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1  |  INTRODUC TION

Marine carnivores include species belonging to the orders Cetacea 
and Pinnipedia, genus Enhydra, and species Ursus maritimus, and 
they are united by lifestyle rather than evolutionary history (Erwin 
et al., 2017). They have undergone significant habitat transitions 
during their evolution (Williams, 1999), and the order Cetacea 
has dramatically changed from herbivorous to carnivorous (Wang 

et al., 2016). Furthermore, the marine environment is a unique hab-
itat, as its temperature is lower and salinity is higher than those 
of the terrestrial environment (Liu et al., 2019). Therefore, marine 
carnivores are ideal models for investigating convergent evolution 
(Uhen, 2007). Many studies have focused on the adaptive evo-
lution of marine carnivores using genomics (Noh et al., 2022; Yim 
et al., 2014), microbiomics (Dudek et al., 2022; Glaeser et al., 2022), 
and transcriptomics (Toren et al., 2020). Based on phylogenetic 
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Abstract
The gut microbiome can help the host adapt to a variety of environments and is af-
fected	 by	many	 factors.	Marine	 carnivores	 have	 unique	 habitats	 in	 extreme	 envi-
ronments. The question of whether marine habitats surpass phylogeny to drive the 
convergent evolution of the gut microbiome in marine carnivores remains unanswered. 
In the present study, we compared the gut microbiomes of 16 species from different 
habitats.	Principal	component	analysis	(PCA)	and	principal	coordinate	analysis	(PCoA)	
separated three groups according to their gut microbiomes: marine carnivores, ter-
restrial carnivores, and terrestrial herbivores. The alpha diversity and niche breadth 
of the gut microbiome of marine carnivores were lower than those of the gut microbi-
ome of terrestrial carnivores and terrestrial herbivores. The gut microbiome of marine 
carnivores harbored many marine microbiotas, including those belonging to the phyla 
Planctomycetes, Cyanobacteria, and Proteobacteria, and the genus Peptoclostridium. 
Collectively, these results revealed that marine habitats drive the convergent evolu-
tion of the gut microbiome of marine carnivores. This study provides a new perspec-
tive on the adaptive evolution of marine carnivores.
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independent	 contrasts	 analysis,	 Wang,	 Shang,	 Wu,	 et	 al.	 (2022) 
found that the evolutionary rate of marine Cetartiodactyla mito-
chondrial protein- coding genes was significantly higher than terres-
trial Cetartiodactyla. Noh et al. (2022) found that SUMO2 and EP300 
(hypoxia	genes)	were	the	most	significant	genes	in	the	Weddell	seal	
(Leptonychotes weddellii) compared to other placental mammals. The 
bottlenose dolphin (Tursiops truncatus) possesses a unique microbi-
ome compared to that of other mammals and is similar to carniv-
orous	marine	 fishes	 (Soverini	 et	 al.,	2016). Based on comparative 
genomic analysis, Foote et al. (2015) discovered that convergent 
amino acid substitutions are widespread in the genome of marine 
carnivores, and a subset of positive selection evolutionary genes 
was putatively associated with marine phenotypes. Thus, the marine 
habitat drives the convergent evolution of marine mammal genes (in-
cluding those of Odobenus rosmarus, Tursiops truncates, Orcinus orca, 
and Trichechus manatus latirostris).

The gut microbiome is an important factor for host adaptations to 
the environment (Wang et al., 2019;	Wang,	Shang,	Wei,	et	al.,	2022; 
Wang,	Shang,	Wu,	et	al.,	2022; Wang, Wu, et al., 2022).	Wang,	Shang,	
Wu, et al. (2022) found that the gut microbiome function of red and 
corsac	foxes	can	help	hosts	adapt	to	different	environmental	niches.	
Moreover, to adapt to plateau environments, short- chain fatty acid 
(SCFA)-	producing	bacteria	are	significantly	enriched	in	the	host	gut	(Li	
et al., 2016; Zhang et al., 2016). The gut microbiome also plays an im-
portant role in host health and survival (Davies et al., 2022; Gentile & 
Weir, 2018) and is dependent on various factors, such as diet (Greene 
et al., 2020; Wu et al., 2022),	 phylogeny	 (Sun	 et	 al.,	 2021; Wang 
et al., 2019), and habitat (Gacesa et al., 2022). Previous studies have 
shown that mammal gut microbiomes are strongly correlated with host 
phylogeny	(Amato	et	al.,	2019; Ley et al., 2008). In other words, mam-
mals with closer phylogenetic relationships have similar gut microbi-
ome compositions (Gregor et al., 2022). However, some influencing 
factors can surpass phylogeny to drive the convergent evolution of the 
mammalian gut microbiome (Huang et al., 2021;	Song	et	al.,	2020; Yao 
et al., 2021).	For	example,	high	altitude	drives	the	convergent	evolu-
tion of indicator microbiota in the gut microbiome of ungulates (Zhang 
et al., 2016). The gut microbiome was found to be similar among myr-
mecophagous species, although their phylogenetic relationships were 
distant (Delsuc et al., 2014).	A	bamboo	diet	was	shown	to	drive	gut	
microbiome convergence between the giant panda (Ailuropoda melan-
oleuca) and red panda (Ailurus fulgens) (Huang et al., 2021).	Surprisingly,	
Proteobacteria were found to be the dominant phylum in bats and 
birds	and	were	driven	by	flight	behavior	(Song	et	al.,	2020).

Thus,	 extreme	environments,	 special	 feeding	habits,	 or	behav-
iors can drive convergent evolution of the gut microbiome of species 
with the distant phylogenetic relationships. Under a broader phy-
logeny, it remains unclear whether marine habitats drive the con-
vergent evolution of the gut microbiota of marine carnivores. Based 
on previous studies, we hypothesized that marine habitats drive the 
convergent evolution of the gut microbiome of marine carnivores. 
Therefore, we studied and compared the published gut microbi-
ome	(16S	rRNA	gene)	data	of	four	marine	carnivores,	five	terrestrial	
carnivores, and seven terrestrial herbivores. Our findings helped 

explain	these	scientific	problems	and	provide	a	new	perspective	for	
understanding the adaptation of marine carnivores to the marine 
environment.

2  |  MATERIAL S AND METHODS

2.1  |  Species sampling and 16S rRNA gene 
sequence data

We	 analyzed	 the	 gut	 microbiomes	 of	 108	 samples	 representing	
16	 species	 belonging	 to	 nine	 families	 and	 14	 genera	 to	 explore	
the	 convergent	 evolution	 of	 the	 gut	microbiome.	 16S	 rRNA	 gene	
data of the gut microbiome of the nine species (Cuon alpinus [Wu 
et al., 2016], Canis lupus [Wu et al., 2017], Vulpes Vulpes [Wang, 
Shang,	Wei,	et	al.,	2022;	Wang,	Shang,	Wu,	et	al.,	2022; Wang, Wu, 
et al., 2022], V. Corsac	[Wang,	Shang,	Wei,	et	al.,	2022;	Wang,	Shang,	
Wu, et al., 2022; Wang, Wu, et al., 2022], Cervus elaphus [Wang 
et al., 2019], Ovis musimon	 [Sun	 et	 al.,	2019], Pantholops hodgsonii 
[Wang,	Shang,	Wei,	et	al.,	2022;	Wang,	Shang,	Wu,	et	al.,	2022; Wang, 
Wu, et al., 2022], Pseudois nayaur	 [Wang,	Shang,	Wei,	et	al.,	2022; 
Wang,	Shang,	Wu,	et	al.,	2022; Wang, Wu, et al., 2022], and Bos grun-
niens	[Wang,	Shang,	Wei,	et	al.,	2022;	Wang,	Shang,	Wu,	et	al.,	2022; 
Wang, Wu, et al., 2022]) were obtained by sequencing in our labo-
ratory.	Other	 16S	 rRNA	 gene	 data	 (C. Nippon [Guan et al., 2017], 
Moschus chrysogaster	[Sun	et	al.,	2020], Halichoerus grypus [Watkins 
et al., 2022], Nyctereutes procyonoides [Ishida- Kuroki et al., 2020], 
Enhydra lutris nereis [Dudek et al., 2022], Balaenoptera physalus, and 
Physeter microcephalus [Glaeser et al., 2022]) were downloaded from 
the	NCBI	SRA	database	(www.ncbi.nlm.nih.gov).	The	16S	rRNA	gene	
sequences	are	listed	in	Appendix	S1. Based on diet and habitat, these 
species were divided into three groups: terrestrial herbivores (TH 
group; C. elaphus, O. musimon, P. hodgsonii, P. nayaur, B. grunniens, 
C. Nippon, and M. chrysogaster), terrestrial carnivore (TC group; C. 
alpinus, C. lupus, V. Vulpes, V. Corsac, and N. procyonoides), and marine 
carnivore (MM group; H. grypus, B. physalus, P. microcephalus, and E. 
lutris nereis).	Except	for	the	data	on	C. alpinus, C. lupus, and O. musi-
mon, all sample data were obtained from wild individuals. In previous 
studies, C. alpinus, C. lupus, and O. musimon were captive individuals 
(not	treated	with	antibiotics)	(Sun	et	al.,	2021; Wu et al., 2016, 2017).

2.2  |  Sequence processing and statistical analyses

The	paired-	end	reads	of	 the	16S	rRNA	gene	was	sequenced	using	
a	 high-	throughput	 sequencing	 platform.	 The	 MOTHUR	 (Schloss	
et al., 2009)	software	was	used	to	merge	all	16S	rRNA	gene	data.	To	
avoid	 sequencing	 inaccuracy,	 the	Parallel-	Meta	Suite	 (PMS;	V	3.7;	
Chen et al., 2022) was used to denoise (Callahan et al., 2017) and 
remove chimeras (Edgar et al., 2011). To eliminate the effect of using 
different	sequencing	intervals	and	sequencing	depths	of	16S	rRNA	
data,	PMS	was	used	to	cluster	the	sequences	into	operational	taxo-
nomic units (OTUs, with the conventional criterion of 97% sequence 
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identity)	and	annotate	 the	 taxonomy	 (GreenGenes	V13-	8)	of	each	
species, and the relative microbiome abundance table of each sam-
ple was obtained. This table was used as an intermediate result and 
reanalyzed	 by	 PMS	 to	 obtain	OTU	 relative	 abundance	 tables	 and	
each	 taxon	 relative	 abundance	 table	 for	 all	 species.	 Based	on	 the	
OTU level, alpha (α)	 diversity,	 principal	 component	 analysis	 (PCA),	
principal	coordinate	analysis	(PCoA),	gut	microbiome	niche	breadth,	
and	analysis	of	similarities	(Anosim)	were	plotted	using	the	Tutools	
platform (http://www.cloud tutu.com).	Alpha	diversity	indexes	were	
used to analyze the gut microbiome diversity between species. The 
gut microbiome niche breadth was used to judge whether a species 
is	specialized.	We	used	PCA,	PCoA,	and	Anosim	to	verify	whether	
the gut microbiome composition of species in different habitats 
was different. The Tutools platform was also used to perform the 
Kruskal- Wallis test (q < .01;	 false	 discovery	 rate	 [FDR]	 method	 to	
correct decisions) to detect differences in the abundance of the gut 
microbiota between groups.

3  |  RESULTS

3.1  |  Overview of the 16S rRNA gene data

After	quality	 control,	 a	 total	of	8,011,810	effective	 tags	were	ob-
tained	 from	 108	 samples.	 Each	 sample	 contained	 an	 average	 of	
74,183	tags.	The	good	coverage	index	of	all	samples	was	more	than	

96.5% (Figure 1), which showed that the gut microbiomes were suffi-
cient for subsequent analysis and also effectively represented those 
in the 16 species.

3.2  |  Alpha diversity and niche breadth of the 
gut microbiome

The	 alpha	 index	 (including	 Richness,	 Shannon,	 Simpson,	 Pielou,	
Invsimpson,	 Chao1,	 and	 ACE	 indices)	 boxplot	 between	 species	
showed that the alpha diversity of the gut microbiome of the in-
vestigated marine carnivores (H. grypus, HG; B. physalus, BP; P. 
microcephalus, PM; and E. lutris nereis, EL) was significantly (Kruskal– 
Wallis test, p < .01)	 lower	 than	 that	 of	 the	 investigated	 terrestrial	
carnivores (C. alpinus,	CA;	C. lupus, CL; V. vulpes,	VV;	V. corsac,	VC;	
N. procyonoides, NP) and terrestrial herbivores (C. elaphus, CE; O. 
musimon, OM; P. hodgsonii, PH; P. nayaur, PN; B. grunniens, BG; C. 
nippon, CN; M. chrysogaster, MC). The alpha diversity of terrestrial 
herbivores was overall the highest, followed by that of terrestrial 
carnivores (Figure 1).

Furthermore, the degree of specialization of mammalian gut mi-
crobiomes in different habitats was characterized using the niche 
breadth of the gut microbiome. Overall, the niche breadth of the gut 
microbiome of marine carnivores was the lowest, and that of terres-
trial herbivores was the highest (Figure 2). This result demonstrated 
that the gut microbiome of marine carnivores is specialized.

F I G U R E  1 Kruskal-	Wallis	test	of	gut	microbiome	alpha	diversity	between	species.	The	abscissa	is	the	species,	and	the	ordinate	is	the	
numerical value. p	Value	less	than	.05	indicates	that	the	difference	between	groups	is	significant.

http://www.cloudtutu.com
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3.3  |  Cluster analyses

Cluster analyses can be used to gather similar samples in a group. 
Therefore, we used cluster analyses to determine whether the 
marine environment drives the convergent evolution of the gut 
microbiome in marine carnivores. Based on the OTU level, the gut 
microbiome compositions of the MM, TC, and TH groups were sepa-
rated	in	the	PCA	plot	(Figure 3a).	We	used	PCoA	(Figure 3b) to verify 
this	 result.	PCoA	also	showed	that	according	 to	 their	gut	microbi-
omes, the investigated animals could be divided into three groups: 
marine carnivores, terrestrial carnivores, and terrestrial herbivores. 
Anosim	 demonstrated	 that	 the	 gut	 microbiome	 compositions	 of	
the MM, TC, and TH groups were significantly different (R =	 .778,	
p = .001) according to Bray- Curtis distances (Figure 4). These results 
indicated that marine habitats drive the convergent evolution of the 
gut microbiome in marine carnivores.

3.4  |  Gut microbiome composition

At	 the	 phylum	 level,	 Firmicutes	 (MM,	 36.72%;	 TC,	 40.83%;	 TH,	
60.92%) dominated the gut microbiome of the three groups. 
Bacteroidetes was the second most dominant phylum in the TC 
(30.87%)	 and	 TH	 groups	 (21.97%),	 and	 Proteobacteria	 was	 the	
second	 most	 dominant	 phylum	 in	 the	 MM	 group	 (24.18%).	 The	
third most dominant phylum in the TC (21.42%) and MM groups 

(13.75%) was Fusobacteria, while in the TH group (2.49%), it was 
Proteobacteria (Figure 5a). Notably, the relative abundance of the 
top	 three	 phyla	 accounted	 for	 74.65%,	 84.65%,	 and	 85.38	 of	 the	
bacterial	community	in	the	MM,	TC,	and	TH	groups,	respectively.	At	
the genus level, Fusobacterium	was	predominant	in	the	MM	(10.86%)	
and TC (21.43%) groups, while Ruminococcaceae_Group (24.25%) 
was the most abundant in the TH group (Figure 5b).

3.5  |  Discrepancies in the gut microbiome 
between groups

We used the Kruskal– Wallis test (q < .01)	 to	 characterize	 signifi-
cantly enriched microbiota among the three groups. The phyla 
Firmicutes,	 Tenericutes,	 Fibrobacteres,	 TM7,	 Verrucomicrobia,	
and	 Spirochaetes	 were	 significantly	 enriched	 in	 the	 TH	 group;	
Planctomycetes, Cyanobacteria, Proteobacteria, and Euryarchaeota 
were significantly enriched in the MM group; and Bacteroidetes and 
Fusobacteria were significantly enriched in the TC group (q < .01)	
(Figure 6a).	These	phyla,	except	for	Tenerictes	and	Planctomycetes,	
were the top 10 dominant phyla in the studied microbiomes.

At	 the	 genus	 level	 (Figure 6b), Peptoclostridium was signifi-
cantly enriched in the MM group (q < .01);	Ruminococcaceae_Group, 
Eubacterium, Christensenellaceae_Group, and Lachnospiraceae_Group 
were significantly enriched in the TH group; and Bacteroides and 
Fusobacterium were significantly enriched in the TC group (q < .01).	

F I G U R E  2 Niche	breadth	of	the	
gut microbiome between species. The 
abscissa is the species, and the ordinate is 
the numerical value of niche breadth.
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These genera were among the top 10 genera with the highest rel-
ative abundances in the three groups. These results indicated that 
different habitats shaped the differences in the gut microbiome 
composition among the studied animals.

4  |  DISCUSSION

In	 the	 present	 study,	 we	 characterized	 108	 samples	 represent-
ing	16	species	belonging	to	8	families	and	13	genera.	A	big	dataset	

F I G U R E  3 Principal	component	analysis	(PCA;	a)	and	principal	coordinate	analysis	(PCoA;	b)	of	gut	microbiome	composition.	Each	ellipse	
represents the gut microbiome of a group.

F I G U R E  4 Analysis	of	similarities	
(Anosim)	between	groups.	The	abscissa	
is the groups, and the ordinate is the 
numerical value of distance rank. R value 
greater than zero indicates that the 
difference between groups is greater than 
that within groups. p value less than .05 
indicates that the difference between the 
groups is significant.



6 of 9  |     WANG et al.

effectively eliminates the influence of abnormal individuals on the re-
sults.	We	obtained	8,011,810	effective	tags,	and	the	good	coverage	
index	was	higher	than	96.5%	for	all	species.	These	results	indicated	

a greater degree of coverage of the gut microbiome and also showed 
that the subsequent biometric analyses were reasonable. By com-
paring the gut microbiota across the three groups, we suggest that 

F I G U R E  5 Gut	microbiome	composition	between	groups	at	the	phylum	(a)	and	genus	(b)	levels.	Each	bar	represents	the	top	10	bacterial	
species sorted by relative abundance in each group.

F I G U R E  6 Kruskal-	Wallis	test	at	the	phylum	(a)	and	genus	(b)	levels	between	groups.	p value less than .05 indicates that the difference 
between the groups is significant (the numbers in the figure are p values; ***p < .001).	Different	colors	represent	different	groups.
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the different habitats affect the gut microbiome composition of the 
species. Especially, marine habitats can surpass phylogeny to drive 
the convergent evolution of gut microbiome composition in marine 
carnivores.

Our results showed that the alpha diversity (including Richness, 
Shannon,	Simpson,	Pielou,	 Invsimpson,	Chao1,	and	ACE	indices)	of	
the MM group was significantly lower than those of the TH and TC 
groups. These results were consistent with those reported in previ-
ous studies (Bai et al., 2021; Nishida & Ochman, 2018). This could 
be related to the marine environment and host lifestyle (especially, 
land to the sea) (Thewissen et al., 2007). In addition to alpha diver-
sity, the gut microbiome niche breadth of the MM group was lower 
than that of the TH and TC groups. Because of their habitat and 
evolutionary history, marine carnivores are highly specialized spe-
cies (Hindle, 2020), and their specific gut microbiome can help them 
adapt to their unique habitats.

According	to	the	PCA	and	PCoA,	marine	carnivores	were	clus-
tered in the same group, whereas terrestrial carnivores and terres-
trial	herbivores	gathered	in	a	separate	group.	Although	HG,	EL,	and	
terrestrial carnivores have close phylogenetic relationships, the gut 
microbiome compositions of HG and EL were similar to those of BP 
and PM. These results revealed that marine habitats could surpass 
phylogeny to drive the convergent evolution of the gut microbiome 
in marine carnivores.

Compared with those in the TC and TH groups, Planctomycetes, 
Proteobacteria, and Cyanobacteria were found to be significantly en-
riched in the gut microbiome of the MM group. Planctomycetes are 
mainly aquatic bacteria (Peeters et al., 2020)	that	widely	exist	in	dif-
ferent	marine	environments	(Shu	&	Jiao,	2008). Cyanobacteria play 
important	 roles	 as	 photosynthesis,	 nitrogen	 fixers,	 and	 producers	
of biologically active substances, and are more abundant in various 
marine	ecosystems	than	 in	terrestrial	ones	 (Andreeva	et	al.,	2020; 
Sunagawa	et	al.,	2015). Proteobacteria is the most important phy-
lum	 in	marine	ecosystems	 (Sunagawa	et	 al.,	2015). Proteobacteria 
and Cyanobacteria were among the top 10 phyla in the MM group; 
Proteobacteria was the second most abundant phylum in this group. 
Furthermore, the genus Peptoclostridium was significantly enriched 
in the MM group compared with that in the TC group and has pre-
viously been isolated from marine sediments (Galperin et al., 2016). 
During the long process of evolution, marine microbiota may have 
colonized the gut of marine carnivores. In addition, the life history 
of marine carnivores increases the possibility of marine microbiota 
colonization. These bacteria may have played an important role in 
host adaptation to the marine environment.

5  |  CONCLUSION

In summary, marine carnivores have the same pattern of gut mi-
crobiome niche breadth, α diversity, and colonization of marine mi-
croorganisms	 in	 their	 gut	microbiome.	 Although	 the	 phylogenetic	
relationships among P. microcephalus, B. physalus, and terrestrial her-
bivores are closer than those among P. microcephalus, B. physalus, H. 

grypus, and E. lutris nereis, the gut microbiomes of marine carnivores 
were grouped together. Therefore, marine habitats can surpass phy-
logeny to drive the convergent evolution of the gut microbiome in 
marine carnivores. This study provides a new perspective on the 
adaptive evolution of marine carnivores.
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