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UV radiation in sunlight has long been recognized as the main exogenous cause of skin

carcinomas. We present a brief historical perspective on the progress in understanding

the pathogenesis of skin carcinomas, and recent advances. Sun-exposed skin carries

numerous UV-related mutations, and skin carcinomas rank among the tumors with the

highest mutational loads. In this multitude of mutations only a few are crucial in driving

the tumor. Some are known from hereditary (skin) cancer syndromes and other recurrent

ones have been validated in transgenic mice. Considering the continuous renewal of the

epidermis, the question arises whether the lifelong residing stem cells are themain targets

in skin carcinogenesis, a multistep process that would require ample time to evolve.

Therefore, classic quiescent stem cells have been studied as potential tumor-initiating

cells, as well as more recently discovered actively dividing stem cells (either Lgr5+ or

Lgr6+). Interesting differences have emerged between experimental UV and two-stage

chemical carcinogenesis, e.g., the latter appears to originate from follicular stem cells, in

contrast to the former.
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INTRODUCTION

Skin cancers had already been linked to excessive sun exposure in the nineteenth century,
specifically skin carcinomas were found predominantly in people with outdoor jobs. Genotoxicity,
mutagenesis, and carcinogenesis by UV radiation, as present in sunlight, were experimentally
established in the early decades of the twentieth century. Before the 2nd World War spectral
analyses showed that DNA was the target of UV radiation for cell death and mutations (1, 2): i.e.,
well before Watson and Crick published the correct model of the structure of DNA, explaining
how genes made up of DNA carried the genetic code which could be straightforwardly copied
for daughter cells. Miscopies would introduce mutations. Consequently, replication of damaged
DNA, hampering correct copying, for cell division was identified as the most prominent cause of
mutagenesis. Carcinogenesis is considered to evolve primarily as a “multi-hit” process in which
mutations accumulate in cells until a combination of mutations (and possibly other genetic defects
and epigenetic modulatory effects) emerges which drive a cell to malignancy. As such a cell destined
for malignancy requires time and cell divisions to transform, the most likely candidates would
appear to be adult stem cells that constitute the very basis of tissue renewal. This premise was
evidenced by a correlation that Tomasetti and Vogelstein (3) found between rate of stem cell
division in various tissues and the risk of cancer. This led them to the controversial statement
that most cancers are “bad luck” arising from an inherent risk of mutation in cell division. UV
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irradiation is known to cause epidermal hyperproliferation
and hyperplasia. This would increase the UV-related risk of
carcinomas originating from the epidermis (4), in addition to the
risk derived from the genotoxicity of UV radiation.

HUMAN SKIN CARCINOMAS AND SUN
EXPOSURE

The skin is an evident frontier of the body in interactions with
its environment. UV radiation in sunlight poses a recurrent
(geno-) toxic challenge to skin, and like all life dwelling on
the Earth’s surface, it has powerful defense mechanisms, among
which very importantly Nucleotide Excision Repair (NER) to
maintain the integrity of the genome. A defect in NER increases
the risk of skin cancer dramatically to the point that 50% of
patients with Xeroderma pigmentosum succumb to multiple
skin cancers before the age of 30 (5). NER eliminates the
dominant UV-induced DNA damage (cyclobutane pyrimidine
dimers, CPDs, and 6–4 photoproducts, 6–4 PPs) by a “cut-
and-paste” action: cut out an oligo with the damage and fill in
the gap using the complementary strand. As this UV-induced
DNA damage occurs predominantly at neighboring pyrimidines
in a DNA strand, the resulting mutations (mainly C > T) are
located at dipyrimidine sites, and referred to as UV signature
mutations. Strikingly, mutations in the P53 tumorsuppressor
gene of skin carcinomas show predominantly this UV signature
(6). Microscopic clusters of cells (clones) overexpressing mutant
P53 are present in chronically exposed skin, and presumed to be
potential precursors of skin carcinomas (7). More recently, deep
sequencing of 74 cancer-related genes (incl. P53) has shown that
sun-exposed skin (from eye lid resections) is full of mutations
(2–6/Mb), with a majority of UV signature mutations and an
estimated average of 140 small clones/cm2 with a mutation in
one of these 74 genes (8). Strikingly, another recent study found
SCC-related mutations to be restricted to P53-overexpressing cell
clusters (9).

The authors (8) noticed that the sun-exposed skin appeared
clinically normal despite the high mutation load, and that
the clones remained restricted in size. Apparently, the skin is
inherently able to cope with a multitude of mutated clones. In
experiments with Wnt-activated clones, it was shown that in
signal exchange the normal cells were stimulated to outcompete
the mutated cells (10). Much earlier, it was reported that low
grade malignant keratinocytes were kept in check to contribute
to epidermal homeostasis by surrounding normal keratinocytes
(11). Hence, the outgrowth of cells into a tumor would appear
to require the collapse of growth control by surrounding normal
cells.

Considering the high mutation load in sun-exposed skin,
it is no surprise that skin carcinomas belong to the absolute
top of cancers with high mutation loads (10,000–100,000 per
cell). Mutation load was found to be proportional to the
immunogenicity of a tumor (12) and consequently proportional
to the success of immunotherapy by check-point inhibition (13).
In immunosuppressed organ transplant recipients the risk of skin
cancer is raised, most dramatically the risk of squamous cell

carcinoma, SCC (14) which correlated with preceding cutaneous
HPV infections (15).

DRIVER MUTATIONS

With an overwhelming load of mutations it would appear
impossible to separate the driver mutations from passenger
mutations. However, recurrent mutations within this multitude
could be considered drivers, and earlier on, potential drivers were
identified from syndromes with an inherited pre-disposition
to develop cancers. A textbook example of the latter is the
Gorlin syndrome (Basal Cell Nevus Syndrome, BCNS) where
mutations in the tumorsuppressor PTCH gene predisposes to
activation of the Hedgehog pathway (e.g., by loss of the wt allele
by UV radiation) and subsequent formation of multiple basal
cell carcinomas, BCCs (16). Also, most sporadic BCCs turned
out to be driven by an activated Hedgehog pathway commonly
involving mutations in PTCH or SMO (17). Activation of the
Hedgehog pathway or ectopic expression of its downstream
transcription factor, Gli1, in mouse skin gives rise to BCCs
(18, 19).

Inmalignant progression of SCCs the RAS pathway was found
to be activated (20, 21), however, apparently without any relevant
recurrent mutations, notably rarely mutations in (Ha-)RAS genes
(22). Next to a predominance of UV signature mutations in
P53, nearly all SCCs were found to bear such mutations in one
or more of the NOTCH (1–4) genes (23). NOTCH1 mutations
were already present in early stages of SCC development (24).
Transgenicmice in which epidermal Notch signaling was blocked
developed SCCs (25).

WHAT CELL DRIVES THE OUTGROWTH
OF HUMAN SKIN CARCINOMA?

It is notoriously difficult to propagate skin carcinoma cells in
vitro and establish cell lines. Our group could only maintain fresh
SCCs intact as explants (26). Others were successful in culturing
SCC cells on fibroblasts (3T3) as feeder layers (27). In contrast
to normal fibroblast, the cancer-associated fibroblasts (CAFs)
appear to harbor a special class of fibroblasts facilitating invasion
of SCC into the dermis (28). SCCs show a clear heterogeneity
with differentiated keratinocytes (around keratin “pearls,” horny
layer-like deposits) enclosed by germinative basal cell layers
of keratinocytes bordering and infiltrating the stroma. Like in
normal epidermis, the stem cells that drive SCC, the tumor-
initiating cells (TICs), are logically expected to reside in the
germinative compartment of the tumor. CD133 (prominin-1)
is a tumor stem cell marker (e.g., in lung cancer), and not
detectable in normal epidermal keratinocytes (proteinatlas.com).
But some cells in germinative outer rim of SCCs are CD133-
positive, about 1% of the tumor cells (27). Transferring as
few as 100–1,000 of these CD133+ cells in combination with
a million of human fibroblasts in matrigel into a pre-created
subcutaneous space resulted in a 50% chance to spawn a new
SCC in immune compromised mice (not capable of rejecting
the human SCC). Evidently, the human SCC TICs needed the
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microenvironment of human fibroblast to support the outgrowth
(generating appropriate CAFs?). It is not clear whether or how
the CD133+ cells are related to stem cells of the normal human
epidermis.

Similar results using the subcutaneous transplant assay have
been obtained with CD200+ cells from BCCs, about 1–2%
of the tumor cells (29). In contrast to CD133, CD200+ cells
are present in normal skin: specifically in hair follicles in the
region (the bulge) where stem cells reside in mice. However,
this does not necessarily imply that the BCCs originate from
these cells in hair follicles [although tracing mitochondrial
DNA mutations by COX-deficiency would support this (30)].
Activation of the Hedgehog pathway and further transformation
could conceivably lead to CD200 expression in the TICs.
As monotherapies with SMO antagonists (e.g., vismodegib)
inhibiting the Hedgehog pathway are not curative, the authors
suggest to target the CD200+ cells instead for a permanent
elimination of the tumor.

HISTORICAL PRELUDE TO
EXPERIMENTAL SKIN CARCINOGENESIS

Present day research on experimental skin carcinogenesis
employs two basic mouse models, chemically or UV driven,
which stem from historical observations on skin cancer in
man. First of all, the surgeon Sir Percival Pott (a founder of
orthopedics) reported in 1775 on the frequent occurrence of
scrotal cancer (SCCs) among chimney sweeps in London, and
recognized soot (coal tar) as the evident culprit (31). And
secondly, skin carcinomas were linked to sun exposure at end of
the nineteenth century. In Hamburg the dermatologist Unna (32)
stated in his book on skin diseases that degenerative changes in
the sun-exposed skin of sailors (“Seemanshaut”) were associated
with skin carcinomas. In Bordeaux Dubreuilh (33) noticed that
vineyard workers contracted remarkably more skin carcinomas
than people living in the city. Further detailed observations on
body locations of the carcinomas indicated that they were most
likely caused by sunlight.

CHEMICAL CARCINOGENESIS

Just before the First World War, the first experimental proof
of tumor formation by coal tar was provided by the Japanese
pathologist prof Yamagiwa. It was done in rabbits by repeated
applications of coal tar to the ears. Yamagiwa had visited the
Virchow Institute in Berlin where he learned about Virchow’s
irritation theory (“Reiztheorie”) of carcinogenesis (34). The
experiment was modified in mice to include “cocarcinogens”
(35), such as the “irritant” croton oil which “promoted” tumor
outgrowth (reminiscent of the “Reiztheorie”). From these early
experiments the standard classic two-stage protocol evolved in
which a single genotoxic challenge with, for example, coal tar [or
one of its ingredients like benzo(a)pyrene] irreversibly “initiated”
tumors after which tumor development was “promoted” by a
regimen of repeated applications of an “irritant” like croton

oil (or its active ingredient 12-O-tetra- decanoyl-phorbol-13-
acetate, TPA, activating PKC) (36). Tumor promotion was
reversible in that tumors would not develop or regressed up
on early termination of this regimen. This protocol yielded
exophytically growing, wart-like, benign tumors (papillomas),
and at a later stage some SCCs.Ha-rasmutations were commonly
present in these tumors, notably already at the earliest tumor
stages in hyperplastic foci in hair follicles (37). And even
earlier, Ha-ras mutations could be detected by nested PCR
from expanding clones in the in normal looking skin that had
been subjected to the two-stage protocol (38). In contrast to
Ha-ras, p53 mutations occurred late in tumor progression and
were linked to malignant conversion (39). Over a period of
80 years chemical carcinogenesis took central stage because
of experimental convenience and because of its versatility in
analysing the biology of carcinogenesis and in characterizing
(anti-) carcinogenic substances and their interactions.

UV CARCINOGENESIS

Experimental proof of tumor induction by UV radiation was first
published in 1928 by Findlay (40) who had chronically irradiated
depilated albino mice for 8 months with a quartz mercury lamp.
Interestingly, he also found that painting the animals with coal
tar before irradiation speeded up the development of tumors (<3
months). Next, the prolific Brazilian professor of pathology Angel
Roffo—who also pioneered in showing benzpyrene from tabacco
to be carcinogenic—showed in the 1930s that the UV part in
sunlight blocked by window glass (“UVB”) to be carcinogenic on
rats (41, 42). The exact wavelength dependence (action spectrum)
was determined much later in the 1990s for SCCs in hairless
mice (43). The early experiments were done on the ears (and
tails), or shaven backs of haired mice, but in the 1960s the more
convenient and sensitive hairless mouse model was introduced
which has become a standard in experimental UV carcinogenesis
(44). In contrast to hairless mice, haired mice were reported
to developed fibrosarcomas next to SCCs under chronic UV
exposure (with substantially higher UV dosages than used on
hairless mice). However, this was corrected by showing that the
tumors were keratinocyte-derived (i.e., exclusively epidermal)
and ranged from well differentiated to spindle cell carcinomas
(45). The tumor progression in hairless mice was very similar
to that in humans starting with endophytically growing actinic
keratosis as benign precursor lesions (majority of tumors<2mm
across) of which a fraction progressed to malignant SCCs
(majority > 3mm) (44), and with a majority throughout bearing
UV signature mutations in the tumorsuppressor p53 (46); even
before tumors appeared, microscopic clusters overexpressing
mutant-p53 could be detected in the chronically sub-sunburn
UV-exposed skin (47). Ras mutations were virtually lacking
in the tumors: only 1 tumor with a Ki-ras mutation out of
32 tumors, none with a Ha-ras mutation (48). Only with a
NER defect, in XPA mice, did Ha-ras mutations occur in UV-
induced tumors which notably were benign papillomas as found
in chemocarcinogenesis (49). The repair defect impaired removal
of CPDs from the transcribed strand of Ha-ras. This introduced
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novel mutational targets for UV radiation corresponding with the
oncogenic Ha-ras mutations. Overall, the mutational spectrum
of UV SCCs in hairless mice resembled that of human SCCs,
including Notch 1–4 mutations (50). In the 1970s it was
discovered that UV-induced tumors were antigenic and that
UV irradiation raised a specific immune tolerance toward these
tumors (51). Recently, cutaneous papilloma virus infection was
shown to enhance UV carcinogenesis (52). In all, experimental
UV carcinogenesis shows striking parallels with human SCCs
supporting the validity of the model.

STEM CELLS

A remarkable difference between chemical and UV
carcinogenesis appears to be the origin of the SCCs. After
initiation, abrasion of the interfollicular (IF) epidermis did
not affect development of chemo-SCCs, indicating that they
originated from the hair follicles (53). In contrast, our group
showed that apoptotic elimination of the IF basal layer by a single
UV overdose nullified the UV carcinogenic regimen up to that
point and carcinogenesis had to restart afterwards, indicating
that UV-SCCs originated from the IF epidermis (54).

The observation that the interval between tumor initiation
and promotion could be extended to months demonstrated that
the initiated cells were not shed in epidermal turnover and
were therefore likely to be stem cells. This was confirmed by
radioactive tracing of the initiating substance, benz(a)pyrene,

which was retained in hair follicles and interfollicular epidermis
in label-retaining cells, i.e., in quiescent stem cells (55). CD34+
cells located in the bulge of hair follicles were found to harbor
such quiescent cells (56) and they were identified as tumor stem
cells, or tumor-initiating cells (TICs), in chemically induced
skin tumors (57). We similarly found that IF quiescent cells
retaining CPDs from a low level UV regimen were linked to
the development of non-regressing in situ carcinomas after TPA
tumor promotion (58). There is, however, no established reliable
protein marker for IF quiescent cells (resting or activated) by
which to identify these cells in a tumor mass; putative stem cell
markers (Wif-1, Lrig1, Dll1) did not label the CPD-retaining
quiescent cells. Our group earlier identified Mts24/Plet1 as a
stem cell marker (59) but later found this marker expressed
in differentiated cells after UV exposure (Figures 1a,b) and in
papillomas (Figures 1c,d) but absent in SCCs (not shown) (60).
This demonstrated that a stem cell marker in homeostasis need
not be one under (UV) stress, in hyperplasia or in tumors.

Recently, a new class of proliferating stem cells (either Lgr5+
or Lgr6+) was studied as possible TICs in chemical and UV
carcinogenesis; this was done by “lineage tracing” to identify the
progeny of these stem cells in tumors. Lgr5+ cells and progeny
were not detected in either chemically or UV-induced tumors
(61, 62). Our group could not detect any appreciable presence
of Lgr6+ cells in tumors and only some sporadic remnants
of progeny deep into the differentiated compartments, i.e., no
indication that Lgr6+ cells were TICs or drove tumor growth
(63). In contrast, Huang et al. (62) reported the presence of

FIGURE 1 | Mts24 fluorescence in red (a,c) in hairless mouse skin, combined with K17 in green (b,d); (a,b) 24 h after high UV dose (4x threshold dose for a sunburn

reaction) with Mts24+ cells high up in de epidermis in differentiated cell layers; (c,d) papilloma after neonatal DMBA (dimethylbenz [α]anthracene) followed by chronic

UV exposure with Mts24+ cells throughout the tumor mostly differentiated cells (60), reproduced with permission.
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Lgr6+ cells in chemically induced tumors in a different mouse
strain than we used, and with a different protocol for lineage
tracing. However, these Lgr6+ cells did not exclusively reside
in the germinative compartment of the tumors, showed a lack
of expression of K14 (marker of germinative basal cells) and
some even appeared flattened out in terminal differentiation.
Apparently Lgr6 was no longer a marker of stem cells in
these tumors (reminiscent of what we found with Mts24/Plet1).
Intriguingly, Huang et al. (62) concluded from experiments with
Lgr6 knockout mice that Lgr6 in normal epidermis functioned
as a tumor suppressor. Interestingly in this respect, we found
that Lgr6+ cells and progeny were lost from IF epidermis under
chronic UV exposure long before the occurrence of SCCs; in
contrast, a TPA regimen caused a clear expansion of progeny in
the IF epidermis (63).

CONCLUSION

From the present vantage point, UV carcinogenesis in mice
appears to emulate SCCs in humans better than two-stage
chemical carcinogenesis. And the quiescent stem cells appear
to be the most likely target cells from which SCCs arise, either
from quiescent cells in hair follicles in chemocarcinogenesis or

quiescent cells in the IF epidermis in UV carcinogenesis. Future
research should be directed toward identifying the latter cells
by reliable protein markers, which may subsequently serve to
develop well targeted interventions to prevent or cure cutaneous
SCCs.

As there is no robust mouse model available for the de novo
induction of BCCs by exogenous agents, identification of the
primary target cells requires further research.
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