cover data, greenhouse cultivation
areas within agricultural areas, salt fields and tidal flat areas within wetland areas, and sea
areas within hydrosphere areas were excluded during data handling because these areas
are inhabitable for amphibians. Additionally, the shortest distance from the mid-sampling
point to agricultural land, mountains, water bodies, and urban areas was calculated in units
of 1 m. When a sampling point was located within a specific coverage area, the distance was
set to 2 m. All land cover rates, distance data, and altitude values of each sampling point
were calculated using QGIS (ver. 3.4.7, QGIS.org 2021; https://www.qgis.org/ko, accessed
on 27 July 2021). Furthermore, the average air temperature, lowest air temperature, highest
air temperature, and average precipitation for the immediately preceding quarter, based on
the sampling date of the tadpoles used in the qPCR experiment, were obtained from the
local meteorological station closest to the sampling point.

2.4. Data Analyses

For analyses, we log-transformed 16 habitat and climate characteristics. As most of
the data did not present a normal distribution even after transformation, nonparametric
statistics were used for statistical analyses. We used the chi-square test to determine the
difference in the prevalence of infected locations (local ranavirus prevalence) among the
three species using the Kruskal–Wallis test, and the Dunn-Bonferroni post hoc test was
conducted following the provided option of the test. The correlations of the individual
ranavirus infection rates within the three species and between the three species and the
16 habitat characteristics were verified by Spearman correlation analysis. All statistics
were performed in SPSS (Version 26, IBM). To determine the change in the individual
ranavirus infection rate according to the Gosner developmental stage, the number of
ranavirus-infected individuals was calculated at each stage and then compared to the
number of individuals, which was qPCR-tested at each stage for each species. Afterward,
the average ranavirus infection rate of the three species based on each developmental stage
was obtained, and trends were presented. All data in the text are presented as the mean ± 1
standard error unless otherwise noted.

3. Results

Out of 49 populations, we collected larval D. japonicus from 43 locations (22.1 ± 4.2
individuals per location, n = 43), larval P. nigromaculatus from 43 locations (21.0 ± 4.0,
n = 43), and larval L. catesbeianus from 26 locations (19.5 ± 10.2, n = 26) (Figure 1). The
Gosner developmental stage of the collected larvae ranged from 25 to 46. In the qPCR
experiments, we subsampled and used 344 larval D. japonicus (8 tadpoles per location),
342 larval P. nigromaculatus (8 per location, except for 6 in one location), and 187 larval
L. catesbeianus (7.2 ± 2.1 SD per location, ranging from 1–8 individuals).

3.1. Rates of Local and Individual Ranavirus Infections

We found at least one ranavirus-infected individual at 28 of the 49 studied locations
(57.1%) (Figure 1; Table 1). The local ranavirus prevalence was 32.6% (14 out of 43 locations),
25.6% (11 out of 43 locations), and 30.8% (8 out of 26 locations), and the individual infection
rates within the infected locations were 16.1 ± 2.0% (12.5–37.5%, n = 14), 26.1 ± 5.7%
(12.5–75.0%, n = 11), and 50.0% 50.0 ± 9.7% (12.5–100%, n = 8) for D. japonicus, P. nigromacu-
latus, and L. catesbeianus, respectively (Table 1). The local ranavirus prevalences were not
significantly different between the three species (p = 0.77), but the individual ranavirus
infection rates at the infected locations were significantly different (H (2) = 12.47, p = 0.002)
(Figure 2). In particular, the rate of L. catesbeianus was greater than that of D. japonicus

https://www.qgis.org/ko
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(p = 0.001). In contrast, the rates were not significantly different between L. catesbeianus and
P. nigromaculatus or between P. nigromaculatus and D. japonicus (ps > 0.05).
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Figure 2. Box plots (medians ± quartiles) of the ranavirus infection rates among larvae of three
anuran species (Dryophytes japonicus, Pelophylax nigromaculatus, Lithobates catesbeianus). The different
characters on the bars between species indicate significantly different rates using the Kruskal–Wallis
test with the Dunn-Bonferroni post hoc test (p = 0.001).

3.2. Relationship with Weather Conditions, Habitat Characteristics, and Developmental Stages

The individual infection rate was positively correlated with grass area (r = 0.579,
n = 14, p = 0.030) in D. japonicus and negatively correlated with distance to mountains
(r = −0.604, n = 11, p = 0.049) in P. nigromaculatus and with forest area (r = −0.781, n = 8,
p = 0.022) in L. catesbeianus. In P. nigromaculatus, the rate was also positively related to
the precipitation (r = 0.634, n = 11, p = 0.036), average air temperature (r = 0.837, n = 11,
p = 0.001), and lowest air temperature (r = 0.721, n = 11, p = 0.012) in the first quarter prior
to the sampling date. The individual ranavirus infection rates of the three species were
not related (ps > 0.05). Additionally, all other remaining relationships were not significant
(ps > 0.05). The individual infection rate of the three species showed a gradual increase
from Gosner developmental stage 39. In the early and middle developmental stages, there
were intermittent cases of ranavirus infection, such as at stages 32 and 37 (Figure 3).
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4. Discussion

Our study shows that ranavirus is widely spread in amphibians inhabiting agricultural
and surrounding areas in South Korea. Ranavirus-infected tadpoles were identified in
over 25.6% of the surveyed locations, and the average individual infection rate in the
infected area was as high as 50% depending on the species. Amphibian larvae often have a
higher rate of ranavirus infection than adults [37] due to factors such as immunologically
vulnerable metamorphosis and high population density [38,39]. To date, although ranavirus
infection in larval D. japonicus has been confirmed in agricultural areas [19], there has been
no report of mass die-offs of either larval or adult D. japonicus or P. nigromaculatus in South
Korea. Our results show that given the high 50% individual infection rate of L. catesbeianus,
amphibian mass die-offs due to ranavirus could occur in agricultural areas whenever
outbreak conditions are present.

The high individual infection rate of L. catesbeianus tadpoles may be due to the habitat
and ecological characteristics of the species. Ranavirus can infect various ectothermic
vertebrates through direct individual contact or indirect water matrices [40–42]. In this
study, the individual infection rate of L. catesbeianus was 50.0%, which was higher than the
rates of 16.1% and 26.1% for D. japonicus and P. nigromaculatus, respectively. Several factors
might have affected this result. First, while the larvae of D. japonicus and P. nigromaculatus
generally spend approximately one month in water before metamorphosis [26], the larvae
of L. catesbeianus often spend more than one year in water [43]. This difference may increase
the likelihood of being directly or indirectly infected by ranavirus. Second, considering
that the main habitats of L. catesbeianus are ponds and reservoirs adjacent to farmland and
villages, there is a high possibility of long-term exposure to anthropogenic pollutants. Such
pollutants are often related to ranavirus infection [44,45]. Third, adult L. catesbeianus live
in ponds throughout the year. In contrast, adult D. japonicus and P. nigromaculatus live
in water only during the breeding season [26]. Therefore, adult L. catesbeianus are highly
likely to be infected with ranavirus, which may have subsequently caused the high rate
of larval infection. In future studies, screening the degree of ranavirus infection in adult
L. catesbeianus is necessary.

In this study, we could not find any association of ranavirus infection between intro-
duced L. catesbeianus and two native species (D. japonicus and P. nigromaculatus). Despite
screening 49 locations, we confirmed only four locations with more than two species
infected by ranavirus. It has been reported that L. catesbeianus functions as a ranavirus
carrier and transmission vector [46,47]. Lithobates catesbeianus was introduced to Korea
approximately 50 years ago and is widely distributed in the central and southern regions
of South Korea [27]. In addition, considering that ranavirus has been previously detected
in bullfrogs in many countries [28–30], L. catesbeianus may be responsible, at least in part,
for the wide ranavirus prevalence in South Korea. However, in this study, joint ranavirus
infections of both L. catesbeianus and P. nigromaculatus were confirmed at only one location.
Therefore, we could not appropriately test the hypothesis that L. catesbeianus may serve
as a ranavirus vector for native anuran species. In future studies, screening for ranavirus
and comparing the strains through sequencing in amphibians, fish, and insects that share a
water source with or cohabit with L. catesbeianus are necessary.

The relationships between the individual ranavirus infection rate and several habitat
characteristics were identified. In contrast with the cases in L. catesbeianus, the infection
rate of P. nigromaculatus showed a high positive correlation with precipitation, average air
temperature, and lowest air temperature in the first quarter prior to the collection date.
This result was consistent with those of previous studies showing that the rate of ranavirus
infection was related to habitat temperature [2]. In addition, in P. nigromaculatus, the
greater the distance from the mountain was, the higher the infection rate, implying that the
infection rate might be low when the anthropogenic factors are low near mountainous or
forest areas. However, in L. catesbeianus, there was no correlation with climatic factors, and
only the more forested areas had a lower infection rate. This result suggests that ranavirus
infection in the introduced L. catesbeianus might be related to anthropogenic factors such
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as various pollutants rather than to climatic factors. In D. japonicus, the infection rate at
12 of the locations was the same, at 12.5%, so it might be statistically difficult to detect
any significant relationships with habitat characteristics. Many amphibians can survive
in a state of ranavirus infection [15,46], and many field studies have conducted post hoc
mass mortality analysis [17,18,28]. Thus, the direct causal relationship between population
habitat characteristics and ranavirus-caused mass mortality has not been clearly established.
Further studies are needed to link the rate of infection with habitat characteristics.

There were two trends in the infection rate according to the developmental stage
of tadpoles. The individual ranavirus infection rate gradually increased after Gosner
developmental stage 39, and intermittent ranavirus infection occurred in the early to
mid-developmental stages. Among the factors influencing the ranavirus infection rate
in amphibians, the developmental stage is a well-known factor [2–5]. The ranavirus
infection rate is often high at Gosner stages 44–46, which is when metamorphosis occurs
and often leads to die-off events [38,48,49]. There was also a case report in South Korea
where many larval R. huanrenensis died during metamorphosis [17]. Although ranavirus-
caused die-off events of amphibian tadpoles are often found close to metamorphosis [50,51],
tadpoles at lower developmental stages are also susceptible to ranavirus infection [52].
Our results imply that anuran tadpoles can be infected by ranavirus regardless of the
specific developmental stage and that ranavirus-caused mass die-offs can occur whenever
environmental triggers form suitable conditions for an outbreak. In the paddy fields in
which rice is cultivated, water flooding and draining are repeated to help the successful
growth of rice, and this cycle greatly affects amphibian activities [39,53]. Often, several
thousand dead tadpoles at various developmental stages are found in small hollow patches
in water-drained rice paddies in summer [54]. Our findings suggest a potential link between
these deaths and ranavirus, suggesting the urgent need for further studies.

5. Conclusions

Our study is of great significance in that we, for the first time, determined the ranavirus
prevalence in representative amphibian species living in agricultural and surrounding areas
across South Korea. Our results show that mass die-offs of amphibians due to ranavirus
could occur at any time in such areas. In particular, the further screening of adult frogs and
the investigation of possible ranavirus causation on large die-offs of tadpoles in rice fields
are urgently necessary.
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