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Circular RNA circPVT1 promotes 
nasopharyngeal carcinoma metastasis 
via the β‑TrCP/c‑Myc/SRSF1 positive feedback 
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Abstract 

Background:  Circular RNAs (circRNAs) act as gene expression regulators and are involved in cancer progression. 
However, their functions have not been sufficiently investigated in nasopharyngeal carcinoma (NPC).

Methods:  The expression profiles of circRNAs in NPC cells within different metastatic potential were reanalyzed. 
Quantitative reverse transcription PCR and in situ hybridization were used to detect the expression level of circPVT1 
in NPC cells and tissue samples. The association of expression level of circPVT1 with clinical properties of NPC patients 
was evaluated. Then, the effects of circPVT1 expression on NPC metastasis were investigated by in vitro and in vivo 
functional experiments. RNA immunoprecipitation, pull-down assay and western blotting were performed to confirm 
the interaction between circPVT1 and β-TrCP in NPC cells. Co-immunoprecipitation and western blotting were per-
formed to confirm the interaction between β-TrCP and c-Myc in NPC cells.

Results:  We find that circPVT1, a circular RNA, is significantly upregulated in NPC cells and tissue specimens. In vitro 
and in vivo experiments showed that circPVT1 promotes the invasion and metastasis of NPC cells. Mechanistically, 
circPVT1 inhibits proteasomal degradation of c-Myc by binding to β-TrCP, an E3 ubiquiting ligase. Stablization of c-Myc 
by circPVT1 alters the cytoskeleton remodeling and cell adhesion in NPC, which ultimately promotes the invasion and 
metastasis of NPC cells. Furthermore, c-Myc transcriptionally upregulates the expression of SRSF1, an RNA splicing 
factor, and recruits SRSF1 to enhance the biosynthesis of circPVT1 through coupling transcription with splicing, which 
forms a positive feedback for circPVT1 production.

Conclusions:  Our results revealed the important role of circPVT1 in the progression of NPC through the β-TrCP/c-
Myc/SRSF1 positive feedback loop, and circPVT1 may serve as a prognostic biomarker or therapeutic target in patients 
with NPC.
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Background
Nasopharyngeal carcinoma (NPC) is a malignant tumor 
that occurs in the nasopharynx and has a characterized 
geographical distribution, within highest incidence in 
South China and Southeast Asia [1]. As early symptoms 
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of NPC are not obvious or specific, most patients have 
neck lymph node metastasis when they are diagnosed. 
Although radiotherapy combined with chemotherapy 
are effective for the treatment of early-stage NPC, lower 
rate of early diagnosis and prone to metastasis blunted 
the treatment effect [2–5]. Recurrence and metastasis 
are major reasons for treatment failure and patient death 
in NPC [6–9]. Deeper understanding of the molecular 
mechanism of NPC metastasis, and clearly identifying 
early diagnostic biomarkers and novel therapeutic targets 
have become urgent scientific challenge in the field.

Circular RNAs (circRNAs), a new class of non-coding 
RNAs, have been reported playing important roles in 
cancer progress [10–19]. However, their functions and 
potential mechanisms in the carcinogenesis and metas-
tasis of NPC are still not fully understood. To inves-
tigate the role of circRNAs in NPC development, the 
expression profile of circRNAs in NPC cells was reana-
lyzed and a circRNA derived from PVT1 gene, named 
circPVT1 (circBase ID: hsa_circ_0001821), was selected 
for further study because of its high abundance. Our 
in  vitro and in  vivo experiments showed that circPVT1 
could promote the invasion and metastasis of NPC. Fur-
ther experiments demonstrated that circPVT1 inhibited 
ubiquitin-mediated degradation of c-Myc by binding 
to β-TrCP, an E3 ubiquitin ligase for c-Myc. Stablized 
c-Myc then modulated the expression of genes related 
to cell adhesion and cytoskeleton remodeling, and pro-
moted the migration and invasion of NPC cells. In addi-
tion, the transcription factor c-Myc could upregulate 
and recruit SRSF1, a splicing factor, to synergistically 
enhance circPVT1 biosynthesis in a transcription/splic-
ing coupling manner. Our data suggest that circPVT1 is 
a pivotal regulator for the metastatic process of NPC, 
and may function as a novel biomarker/target for the 
diagnosis/treatment of NPC.

Methods
Cell lines
NPC cells 5-8F and CNE2 used in this study were cul-
tured in RPMI-1640 medium (Gibco) containing 10% 

fetal bovine serum (Gibco) at 37 °C and 5% CO2 in a con-
stant temperature incubator.

Clinical NPC samples
One cohort of 60 NPC and 26 non-tumor nasopharyn-
geal epithelial (NPE) tissues was used for RNA extrac-
tion and quantitative real-time PCR (qRT-PCR) assay 
(Table S1). Another cohort of paraffin embedded sec-
tions, including 159 NPC and 29 NPE samples, was used 
for in  situ hybridization (ISH) (Table S2). These clinical 
NPC samples were collected from the Affiliated Cancer 
Hospital of Xiangya School of Medicine, Central South 
University and confirmed by histopathological examina-
tion. The study was approved by the Ethics Committee of 
Central South University, and each participant provided 
informed consent.

In situ hybridization, fluorescence in situ hybridization, 
and immunohistochemistry
Digoxigenin- or FITC-labeled probes (BOSTER, Wuhan, 
China) were used for in situ hybridization (ISH) or fluo-
rescence in situ hybridization (FISH) to detect circPVT1 
expression in NPC tissues following the instructions 
provided by the manufacturers. Immunohistochemistry 
was performed using the Elivision™ plus (Mouse/Rab-
bit) immunohistochemistry (IHC) kit (Kit-9902, Maxim, 
China). Two specialized pathologists evaluated the 
staining sections independently. Semi-quantitative inte-
gral analysis was used to analyze the ISH and IHC. The 
circPVT1 probe used in the study is listed in Table S3.

Vectors, siRNA sequences, and cell transfection
To construct the overexpression vector for circPVT1, 
exon 2 of the PVT1 gene was amplified by PCR and 
cloned into the circular RNA expression vector pCirc 
(gift from Yong Li, Baylor College of Medicine, USA). 
circPVT1 siRNA was purchased from Genepharma 
(Shanghai, China). The overexpression vector was trans-
fected using Lipofectamine 3000 (Life Technologies, 

Fig. 1  circPVT1 is highly expressed in NPC and associated with poor prognosis. A. Schematic representation of the circPVT1 stucture. circPVT1 is 410 
nt in length and circularly spliced from exon 2 of the PVT1 gene (RefSeq: NC_000008.11) on chromosome 8q24.21. B. circPVT1 was more stable than 
the liner PVT1 in NPC cells after RNase R treatment. ***, p < 0.001. C. Intracellular localization of circPVT1 was examined using fluorescence in situ 
hybridization. Scale bar, 20 μm. D. Expression of circPVT1 was examined in NPC (n = 60) and non-tumor nasopharyngeal epithelial tissues (NPE) 
(n = 26) by qRT-PCR. Data were represented as mean ± standard deviation (SD). ***, p < 0.001. E. The expression of circPVT1 in correlation with the 
clinical stages in 26 NPE and 60 NPC samples. **, p < 0.01; ***, p < 0.001. F. Expression of circPVT1 was examined in NPC (n = 159) and non-tumor 
nasopharyngeal epithelial tissues (NPE) (n = 29) by in situ hybridization; Scale bar: 100 × , 100 μm; 400 × , 20 μm. Left: Representative images of the 
circPVT1 expression in NPC and NPE tissues. Right: The statistical results of the circPVT1 expression in NPC and NPE tissues. ***, p < 0.001. G. Overall 
survival (OS) analysis of patients with low and high circPVT1 staining using a Kaplan–Meier curve. H-I. The circPVT1 staining in correlation with the 
clinical stages (H) and N stages (I) of patients with NPC. *, p < 0.05. I. High circPVT1 expression was associated with distant metastasis in NPC patients. 
*, p < 0.05

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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NY, USA) and siRNA transfection was performed using 
Hiperfect (Qiagen, Hilden, Germany). Primers used are 
listed in Table S3.

qRT‑PCR
The Vazyme (Nanjing, China, Vazyme) reverse transcrip-
tion kit was used to reverse transcribe RNA to cDNA. 
SYBR Green (Bimake, Shanghai, China) was used for 
qRT-PCR analysis, and GAPDH were used as an inter-
nal reference. The primers used in this study were syn-
thesized by Sangon Biotech (Shanghai, China). The 
sequences of primers are shown in Table S3.

Would healing and transwell invasion assays
For wound healing assay, cells were grown in 6-well plates 
to near confluence and scratched using a 10  μl tip. Pic-
tures were taken under the microscope at 0 h and 24 h. 
To analyze cell invasion ability, 20 μl of 10% Matrigel (BD 
Biosciences, NJ, USA) was added to Transwell chambers 
in serum-free medium. Transfected cells were seeded to 
Transwell with 20% FBS medium culture the bottom of 
24-well plate. The number of cells crossing was counted 
from three randomly selected areas, and cell counts were 
tallied using the Image J software.

Lung metastatic xenograft model
Five-week-old female BALB/c nude mice were raised 
in an SPF-free barrier environment at the Experimen-
tal Animal Center of Central South University. For 
lung metastasis experiments, nude mice were ran-
domly divided into four groups (n = 9 per group). Each 
nude mouse was injected via the tail vein with 1 × 106 
NPC CNE2 cells transfected with the circPVT1 over-
expression vector, circPVT1 siRNA, the empty vector, 
or scrambled siRNA. After eight weeks, nude mice 
were sacrificed by cervical dislocation. Lung tissue 
was removed, weighed, and imaged, and the number 
of nodules on the surface of the lung was recorded to 
assess tumor metastasis. Lung tissues were then sub-
jected to gradient dehydration, sectioned, embed-
ded in paraffin, and stained with H&E for histological 
examination.

Footpad xenograft lymph node metastasis model
Five-week-old female BALB/c nude mice were raised in 
an SPF-free barrier environment at the Experimental 
Animal Center of Central South University. To establish 
a nude mice footpad xenograft lymph node metastasis 
model, CNE2 cells transfected with the empty vector and 
siRNA control, the circPVT1 overexpression plasmid, or 
circPVT1 siRNA, were injected into the footpads of mice 
(n = 7 per group). After 21  days later, mice were eutha-
nized after excision of footpad tumors and inguinal lymph 
nodes for H&E staining and other subsequent analyses.

RNA pull‑down experiment
The biotin-labeled circPVT1 probe was synthesized 
by Sangon Biotech, and the RNA pull-down assay was 
performed as previously described with minor modi-
fications. Briefly, cells were harvested 48 h after trans-
fection, then lysed and sonicated. The biotin-labeled 
circPVT1 probe (Sangon Biotech) was incubated with 
cell lysates at 4  °C overnight, and then incubated with 
Streptavidin affinity magnetic beads for another 2 h at 
room temperature. The supernatant was analyzed by 
western blotting after washing. The circPVT1 probe 
used is listed in Table S3.

RNA immunoprecipitation (RIP)
RIP was conducted with a Magna RIP kit (Millipore) 
following the manufacturer’s instructions. Cells were 
harvested and lysed in the complete RIP lysis buffer and 
incubated with magnetic beads conjugated with specific 
antibodies or negative control IgG antibody on a rotator 
overnight at 4  °C. Immunoprecipitated RNA was puri-
fied and enriched to detect the target RNA by qRT-PCR.

Liquid chromatography‑mass spectrometry (LC–MS/MS)
Mass spectrometry assays were performed according to 
the manufacturer’s protocol with minor modifications. 
Briefly, CNE2 cells were transfected with the circPVT1 
overexpression plasmid or the empty vector for 48  h. 
Total proteins were extracted and digested with protease. 

(See figure on next page.)
Fig. 2  circPVT1 promotes the migration and invasion of NPC cells in vitro and NPC metastasis in vivo. A. Wound healing assay showed that circPVT1 
promoted CNE2 and 5-8F cell migration. Images were acquired at 0 and 24 h. Data were represented as mean ± SD. ***, p < 0.001. B. Transwell assay 
showed that circPVT1 promoted CNE2 and 5-8F cell invasion. Data were represented as mean ± SD. **, p < 0.05; ***, p < 0.001. C. Images of visible 
nodules on the lung surface. CNE2 cells transfected with empty vector, circPVT1 overexpression vector, scrambled siRNA, or sicircPVT1 were injected 
into nude mouse tail vein (n = 9 for each group), and mice were sacrificed 8 weeks later. Arrows showed visible nodules on the lung surface. D. 
Quantification of lung metastatic nodules on lung surface. Data were represented as mean ± SD (n = 9 per group). ***, p < 0.001. E. Representative 
images of mice lymph nodes in the popliteal fossa of mice after injection with transfected CNE2 cells. F-G. Lymph nodes volumes (F) and lymph 
nodes weights (G) were measured for each group (n = 7 per group). Data were represented as mean ± SD. ***, p < 0.001
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Fig. 2  (See legend on previous page.)
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Peptides were dissolved in 0.1% formic acid (solvent A) 
and separated by ultra-high performance liquid chroma-
tography system Easy-NLC 1000. Finally, peptides were 
subjected to NSI source followed by tandem mass spec-
trometry (MS/MS) in Q Exactive™ Plus (Thermo Sci-
entific, Bremen, Germany) coupled online to the UPLC 
database. The LC–MS/MS data were processed using the 
Proteome Discoverer 2.1 (Thermo Fisher Scientific, MA, 
USA). The mass error was set to 10 ppm for precursor ions 
and 0.02  Da for fragment ions. Peptides confidence was 
at high, and peptides ion score was set > 20. For proteins 
identification, at least one unique peptide with a mini-
mum 6 amino acid length was required. For differentially 
expressed proteins, the fold change was set ≥ 1.50 or ≤ 0.60 
(Student’s t-test, p < 0.05). The Ingenuity Pathway Analysis 
(IPA) software was used to obtain enrichment pathways 
according to the above differentially expressed proteins.

Immunoprecipitation
Antibodies were mixed with 50 μL protein A/G magnetic 
beads (Bimake, USA) and incubated for 2 h at room tem-
perature with rotation. Cells were lysed using the IP lysis 
buffer with protease inhibitor (Roche, USA) and left on 
ice for 2  h. Lysates were centrifuged, and supernatants 
were incubated with antibody-coupled beads overnight 
at 4 °C. Then, the antibody-bead complexes are washed 4 
times with pre-chilled washing buffer. The complexes are 
then resuspended for western blotting. The primary anti-
bodies used are listed in Table S4.

Immunofluorescence
Cells were fixed in 4% paraformaldehyde for 15  min 
and then blocked with 5% BSA firstly. Then cells were 

incubated with specific antibodies overnight at 4  °C, 
washed 3–5 times with pre-chilled 0.5 M PBS and incu-
bated with the corresponding fluorescent secondary anti-
body for 1 h at 37 °C. DAPI was used to stain the nucleus 
for 10 min and cells were photographed under a confo-
cal microscope (Ultra-View Vox, Perkin-Elmer, Waltham, 
MA, USA). The primary antibodies used are listed in 
Table S4.

Western blotting
Total proteins were lysed using the RIPA buffer (Bey-
otime Biotechnology, Shanghai, China) containing 
a protease/phosphatase inhibitor cocktail (Roche 
Applied Sciences, Mannheim, Germany), separated 
by 10% SDS-PAGE, and transferred onto PVDF mem-
brane (Millipore, Billerica, MA, USA). The membrane 
was blocked with 5% non-fat milk with TBST for 2  h 
at room temperature and incubated with the primary 
antibodies overnight at 4 °C. After washing, the mem-
brane was incubated with HRP-labeled secondary 
antibodies (CUSBIO, Wuhan, China) for 2  h at room 
temperature. The proteins were then detected using 
ECL reagent (Millipore, Billerica, MA, USA). The pri-
mary antibodies used are listed in Table S4.

Measurement of cellular biophysical properties
A JPK NanoWizard 4 BioScience AFM (JPK Instru-
ments, Berlin, Germany) was used to optically align 
the probe to the cells. The probes used in this study 
were HYDRA6V-100NG (AppNano, CA, USA) with 
a nominal spring constant of 0.292  N/m. During the 
indentation process, the loading and retraction speeds 
of all experiments were maintained at ~ 2.5  μm/s to 
avoid viscosity effects. Measurements were made in 

Fig. 3  circPVT1 promotes the migration and invasion of NPC cells by binding to β-TrCP. A. LC–MS/MS were performed to identify circPVT1 
interacting proteins in CNE2 cells after pull-down with biotin-labeled circPVT1 probe. The unlabeled circPVT1 probe was used as control. B. Binding 
of circPVT1 and β-TrCP protein was analyzed in CNE2 and 5-8F cells after RNA pull-down with biotin-labeled circPVT1 probe. The biotin-labeled 
scrambled sequences was used as a control. C. Direct binding of β-TrCP protein to circPVT1 was evaluated in CNE2 and 5-8F cells by RNA 
immunoprecipitation using anti-β-TrCP antibody, followed by qRT-PCR analysis of circPVT1. Data were represented as mean ± SD. ***, p < 0.001. D. 
The 230–280 nt of circPVT1 was crucial for the interaction between circPVT1 and β-TrCP proteins. CNE2 and 5-8F cells were transfected with the 
full-length circPVT1 (circPVT1) or the 230–280 nt deleted mutant (△circPVT1). RNA pull-down assays were performed using biotin-labeled circPVT1 
probe, followed by western blotting using anti-β-TrCP antibody. E. β-TrCP protein directly binds to the 230–280 nt of circPVT1 in CNE2 and 5-8F 
cells. Cells were were transfected with the full-length circPVT1 or the deletion mutant (△circPVT1). RNA immunoprecipitation was performed 
using anti-β-TrCP antibody, followed by qRT-PCR of circPVT1. Data were represented as mean ± SD. ***, p < 0.001, ns, not significant. F. The binding 
between circPVT1 and the WD40 domain of β-TrCP protein was examined in CNE2 and 5-8F cells after transfected with Flag-tagged full-length 
β-TrCP or truncated mutants (F-box or WD40). RNA pull-down assays were performed using biotin-labeled circPVT1 probe, followed by western 
blotting using anti-Flag antibody. G. The binding between circPVT1 and the WD40 domain of β-TrCP protein was examined in CNE2 and 5-8F 
cells. After transfected withFlag-tagged full-length β-TrCP or truncated mutants (F-box or WD40), RNA was immunoprecipitated using anti-Flag 
antibody. IgG was used as a control. Data were represented as mean ± SD. ***, p < 0.001, ns, not significant. H. Wound healing assay showed that 
overexpression of β-TrCP reverses the migrative ability of cicPVT1 in NPC cells. Data were represented as mean ± SD. ***, p < 0.001, ns, not significant. 
I. Transwell assay showed that overexpression of β-TrCP reverses the invasive ability of cicPVT1 in NPC cells. Data were represented as mean ± SD. ***, 
p < 0.001, ns, not significant

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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PBS at room temperature, and the cells were plated on 
the bottom of the cell culture dish. After transfection 
of the circPVT1 overexpression vector for 48  h, NPC 
cells were washed twice with PBS, fixed with 2% glu-
taraldehyde for 45 s and 4% polymethanol solution for 
30 min. Then, NPC cells were washed five times with 
PBS and maintained in appropriate amount of PBS for 
subsequent AFM scanning. The indentation depth was 
at least 1 mm to better simulate physiologically occur-
ring deformations. Imaging was performed using the 
QI mode, and images of the AFM scan were analyzed 
using JPK image processing software. The force and 
indentation curves from each measurement were ana-
lyzed using a Hertz model to obtain the the stiffness 
and adhesion for each cell.

Statistical analysis
Statistical analysis was performed using the GraphPad 
Prism 8 software. Student’s t-tests were used to evaluate 
significant differences between any two groups of data, 
and one-way ANOVA was used to evaluate significant 
differences for multiple comparisons. All data are rep-
resented as mean ± standard deviation (SD). Differences 
were considered significant at p < 0.05.

Results
circPVT1 is highly expressed in NPC and associated 
with poor prognosis
To screen circRNAs that may regulate the progres-
sion of NPC, we reanalyzed the high-throughput RNA 
sequencing data (Accession numbers: GSE137543) of 
two NPC cell lines with different metastatic abilities 
(S18 cells with high metastasis potential and S26 cells 
with low metastasis potential). In total differentially 
expressed 20 circRNAs were found in the highly met-
astatic S18 cell line (Fold changes ≥ 1.5 and the RPM 
value ≥ 2), compared with S26. Combined with the 
other high-throughput RNA sequencing data (Acces-
sion numbers: PRJNA391554) in highly metastatic 5-8F 
cell line, circPVT1 was selected for its high abundance 
in both sets of data (Fig. S1A-B). qRT-PCR and Sanger 
sequencing confirmed that circPVT1 is backspliced by 

the exon 2 of PVT1, a long non-coding RNA (lncRNA) 
gene locate on the chromosome 8q24, and the full 
length of circPVT1 is 410 nt (Fig.  1A). RNase R treat-
ment revealed that circPVT1 was more resistant to 
degradation than lncRNA PVT1 in NPC cells (Fig. 1B). 
Nucleoplasmic separation assays and RNA fluorescence 
in situ hybridization assays revealed that circPVT1 was 
mainly localized in the cytoplasm (Fig. S1C, Fig.  1C). 
To examine the expression of circPVT1 in NPC, qRT-
PCR was performed in 60 NPC tissues and 26 non-
cancer nasopharyngeal epithelial tissues (NPE). The 
results showed that circPVT1 was highly expressed in 
NPC samples (Fig. 1D). Moreover, the high expression 
of circPVT1 was closely correlated with progression 
of NPC (Fig.  1E). Furthermore, the high expression of 
circPVT1 in NPC tissues was further confirmed in 159 
NPC and 29 noncancer NPE paraffin sections using 
ISH (Fig. 1F), and the high expression of circPVT1 was 
positively correlated with poor prognosis (Fig.  1G), 
clinical stages (Fig. 1H), N stages (Fig. 1I), and distant 
metastasis (Fig. 1  J) in NPC patients. These data dem-
onstrate that circPVT1 is highly expressed in NPC and 
may be involved in the progression of NPC, circPVT1 
may be a potential biomarker for the detection of NPC 
metastasis.

circPVT1 promotes the invasion and metastasis of NPC cells 
in vitro and in vivo
To explore the effect of circPVT1 on the invasion and 
metastasis of NPC cells, circPVT1 was specifically over-
expressed or knocked down in NPC cells (Fig. S2A-B). 
Wound healing and Transwell assays showed that the 
migration and invasion ability of NPC cells was signifi-
cantly enhanced after overexpression of circPVT1 and 
reduced after knockdown of circPVT1 (Fig. 2A-B). Cell 
Counting Kit-8 and colony formation assays showed 
that circPVT1 had little effect on the growth and prolif-
eration of NPC cells (Fig. S2C-D). We also investigated 
the effect of circPVT1 on NPC cells metastasis in vivo. 
A lung metastatic colonization model was established 
through inoculating CNE2 cells transfected with the 

(See figure on next page.)
Fig. 4  c-Myc is ubiquitinated substrate of β-TrCP. A. The interaction between β-TrCP and c-Myc proteins was examined using immunoprecipitation 
expriments in CNE2 and 5-8F cells after transfected with Flag tagged c-Myc. B. Immunofluorescence experiments showed that β-TrCP and c-Myc 
were co-localized in CNE2 and 5-8F cells. blue: DAPI-stained nucleus; green: anti-β-TrCP; red: anti-c-Myc; yellow: co-localization of β-TrCP and 
c-Myc. The merged image represented the overlap of DAPI, β-TrCP, and c-Myc. Scale bar, 20 μm. C. The interaction between c-Myc and the WD40 
domain of β-TrCP was examined in CNE2 and 5-8F cells after transfected with Flag-tagged full-length β-TrCP or truncated fragments (F-box or WD40 
domain) by immunoprecipitation using anti-Flag antibody. D. The interaction between β-TrCP and phosphorylated c-Myc proteins was examined 
in CNE2 and 5-8F cells by immunoprecipitation with anti-β-TrCP or anti-phosphorylated (T58 + S62) c-Myc antibodies. E. Wound healing assay 
showed that overexpression of c-Myc reverses the migrative ability of β-TrCP in NPC cells. Data were represented as mean ± SD. ***, p < 0.001, ns, 
not significant. F. Transwell assay showed that overexpression of c-Myc reverses the invasive ability of β-TrCP in NPC cells. Data were represented as 
mean ± SD. ***, p < 0.001, ns, not significant
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Fig. 4  (See legend on previous page.)
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circPVT1 overexpression vector or sicircPVT1 into 
nude mice tail vein (n = 9 per group). The number of 
lung nodules of the circPVT1 overexpression group 
was significantly higher than that of the control group, 
while it was lower in the circPVT1 knockdown group 
(Fig.  2C-D, Fig. S2E). NPC is prone to metastasis via 
lymph-vessel. To better evaluate the effect of circPVT1 
in promoting NPC cell metastasis in vivo, a nude mouse 
model of inguinal lymph node metastasis was con-
structed through footpad injection of CNE2 cells with 
overexpression or knockdown of circPVT1. The results 
showed that inguinal lymph nodes in the circPVT1 
group were larger than the control group (Fig.  2E-G, 
Fig. S2F). Immunohistochemistry showed that pan-
cytokeratin-positive expression in the lymph nodes of 
the circPVT1 group was significantly higher than that 
in the circPVT1 knockdown group (Fig. S2G). These 
results show that circPVT1 can promote the invasion 
and metastasis of NPC in vitro and in vivo.

circPVT1 promotes the migration and invasion of NPC cells 
by binding to β‑TrCP
To elucidate the mechanism of circPVT1 on NPC metas-
tasis, biotin-labeled probe of circPVT1 was used to pull-
down circPVT1 and its binding proteins. The circPVT1 
binding proteins were identified by LC–MS/MS (Fig.  3A, 
Table S5). Among these circPVT1 binding proteins, accord-
ing to the protein score and peptide sequence coverage, 
we found that an E3 ubiquitin protein ligase β-TrCP was 
extremely abundant (Fig. S3A). Furthermore, the inter-
action between circPVT1 and β-TrCP protein was pre-
dicted, and 230–280 nt of circPVT1 was assumed to bind 
to β-TrCP protein by the catRAPID website (Fig. S3B) and 
by the molecular docking website (http://​hdock.​phys.​hust.​
edu.​cn/) (Fig. S3C) according to the interaction score. RNA 
pull-down (Fig.  3B) and RNA immunoprecipitation (RIP) 
assays (Fig.  3C) confirmed the interaction between them. 
Then, 230–280 nt of circPVT1 was deleted and the mutant 
circPVT1 (△circPVT1) was constructed. RNA pull-down 
(Fig.  3D) and RNA immunoprecipitation (Fig.  3E) results 
verified that the mutant circPVT1 (△circPVT1) could not 
bind to β-TrCP and had no effect on the migration and 
invasion abilities of NPC cells compared with the wild type 

circPVT1 (Fig. S3D-E). These results suggest that 230–280 
nt of circPVT1 is crucial for circPVT1 to interact with 
β-TrCP. Protein β-TrCP has two functional domains, the 
F-box domain and the WD40 repeat domain. To identify the 
binding region of β-TrCP that interacts with circPVT1, the 
truncated mutants, which only containing F-box domain or 
the WD40 repeat domain were constructed into the empty 
vector with Flag tag (Fig. S4A). RNA pull-down (Fig. 3F) and 
RNA Immunoprecipitation (RIP) (Fig. 3G) results indicated 
that the WD40 repeat domain but not the F-box domain of 
β-TrCP interact with circPVT1. Wound healing and tran-
swell assays further showed that overexpression of β-TrCP 
could inhibit the migration and invasion of NPC cells (Fig. 
S4B-C) and also significantly reduced the migrative and 
invasive abilities of circPVT1 in NPC cells (Fig. S4D, Fig. 3H-
I). These results suggest that circPVT1 promotes the migra-
tion and invasion of NPC cells by binding with the WD40 
repeat domain of β-TrCP through its 230–280 nt fragment.

circPVT1 blocks β‑TrCP binding to c‑Myc and inhibits 
the ubiquitination of c‑Myc
To test whether circPVT1 interferes with the E3 ubiq-
uitin ligase function of β-TrCP to regulate its target 
proteins, the β-TrCP expression level was assessed 
in NPC cells after overexpressing or knockdown of 
circPVT1. The results showed that circPVT1 did not 
affect the expression of β-TrCP (Fig. S5A). We hypoth-
esized that circPVT1 might regulate its downstream 
proteins expression through influencing the binding 
of β-TrCP to its substrates. To identify the substrates 
of β-TrCP in NPC cells, co-immunoprecipitation (Co-
IP) was performed using β-TrCP anibody, followed by 
the mass spectrometry. A total of 260 proteins were 
identified and c-Myc exhibited high affinity towards 
β-TrCP (Fig. S5B, Table S6). Co-IP and immuno-
fluorescence experiments confirmed the interaction 
between β-TrCP and c-Myc proteins (Fig.  4A-B). The 
binding domain of c-Myc and β-TrCP were predicted 
by Molecular Docking (Fig. S5C), which showed that 
c-Myc might also bind to the WD40 repeat domain of 
β-TrCP, which is the same domain that circPVT1 binds 
to. Co-IP results confirmed the binding between the 
WD40 repeat domain of β-TrCP and c-Myc (Fig.  4C). 

Fig. 5  circPVT1 blocks the binding of β-TrCP to c-Myc and inhibits the ubiquitination of c-Myc. A. The interaction between β-TrCP and c-Myc 
proteins was examined in CNE2 and 5-8F cells after overexpression or knockdown of circPVT1 by immunoprecipitation using anti-β-TrCP antibody. B. 
The interaction between WD40 repeat domain of β-TrCP and c-Myc proteins was examined in CNE2 and 5-8F cells after overexpression of circPVT1 
by immunoprecipitation using anti-Flag antibody. C. The expression of c-Myc proteins was examined by western blotting in CNE2 and 5-8F cells 
after transfected with c-Myc siRNA. D. Binding of circPVT1 and WD40 repeat domain of β-TrCP protein was detected in CNE2 and 5-8F cells after 
knockdown of c-Myc by RNA pull-down assays with biotin-labeled circPVT1 probe. E. Degradation of c-Myc was detected in CNE2 and 5-8F cells 
after overexpression or knockdown of circPVT1 and treatment with 50 μg/mL cycloheximide (CHX). F. The ubiquitination level of c-Myc protein was 
determined in CNE2 and 5-8F cells after overexpression or knockdown of circPVT1, immunoprecipitation with anti-c-Myc antibody, and followed by 
western blotting with anti-ubiquitin antibody

(See figure on next page.)

http://hdock.phys.hust.edu.cn/
http://hdock.phys.hust.edu.cn/


Page 11 of 19Mo et al. Molecular Cancer          (2022) 21:192 	
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c-Myc is usually phosphorylated at threonine 58 and 
serine 62 sites, which were recognized by E3 ubiqui-
tin ligases. Further Co-IP experiments showed that 
β-TrCP prefered to interacting with the phosphoryl-
ated c-Myc protein (Fig. 4D). Overexpression of β-TrCP 
enhanced the ubiquitination of c-Myc and reduced the 
c-Myc protein level in NPC cells (Fig. S5D-E). We fur-
ther co-transfected β-TrCP and c-Myc expressing vec-
tors into the NPC cells. Wound-healing and Transwell 
assays showed that overexpression of β-TrCP inhibited 
the mobility and invasiveness of NPC cells, whereas 
restoration of c-Myc rescued migratory and invasive 
abilities of NPC cells upon overexpression of β-TrCP. 
These results indicated that c-Myc is the critical factor 
for NPC metastasis downstream of circPVT1/β-TrCP 
interaction.

The above results also suggested that circPVT1 might 
preoccupy the WD40 repeat domain of β-TrCP which 
was required for c-Myc binding in NPC cells, resulting 
in decreased c-Myc ubiquitination by β-TrCP. To test 
if circPVT1 regulated the ubiquitination of c-Myc by 
β-TrCP, Co-IP was performed and the results showed 
that overexpression of circPVT1 reduced the interac-
tion between β-TrCP and c-Myc, whereas knockdown 
of circPVT1 enhanced it in NPC cells (Fig. 5A). In addi-
tion, overexpression of circPVT1 decreased the bind-
ing of c-Myc to the WD40 repeat domain of β-TrCP 
(Fig.  5B). Furthermore, RNA pulldown results showed 
that the binding of circPVT1 to the WD40 repeat domain 
of β-TrCP increased after c-Myc knockdown (Fig. 5C-D). 
These results suggested that circPVT1 and c-Myc com-
petitively bound to the WD40 repeat domain of β-TrCP. 
When NPC cells were treated with the protein synthesis 
inhibitor cycloheximide (CHX) (50  μg/mL), the stabil-
ity of c-Myc protein increased after overexpression of 
circPVT1 and decreased after knockdown of circPVT1 
in NPC cells (Fig.  5E). Overexpression of circPVT1 
also significantly inhibited the ubiquitination of c-Myc 
protein, whilst knockdown of circPVT1 had the oppo-
site effect (Fig.  5F). The above data demonstrated that 
circPVT1 stabilizd c-Myc protein in NPC cells through 
competitively binding with β-TrCP to block the interac-
tion between β-TrCP and c-Myc, therefore preventing 

β-TrCP-mediated ubiquitination and degradation of 
c-Myc.

circPVT1 promotes the migration and invasion of NPC cells 
by regulating cell adhesion and cytoskeleton remodeling
To explore downstream genes which were regulated by 
the circPVT1/β-TrCP/c-Myc axis, the proteome profile 
of NPC cells after overexpression circPVT1 was exam-
ined by mass spectrometry. A total of 231 significantly 
differentially expressed proteins were identified (Table 
S7). Biological functions of these proteins were analyzed 
by Ingenuity Pathway Analysis (IPA), the result showed 
that sevral signaling pathways related to cell adhesion, 
cell junction and cytoskeleton were enriched. (Fig.  6A). 
We performed upstream factor analysis of differential 
proteins obtained by whole-proteome mass spectrometry 
data, interestingly, the results showed that a large number 
of differential proteins were regulated by c-Myc (Fig. S6). 
We then assessed the stiffness and adhesion of NPC cells 
after overexpresion of circPVT1 by Atomic Force Micro-
scope (AFM). The data showed that the stiffness and 
adhesion of NPC cells was decreased when circPVT1 was 
overexpressed in NPC cells (Fig. 6B-C). In addition, sev-
eral key molecules relevant to cell adhesion junctions and 
cytoskeleton remodeling pathways such as RhoA, RhoC, 
E-cadherin, and Vimentin were also examined in NPC 
cells after overexpression or knockdown of circPVT1, the 
results showed that circPVT1 could induce the expres-
sion of RhoA, RhoC, and Vimentin, whereas reduce 
E-cadherin expression (Fig.  6D). Furthermore, knock-
down of c-Myc reversed circPVT1 induced up-regula-
tion of RhoA, RhoC, and Vimentin, as well as circPVT1 
reduced E-cadherin expression (Fig.  6E). These results 
suggest that circPVT1 regulate cell adhesion junctions 
and cytoskeleton remodeling through the circPVT1/β-
TrCP/c-Myc axis.

c‑Myc promotes circPVT1 biosynthesis 
through upregulating and recruiting SRSF1
The expression of circPVT1 in NPC cells was also exam-
ined after overexpression or knockdown of c-Myc. The 
result of qRT-PCR showed that both circPVT1 and linear 
PVT1 were upregulated by c-Myc, indicating that c-Myc 

(See figure on next page.)
Fig. 6  circPVT1 promotes the migration and invasion of NPC cells by regulating cell adhesion and cytoskeleton remodeling. A. Pathways enriched 
by the 231 potentially regulated proteins by circPVT1 from LC–MS/MS data using the gene set enrichment analysis of the Ingenuity Pathway. B. The 
stiffness was measured in CNE2 and 5-8F cells after overexpresion of circPVT1. Top: The representative AFM deflection images; bottom: the statistical 
analysis of stiffness. ***, p < 0.001. C. The adhesion was measured in CNE2 and 5-8F cells after overexpresion of circPVT1. Top: The representative 
AFM deflection images; bottom: the statistical analysis of adhesion. ***, p < 0.001. D. The expression of RhoA, RhoC, E-cadherin, and vimentin 
proteins was examined in CNE2 and 5-8F cells after overexpression or knockdown of circPVT1 by western blotting. E. The expression of RhoA, RhoC, 
E-cadherin and vimentin proteins was examined in CNE2 and 5-8F cells after co-transfected with the c-Myc siRNA and circPVT1 overexpression 
vector by western blotting



Page 13 of 19Mo et al. Molecular Cancer          (2022) 21:192 	

Fig. 6  (See legend on previous page.)



Page 14 of 19Mo et al. Molecular Cancer          (2022) 21:192 

could promote the production of PVT1 precursor RNA 
at the transcriptional level (Fig.  7A). We analyzed the 
potential promoter region of PVT1 using bioinformat-
ics tools. Three c-Myc potential binding sites were found 
in the PVT1 promoter region. Luciferase-reporter assay 
and ChIP-qPCR assays demonstrated that c-Myc binds 
to the PVT1 promoter region from -871  bp to -528  bp 
to promote the transcription of PVT1 (Fig. S7A-B). Cir-
cRNAs are product of RNA alternative splicing, and 
splicing factors are involved in the biogenesis of circR-
NAs. Bioinformatics analysis using the RBPsuite (http://​
www.​csbio.​sjtu.​edu.​cn/​bioinf/​RBPsu​ite/) predicted that 
there were several splicing factor binding sites on exon 
2 of PVT1. Among these splicing factors, SRSF1 dis-
played the highest score (Fig. 7B). RIP experiments con-
firmed that SRSF1 could indeed bind to exon 2 of PVT1 
(Fig.  7C). The expression of circPVT1 was elevated fol-
lowing SRSF1 overexpression, while the level of PVT1 
was reduced. In contrary, knockdown of SRSF1 resulted 
in reduction of circPVT1 level but elevation of PVT1 
level in NPC cells (Fig. 7D). Thus, our data suggested that 
SRSF1 binds to the exon 2 of PVT1 and facilitates the 
biogenesis of circPVT1 in NPC cells. Interestingly, Co-IP 
experiments revealed an unexpected interaction between 
c-Myc and SRSF1 (Fig.  7E). Moreover, c-Myc as a tran-
scription factor could also promote the expression of 
SRSF1 (Fig. 7F, Fig. S7C-D). Finally, we performed RNA 
pull-down assay with fresh NPC samples. The results 
verified that circPVT1 could bind to β-TrCP protein 
extracted from fresh NPC samples. Immunohistochemi-
cal results showed that the intensity of circPVT1 was 
positively correlated with levels of c-Myc and SRSF1 in 
NPC tissues (Fig. S7E-F, Tables S8-S9). These results sug-
gest that c-Myc not only acts as a transcription factor to 
promote gene transcription, but also enhances splicing of 
pre-RNA of PVT1 and thus facilitates the biosynthesis of 
circPVT1 by coupling transcription to splicing.

Discussion
In this study, we identified a circRNA circPVT1 which 
was highly expressed in NPC cells and promoted NPC 
migration and invasion. Mechanistically, circPVT1 

interacted with β-TrCP to prevent β-TrCP-induced 
c-Myc ubiquitination and degradation, thus boosted the 
migration and invasion of NPC cells. Importantly, c-Myc 
not only promoted PVT1 gene transcription through 
binding to the promoter region of PVT1, but also coor-
dinated with the splicing factor SRSF1 to facilitate 
circPVT1 biogenesis. These molecules form a positive 
feedback loop that enhances NPC migration and invasion 
(Fig. 8).

Amplification of chromosome 8q24, which circPVT1 
and lncRNA PVT1 locate on, is frequently observed in a 
variety of cancers including NPC [20–24]. In this study, 
we focused on the circRNA circPVT1 which was derived 
from exon 2 of the PVT1 gene and was highly expressed 
in NPC. The role of circPVT1 in cancer was first reported 
in gastric cancer. Huang et  al. found that circPVT1 
expression was elevated in gastric cancer and boosted 
the progression of gastric cancer [25]. Usually, circPVT1 
acts as a miRNA "sponge" to increase the expression of 
miRNA targeted mRNA at the post-transcriptional level 
to stimulate cancer progression [26–28]. In this work, we 
discovered that circPVT1 could prevent β-TrCP-induced 
c-Myc ubiquitination and degradation through directly 
binding to β-TrCP protein, which ultimately promoted 
NPC cell migration and invasion.

As a key member ofthe F-box class of proteins, numer-
ous studies have demonstrated that β-TrCP specifically 
recognizes and ubiquitinates IκB, β-catenin, and Emi1 
proteins to regulate a variety of processes during tumor 
development [29, 30]. Here, we revealed that β-TrCP could 
bind and promote the degradation of c-Myc through ubiq-
uitination. Interestingly, circPVT1 competitively occupied 
the c-Myc-binding domain on β-TrCP to prevent β-TrCP-
induced c-Myc ubiquitination and degradation, thus 
enhancing NPC cell migration and invasion. CircRNAs 
function as signaling pathway regulators in gene expres-
sion and other important cellular processes [31–36]. For 
example, circRNAs may act as scaffolds or decoys of RNA-
binding proteins (RBPs) to form nuclear or cytoplasmic 
complexes [39–41]. Yang et al. found that circFoxo3 in mice 
functions as a scaffold by binding to the cell-cycle proteins 
cyclin-dependent kinase 2 (CDK2) and cyclin-dependent 

Fig. 7  c-Myc promotes circPVT1 generation by recruiting SRSF1 to couple transcription to splicing. A. The expression of circPVT1 and PVT1 in CNE2 
and 5-8F cells after overexpression or knockdown of c-Myc was examined using qRT-PCR. Data were represented as mean ± SD; *, p < 0.05; **, 
p < 0.01; ***, p < 0.001. B. The top 5 splicing factors potentially binding to the exon 2 of PVT1 were listed following analyzed online (RBPsuite: http://​
www.​csbio.​sjtu.​edu.​cn/​bioinf/​RBPsu​ite/). The score for SRSF1 is highest (score = 0.9995492). C. The interaction between SRSF1 protein and exon 2 of 
PVT1 was evaluated in CNE2 and 5-8F cells by RNA immunoprecipitation using anti-SRSF1 antibody, followed by qRT-PCR analysis of the PVT exon 2. 
Data were represented as mean ± SD. ***, p < 0.001. D. The expresion of circPVT1 and PVT1 in CNE2 and 5-8F cells after overexpression or knockdown 
of SRSF1 was examined using RT-PCR. Data were represented as mean ± SD; **, p < 0.01; ***, p < 0.001. E. The interaction between SRSF1 and c-Myc 
proteins was examined in CNE2 and 5-8F cells using immunoprecipitation with anti-c-Myc antibody, followed by western blotting using anti-SRSF1 
antibody. F. The expression of SRSF1 in CNE2 and 5-8F cells after overexpression or knockdown of c-Myc was examined using qRT-PCR. Data were 
represented as mean ± SD; **, p < 0.01; ***, p < 0.001

(See figure on next page.)

http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/
http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/
http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/
http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/


Page 15 of 19Mo et al. Molecular Cancer          (2022) 21:192 	

Fig. 7  (See legend on previous page.)



Page 16 of 19Mo et al. Molecular Cancer          (2022) 21:192 

kinase inhibitor 1 (or p21). The formation of a circFoxo3–
p21–CDK2 ternary complex results in inhibition of CDK2 
activity [37]. As a scaffold, circFoxo3 also facilitates the 
degradation of mutant p53 and at the same time inhib-
its Foxo3 degradation by modulating double-minute 2 
(MDM2)-mediated ubiquitination in murine cells [38]. 
Shan et al. found that circBoule RNAs interacts with con-
served HSPs (heat shock proteins) and protects against 
stress-induced fertility decline [39]. Cai et  al. found that 
circPABPC1 negatively regulates adhesion and migration 
in hepatocellular carcinoma cells by directly binding to 
and down-regulating ITGB1 [40]. β-TrCP is a non-classical 
RNA binding protein, our results showed that circPVT1 
binds to β-TrCP and inhibits β-TrCP-mediated c-Myc 
protein degradation. Our study established an important 
theoretical basis for targeting circRNAs as therapeutic 
agents for c-Myc modulation, which is expected to fulfill 
the unmet clinical urgent needs.

Unexpectedly, we found that c-Myc could not only 
act as a transcription factor to drive gene transcription, 
but also bing in the splicing factor SRSF1 and facilitate 
transcriptional splicing of PVT1 into circPVT1, but not 

PVT1. Among a few studies on the generation of cir-
cRNA [41–47], Meng et al. found that transcription fac-
tor Twist1 promotes Cul2 transcription and up-regulates 
the expression of Cul2 circRNA through binding to Cul2 
promoter [48]. Conn et  al. found that the generation of 
circRNA was regulated by splicing factor Quaking (QKI) 
[49]. Wang et al. found that EIF4A3 could bind to MMP9 
mRNA transcript to promote circMMP9 cyclization 
and enhance circMMP9 expression in glioblastoma [50]. 
Our work revealed a novel mechanism for upregulation 
of circPVT1 in NPC cells by coupling transcription with 
splicing event through synergetic corporation between 
c-Myc and SRSF1.

Conclusions
Our study demonstrated that circPVT1 was positively 
co-regulated by c-Myc and SRSF1 in NPC cells, and 
on the other hand circPVT1 inhibited the ubiquitin-
mediated degradation of c-Myc by binding to β-TrCP, 
which blocked the interaction between the ubiquitin E3 
ligase β-TrCP and its target c-Myc. In turn, this led to 

Fig. 8  Schematic diagram of the molecular mechanism of circPVT1 promoted NPC metastasis. Circular RNA circPVT1 interacts with β-TrCP to 
prevent β-TrCP-induced c-Myc ubiquitination and degradation, which results in enhanced migration and invasion of NPC cells. Oncoprotein c-Myc 
promotes circPVT1 transcription through binding to the promoter region of PVT1 gene, and recruits the splicing factor SRSF1 to facilitate circPVT1 
splicing, which forms a positive feedback loop that promotes the migration and invasion of NPC cells
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cytoskeleton remodeling and cell adhesion modulation, 
and ultimately promoted NPC cell migration and inva-
sion. Our work provided new insights into the mecha-
nism of NPC progression and potential targets for the 
treatment of NPC patients.
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tive images showing the correlation between circPVT1 and the expression 
of c-Myc and SRSF1 in NPC tissues (top). Quantification of the correlation 
between circPVT1 and the expression of c-Myc and SRSF1 in NPC tissues 
(bottom). Magnification: 200×, Scale bar = 50 μm, 400×, Scale bar = 20 μm.
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