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Information flow in brain networks is reflected in local field potentials that have both periodic and aperiodic components. The 1/fχ

aperiodic component of the power spectra tracks arousal and correlates with other physiological and pathophysiological states. Here
we explored the aperiodic activity in the human thalamus and basal ganglia in relation to simultaneously recorded cortical activity.
We elaborated on the parameterization of the aperiodic component implemented by specparam (formerly known as FOOOF) to avoid
parameter unidentifiability and to obtain independent and more easily interpretable parameters. This allowed us to seamlessly fit
spectra with and without an aperiodic knee, a parameter that captures a change in the slope of the aperiodic component. We found that
the cortical aperiodic exponent χ , which reflects the decay of the aperiodic component with frequency, is correlated with Parkinson’s
disease symptom severity. Interestingly, no aperiodic knee was detected from the thalamus, the pallidum, or the subthalamic nucleus,
which exhibited an aperiodic exponent significantly lower than in cortex. These differences were replicated in epilepsy patients
undergoing intracranial monitoring that included thalamic recordings. The consistently lower aperiodic exponent and lack of an
aperiodic knee from all subcortical recordings may reflect cytoarchitectonic and/or functional differences.

Significance statement
The aperiodic component of local field potentials can be modeled to produce useful and reproducible indices of neural activity. Here we
refined a widely used phenomenological model for extracting aperiodic parameters (namely the exponent, offset and knee), with which
we fit cortical, basal ganglia, and thalamic intracranial local field potentials, recorded from unique cohorts of movement disorders and
epilepsy patients. We found that the aperiodic exponent in motor cortex is higher in Parkinson’s disease patients with more severe
motor symptoms, suggesting that aperiodic features may have potential as electrophysiological biomarkers for movement disorders
symptoms. Remarkably, we found conspicuous differences in the aperiodic parameters of basal ganglia and thalamic signals compared
to those from neocortex.
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Introduction
From the inception of EEG, understanding the neurophysiology
of oscillatory electrical activity—periodic activity of defined
frequencies sustained for more than one period—has been a
paramount goal (Berger 1929). These neural oscillations are
widespread, spanning all brain regions and frequency bands, and
correlate with many aspects of brain function and dysfunction
(Engel et al. 2001; Basar and Güntekin 2013). The study of
neural oscillations has also been facilitated by commonly
used methods like Fourier or wavelet transforms, which can
decompose any signal into a sum of oscillatory components.
However, the existence and mathematical validity of these
decompositions do not imply that all brain activity arises from
neural oscillations. Indeed, strictly non-oscillatory processes
give rise to characteristic power spectra; for example, Brownian
processes are characterized by a 1/f2 power spectra.

Local field potentials (LFPs) reflect the ensemble activity of
ionic currents of populations of cells in the vicinity of the elec-
trode (Nunez and Srinivasan 2006; Lindén et al. 2010). The most
salient feature of the frequency power spectral density (PSD) of
LFPs is the decline of power with increasing frequency, a feature
termed the 1-over-f (1/fχ , with χ denoting the aperiodic exponent)
“background noise” of the spectra. Studies using LFPs commonly
remove the 1/fχ broadband component by normalization and
focus on power modulation at specific frequency bands. In con-
trast to the periodic nature of neural oscillations, the 1-over-f
component is referred to as aperiodic activity.

Until recently, aperiodic activity has been largely ignored or
regarded as noise, perhaps due to inadequate computational tools
and theoretical framework. In pioneering work, Miller et al. fitted
a parametric description of the aperiodic component to human
electrocorticography (ECoG) PSD (Miller et al. 2009). The extrac-
tion of the aperiodic exponent χ has been greatly facilitated by
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the development of methods like the irregular-resampling auto-
spectral analysis (IRASA) (Wen and Liu 2016) and specparam (for-
merly referred to as “fitting oscillations & one-over-f” or FOOOF)
(Donoghue et al. 2020). The latter fits the periodic component of
the spectrum as a superposition of Gaussians and parameterizes
the aperiodic component as Paperiodic = A/

(
k + fχ

)
, with an offset

A, an aperiodic exponent χ , and an optional knee parameter k
(Donoghue et al. 2020) (see also Supplementary Materials). Note
that this method requires an a priori decision of whether to use
the knee parameter or not.

Using these methods, a recent body of work explored correla-
tions of aperiodic parameters with different behavioral, physiolog-
ical, and pathophysiological states and anatomical regions. The
cortical aperiodic exponent χ decreases with age (Voytek et al.
2015; Dave et al. 2018), increases under anesthesia and during
sleep (Muthukumaraswamy and Liley 2018; Colombo et al. 2019;
Miskovic et al. 2019; Lendner et al. 2020), and differs across cortical
regions (Muthukumaraswamy and Liley 2018; Chaoul and Siegel
2021). Likewise, the knee k of the spectra (i.e. the frequency at
which the rate of decline of power with increasing frequency
changes) also has a spatial structure in the cortex (Gao et al. 2020).
Thus, aperiodic parameters are potentially useful descriptors of
population-averaged neural activity recorded by LFPs.

Given the importance of understanding the cortical-subcortical
neural dynamics that underlie normal human behavior and
symptoms of brain diseases, we explored differences in the
parameters of the aperiodic component of LFPs recorded from
unique cohorts of neurosurgical patients. We elaborated on
the parameterization of the aperiodic component developed
by (Donoghue et al. 2020) to formulate a model with better-
defined aperiodic parameters that avoids a priori assumptions
on the presence of an aperiodic knee. We used this model
to explore (across patients) the relation of cortical aperiodic
activity with movement disorder pathophysiology and cortical
anatomy in movement disorders patients undergoing deep brain
stimulation (DBS) surgery. We then performed within-subject
comparisons of aperiodic parameters in thalamic and basal
ganglia nuclei to those in the cortex, including a second cohort
of patients with drug-resistant epilepsy undergoing intracranial
monitoring.

Methods
Participants
Movement disorder patients undergoing intracranial electrode
implantation for DBS therapy participated in a speech production
task (see task details in Bush et al. 2022 and Vissani et al. 2023),
of which the baseline periods were analyzed in this study. Briefly,
the speech task involved repetition of triplets of consonant-vowel
syllables presented auditorily via earphones, with no visual cue,
no fixation point and no working memory demand. The intervals
between trials, from speech offset of a trial to cue onset of the
next trial, were analyzed for each run of the task (3.0 ± 1.4 runs
per participant, 118.0 ± 1.5 baseline intervals per run, 2.27 ± 0.45 s
per interval, for a total baseline duration of 4.2 ± 1.1 min per
run; median ± median-absolute-deviation reported in all cases).
One or two high-density subdural ECoG strips were temporarily
placed through the standard burr hole, targeting the left superior
temporal gyrus (also covering the ventral sensorimotor cortex)
and left inferior frontal gyrus. ECoG electrodes were removed at
the end of the surgery. Dopaminergic medication was withdrawn
the night before surgery. All procedures were approved by the
University of Pittsburgh Institutional Review Board (IRB Protocol
#PRO13110420), and all patients provided informed consent to

participate in the study. The following cohorts of movement dis-
order patients participated in the study:

• 29 Parkinson’s disease patients (21M/8F, 65.6 ± 7.1 years)
undergoing awake subthalamic (STN) DBS surgery, 26 of
which had usable ECoG recordings and 13 of which had
simultaneous ECoG and DBS lead recordings (two ECoG
recordings were excluded for excessive package drops and
one for incomplete metadata).

• 5 Parkinson’s disease patients (5M/0F, 69.1 ± 5.7 years) under-
going awake pallidal (GPi) DBS surgery, of which 4 had usable
ECoG recordings, and 3 had simultaneous ECoG and DBS
lead recordings (intraoperative recordings could not be com-
pleted for one subject). Given that our multidisciplinary team
recommends either STN or GPi targeting based on a sum
of factors such as motor symptoms and cognitive profiles,
baseline neurophysiological states could be different between
these two groups; thus, we segregated PD patients by the
subcortical target for ECoG analysis.

• 22 essential tremor patients (11M/11F, 65.3 ± 9.7 years) under-
going awake thalamic (Vim) DBS surgery, of which 18 had
usable ECoG recordings, and 15 had simultaneous ECoG and
DBS lead recordings (intraoperative recordings could not be
completed in two cases and data for two subjects showed
strong atypical line noise).

All PD patients underwent standard preoperative evaluations,
including the Unified Parkinson’s Disease Rating Scale (UPDRS,
(Goetz et al. 2008)) in the OFF and ON medication states (opera-
tionalized as approximately 12 h after the last dose for OFF and 1 h
after administration of dopaminergic medications for ON), within
4 months prior to surgery. Subscores of UPDRS-III were defined
as axial (items 1, 12–14), tremor (items 16 and 17), rigidity (item
3), and bradykinesia (items 4–6, 8 and 9). Note that there are more
males than females in PD cohorts reflecting the gender gap in DBS
referral and utilization (Willis et al. 2014; Jost et al. 2022).

Additionally, we analyzed intervals of awake restfulness data
from 8 epilepsy patients (5M/3F, age: 18 ± 11 years) undergoing
stereo-EEG (sEEG) intracranial monitoring for epilepsy with addi-
tional electrodes implanted in the thalamus (10.0 ± 4.6 min per
interval, median ± MAD). Implantation of the thalamus during
sEEG monitoring for patients who may be candidates for thalamic
responsive neuromodulation (RNS) is considered standard-of-care
at our center (Richardson 2022). This study was approved by the
Massachusetts General Hospital (Boston, MA) Institutional Review
Board (IRB Protocol #2020P000281).

Neural recordings
Figure 1 and Table S1 describe the electrodes used in this study.
ECoG electrodes and DBS lead signals were simultaneously
acquired at 30 and at 1 kHz (ns2 files bandpass filtered from
1 to 250 Hz, fourth-order Butterworth) with a Grapevine Neural
Interface Processor equipped with Micro2 Front Ends (Ripple LLC,
Salt Lake City, UT, USA). For computational efficiency we used the
1 kHz (ns2) recordings for analysis. ECoG and DBS lead recordings
were referenced to a subdermal scalp needle electrode positioned
approximately on Cz. The sEEG signals were recorded at 1-kHz
sampling rate using a 128-channel Xltek digital video-EEG system
(Natus Medical Incorporated, Pleasanton, CA). sEEG recordings
were referenced to an EEG electrode placed extracranially (C2
vertebra or Cz).

Electrode localization
DBS electrodes were localized using the Lead-DBS localization
pipeline (Horn et al. 2019). Briefly, a preoperative anatomical T1
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Fig. 1. Schematic representation of electrode montages. (A) Movement disorder patients undergoing DBS implantation surgery with simultaneous
multichannel recordings from DBS leads and ECoG strips implanted in the left hemisphere. (B) Epilepsy patients undergoing intracranial monitoring
with multichannel sEEG electrodes, some targeting thalamic nuclei. Schematic representation of a coronal sections (neurological convention) on the
left, and examples of raw voltage traces for cortical and subcortical regions on the right (DBS: deep brain stimulation, ECoG: electrocorticography, STN:
subthalamic nucleus, sEEG: stereotactic electroencephalography).

weighted MRI scan was co-registered with a post-operative CT
scan. The position of individual contacts was manually identified
based on the CT artifact and constrained by the geometry of
the DBS lead used. This process rendered the coordinates for
the leads in each subject’s native space. The position of the
ECoG strips was calculated from intra-operative fluoroscopy as
described in (Randazzo et al. 2016). Briefly, the cortical surface
was reconstructed from the preoperative MRI using FreeSurfer
(Fischl et al. 2002) and a model of the skull and stereotactic
frame was reconstructed from the intra-operative CT scan using
OsiriX (osirix-viewer.com). The position of the frame’s tips on the
skull and the implanted DBS leads were used as fiducial markers.
The models of the pial surface, skull and fiducial markers were
co-registered, manually rotated, and scaled to align with the
projection observed in the fluoroscopy. Once aligned, the position
of the electrodes in the ECoG strip was manually marked on the
fluoroscopy image, and the projection of those positions to the
convex hull of the cortical surface was defined as the electrode
location in native space. The coordinates were then regularized
based on the layout of the contacts in the ECoG strip (github.com/
Brain-Modulation-Lab/ECoG_localization). All coordinates were
then transformed to the ICBM MNI152 Non-Linear Asymmetric
2009b space (Fonov et al. 2011) using the Symmetric Diffeomor-
phism algorithm implemented in the Advanced Normalization
Tools (Avants et al. 2008).

Epilepsy patients were implanted with commercially available
8–16 contact electrodes (PMT Corporation, MN, USA; AdTech Med-
ical Instrument Corporation, WI, USA). Electrode trajectories were
tailored for each patient according to the surgical hypothesis, and
contact locations were determined by either post-implantation

MRI or co-registration of the preoperative T1 MRI with the post-
implantation CT using Brainstorm (Tadel et al. 2011).

Anatomical labels were assigned to each electrode based on
the HCP-MMP1 atlas (Glasser et al. 2016) for cortical electrodes
and the Morel (Morel 2007) and DISTAL (Ewert et al. 2018) atlases
for subcortical electrodes.

Electrophysiological data preprocessing and
power spectrum estimation
Data recorded during DBS surgeries were processed using custom
code based on the FieldTrip (Oostenveld et al. 2011) toolbox imple-
mented in MATLAB, available at (github.com/Brain-Modulation-
Lab/bml). Data were loaded from 1-kHz ns2 files, low pass filtered
at 250 Hz using a fourth-order Butterworth filter and stored as
continuous recordings in FieldTrip datatype-raw. No notch filter
was applied. Electrodes were common average referenced per
head-stage connector and electrode type. sEEG data recorded for
epilepsy monitoring was loaded from 1 kHz EDF files, bandpass
filtered from 1 to 250 Hz with a fourth-order Butterworth filter
and common-average referenced for consistency with DBS data.
For all data, PSD was estimated using the Welch method (Welch
1967), using 1-s time windows with a 50% overlap.

Spectral parameterization
We elaborated upon the spectral parameterization introduced by
Donoghue et al. (2020) to capture the frequency domain char-
acteristics of electrophysiological data. This parameterization
decomposes the log-power spectra log

(
P

(
f
))

into an aperiodic
component log

(
L

(
f
))

and the summation of N narrow-band
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periodic components that are each modeled as a Gaussian:

log
(
P

(
f
)) = log

(
L

(
f
)) +

N∑
n=0

an e− (f−fc,n)2

2wn2 (1)

where f is the frequency, an is the power, fc,n the center frequency,
and wn is the width of the Gaussian n (i.e. the standard devia-
tion). Gaussians were used to model physiological oscillations and
spectral artifacts like line noise. This approach was preferred over
notch filters as the model does not adequately fit spectra with
notches. In this work, we propose a new parameterization of the
aperiodic component defined as

L
(
f
) = A

fk
χ + fχ

min

fk
χ + fχ (2)

where A is the aperiodic offset and can be interpreted as the
power fitted at the minimal frequency of interest fmin, defined
as the smallest positive frequency for which power can be
reliably estimated based on acquisition, preprocessing, and
PSD estimation methods. For the current work, it was defined
as fmin = max

{
fHP, fs/m

}
, the largest between fHP, the cutoff

frequency of the high-pass filter applied at acquisition (or
preprocessing), and the smallest positive frequency calculated
by the Welch method fs/m, where fs is the sampling rate and
m the number of samples in the Welch window. The parameter
fk is the knee frequency at which there is a change in log–log
slope of the PSD and, for fk � fmin, corresponds to the frequency
at which the power decays to A/2. The rate at which the power
decreases for frequencies above fk is defined by the aperiodic
exponent χ . We also modified the original algorithm proposed
by Donoghue et al. (2020) to scan fk logarithmically (defining
the auxiliary parameter pfk = log10

(
fk

)
, substituting fk → 10pfk

in Equation (2), and optimizing over pfk

)
, therefore ensuring

positive values for fk. This change also allows the full model
to adequately fit cases with no knee in the PSD by converging
to fk < fmin. For computational reasons, we restricted the range
of fk from fmin/10 to fLP. See the supplementary materials for
a discussion on the advantages of using this parameterization
over the original one proposed by Donoghue et al. (2020). Note
that the model was fitted to PSDs from individual channels
and runs, and the extracted aperiodic parameters were then
aggregated for statistical analyses. The aperiodic neural timescale
τ can be calculated from the aperiodic knee as τ = (

2πfk
)−1,

as defined in Gao et al. (2020). Other parameters for specparam
were not modified relative to the original model (v1.1.0) and were
kept constant at peak_width_limits = [2,25], max_n_peaks = 6,
min_peak_height = 0.15, peak_threshold = 2, and freq_range = [1,
250]. Additionally, we modified the cost function (J) of the
fitting procedure by adding to the mean squared error term a
regularization term that penalizes the integral of the Gaussians
over negative frequencies (Equation 3):

J = 1
M

M∑
i=1

(
Yi − Ŷi

)2 + λ

N∑
n=0

fmin∫
−∞

Gn (F) dF (3)

where Yi is the log power estimated by the Welch method at
frequency fi, and Ŷi is the value fitted by the model. The sec-
ond term was added to prevent Gaussian peaks from extending
beyond the fitting range, which can affect the estimation of
the aperiodic component (Gerster et al. 2022). The regularization

parameter λ was empirically adjusted for each dataset. Algorithm
development and analyses for this work were done in Python.
The modified specparam package is available at github.com/Brain-
Modulation-Lab/fooof/tree/lorentzian.

Statistical analysis
We performed statistical analyses in R. Base functions were used
for correlation tests, paired Wilcoxon tests, linear models, and
Fisher exact test for count data. The coin package was used for
the approximative K-Sample Fisher–Pitman permutation tests
(Hothorn et al. 2008), in which cohort labels or anatomical loca-
tions were permuted across subjects 9,999 times. The lmerTest
package was used for linear mixed effects models (Kuznetsova
et al. 2017) and multcomp for multiple comparisons (Bretz et al.
2011). Analysis scripts and tabulated data is available at github.
com/Brain-Modulation-Lab/Paper_AperiodicComponent.

Results
To explore differences between the aperiodic components of cor-
tical and basal ganglia or thalamic LFPs, we elaborated upon
the specparam method (Donoghue et al. 2020) by incorporating
a new Lorentzian-like parameterization of the aperiodic compo-
nent, changing the way parameters are scanned and adding a reg-
ularization term (see methods and supplementary materials for
details). These changes result in more easily interpretable param-
eters, with well-defined units and better parameter identifiability
(Cedersund and Roll 2009) (Fig. S1). In our new parameterization
of the aperiodic component (Equation 2), the offset A represents
the power density at the smallest positive frequency acquired
fmin, the aperiodic exponent χ is the rate of decline of power
with frequency, and the knee fk is the frequency at which there
is a change in the rate of decline (Fig. 2A). These modifications
also allow the fitting of the same model to power spectra with
qualitatively different profiles. In the original description, param-
eterization required an a priori selection of one of two possible
models (with or without a “knee” parameter); our modifications
allow seamless fitting of either case with the same model, without
compromising the interpretability of the parameters (Fig. S2).

First, to assess the performance of the novel parameterization,
we fitted the power spectra of ECoG recordings acquired from
movement disorder patients undergoing awake DBS implantation
surgery. Baseline epochs recorded during rest periods in a speech
production task were used for this analysis. The novel param-
eterization fits the data as well as the original implementation
(Fig. 2A); R2 values of both models are virtually identical and
tightly cluster at values above 0.975 (Fig. 2A inset). Furthermore,
the aperiodic parameters for the novel formulation do not show
the strong collinearity observed for the parameters of the original
model (Figs 2B, S3A, and S3B) which indicates poor parameter
identifiability in the original model, leading to larger uncertainties
in the parameter values (Cedersund and Roll 2009). Note, however,
that there is a residual correlation between the aperiodic knee and
the exponent of cortical spectra (Fig. S3B) and for STN spectra both
parameterizations show similar correlation between exponent
and offset (Fig. S3C). Our novel formulation also better constrains
the range of values of the parameters; for example, the aperiodic
offset spans six orders of magnitudes for the original model but
only two in the novel formulation (Fig. 2B).

We explored cortical aperiodic activity from ECoG recordings
in PD patients undergoing STN-DBS implantation using our new
parameterization. Across participants, electrodes (blue dots in
Fig. 3A) covered the left dorsolateral-prefrontal, inferior-frontal,
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Fig. 2. The novel parameterization of the aperiodic component avoids
collinearity between parameters. (A) Representative example of cortical
power spectra with fits from original and novel models (as indicated in
the legend). Novel aperiodic parameters are represented on the plot: A is
the power density at the smallest frequency acquired, χ is the negative
log–log slope, and fk is the frequency at which the slope changes. The
inset shows the correlation between R2 values for both models, and
their univariate distribution in data from PD participants. (B) Aperiodic
exponent vs. offset parameters for ECoG recordings from a random
subset of 11 PD patients undergoing STN (9) or GPi (2) DBS, for the
original and novel parameterizations. Each point represents parameters
from an electrode. Contour lines represent the 5, 10, 20, 40, and 80%
percentiles of 2D kernel density estimation (ECoG: electrocorticography,
PSD: power spectral density).

premotor, sensorimotor, posterior-opercular, inferior-parietal,
temporo-parietal-occipital, and auditory-associative cortex
(regions defined by the MMP1 atlas (Glasser et al. 2016), Fig. 3B
central panel, see Fig. S4A for group-level PSDs from all regions
sampled). Interestingly, we found a significant positive correlation
between the preoperative UPDRS-III ON score (a clinical measure
of PD motor symptom severity), and the aperiodic exponent from
inferior-frontal (ρ = 0.82, P = 0.016) and dorsolateral-prefrontal
cortical areas (ρ = 0.71, P = 0.017, FDR-corrected Spearman’s
correlation test, Fig. 3B). A post-hoc analysis in these two regions
shows that the bradykinetic subscore of UPDRS-III drives the
correlation with the aperiodic exponent (Fig. 3C). However, no
significant correlation was found with the UPDRS-III OFF score
(Fig. S5). Neither the aperiodic offset nor the aperiodic knee
showed significant correlations with UPDRS-III scores in any
cortical region (Spearman correlation, FDR-corrected α = 0.05).

There was no significant difference between PD patients
undergoing STN-DBS (PDSTN-DBS) and essential tremor patients

undergoing VIM-DBS (ETVIM-DBS) for the cortical aperiodic
exponent (P = 0.096, Fisher–Pitman permutation test) or knee
frequency (P = 0.83). However, both of these cohorts differed from
PDGPi-DBS patients in cortical aperiodic exponent (P = 0.031) and
aperiodic knee (P = 0.018, Fig. 3D). There was no difference in
aperiodic offset across the three cohorts (P = 0.51, Fig. 3D, bottom).
Due to the lack of significant difference between cortical aperiodic
parameters, we pooled data across the PDSTN-DBS and ETVIM-DBS

cohorts for subsequent cortical analyses.
There was no significant correlation of the aperiodic exponent

with age (P = 0.23, Spearman correlation). Note that the age
range of this cohort (43–79 years) does not include the younger
adult group (18–30 years) from previous studies (Voytek et al.
2015; Dave et al. 2018). We grouped electrodes according to
the multimodal-parcellation atlas (HCP-MMP1; Glasser et al.
2016, Fig. 3B, center) and used a mixed-effects model to account
for subject-to-subject variability. In line with recent reports
(Muthukumaraswamy and Liley 2018; Gao et al. 2020; Chaoul
and Siegel 2021), we found significant differences in aperiodic
parameters across cortical regions (Fig. 3E, Table S2). We observed
that the aperiodic knee frequency in primary sensory cortex “1”
was significantly greater than that observed in premotor region
“6r”, posterior-opercula area 4 “OP4”, and auditory-associative
area “A5” (Tukey’s HSD for region effect α = 0.05). Similarly, the
aperiodic exponent differed between posterior-opercular area
“OP4” and sensorimotor/premotor areas “1,” “3b,” “55b,” and “6v,”
and between auditory-associative area “A4” premotor areas “55b”
and “6v” (Tukey’s HSD for region effect α = 0.05).

Next, we explored the aperiodic component from subcortical
recordings acquired through the DBS leads. For PD patients, DBS
leads targeted the dorsal-posterior-lateral portion of the subthala-
mic nucleus (STN) or the inferior-posterior-lateral globus pallidus
internus (GPi), whereas for ET patients, leads targeted the ventral
intermedius (VIM) nucleus of the thalamus (Fig. 4A). In contrast to
what was observed for cortical recordings, no obvious “knee” was
apparent in power spectra from the STN, VIM, or GPi (Figs 4B–D
and S4B); the aperiodic component of extracellular potentials for
these subcortical structures decreases with frequency starting
from the minimal frequency acquired. These qualitative differ-
ences with ECoG PSDs could be due to the different electrode types
(see Table S1 for details), reflect underlying electrophysiology,
or a combination of both effects (see Discussion). To quantify
these differences, we fit subcortical power spectra using the same
model as for cortical data (Fig. 4B–D).

The distribution of aperiodic parameters in STN recordings
differs remarkably from that in cortical ECoG signals from the
same subjects (Fig. 4E–G, left panels). The aperiodic exponent for
the STN has a median of 1.30 ± 0.21 (median ± standard deviation
across subjects), almost 3-fold smaller than that of ECoG record-
ings 3.41 ± 0.30 for the same subjects (P = 0.0002, paired Wilcoxon
test, Table 1, Fig. 4E). Contrary to what we observed for cortical
recordings, there was no correlation between the aperiodic expo-
nent from the STN and preoperative UPDRS-III ON or OFF scores
(P = 0.9 and 0.6, respectively, Spearman correlation). As was the
case for cortical spectra, the STN aperiodic offset does not corre-
late with preop UPDRS (ON or OFF). The aperiodic exponent from
DBS lead recordings in VIM was also significantly different from
the simultaneous cortical recordings (P < 10−4 paired Wilcoxon
test, Fig. 4E). Interestingly, the difference between cortical and
subcortical aperiodic exponents reached significance for all indi-
vidual subjects analyzed (Fig. 4E, FDR-corrected Fisher–Pitman
permutation test), including GPi recordings for which no group-
level difference was detected (P = 0.25, paired Wilcoxon test).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
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Fig. 3. Cortical aperiodic parameters correlate with PD severity and anatomical regions. (A) Anatomical localization of ECoG electrodes used to record
cortical activity from the left hemisphere from Parkinson’s disease (PD) and essential tremor (ET) patients undergoing DBS surgery. (B) Correlation
between preoperative UPDRS-III ON score and aperiodic exponents from sampled cortical regions in PD patients undergoing STN-DBS surgery. Each
point represents the median aperiodic exponent for a subject, across all available runs and ECoG contacts over a given cortical region. The shaded
region represents CI95 of a linear fit. Spearman’s ρ and FDR-corrected P-value are indicated in each panel. The central panel shows a lateral view of
an inflated brain with the cortical parcellation, and regions defined by MMP1 (Glasser et al. 2016). (C) Post-hoc analysis for the dorsolateral-prefrontal
and interior-frontal regions. Polar plots show Spearman’s ρ correlation values between the aperiodic exponents (as shown in B) and preoperative UPDRS
III ON and OFF sub-scores for bradykinesia, rigidity, tremor, and axial symptoms (Goetz et al. 2008). Significant correlations (FDR-corrected, α = 0.05)
are indicated by filled dots. (D) Distribution of cortical aperiodic exponent (top), knee frequency (center), and offset (bottom), grouped by diagnosis
and subcortical DBS target (each dot represents the median across all ECoG channels and runs for a subject, and dots are jittered vertically to avoid
overplotting). Boxes extend from the first to third quartile, median is indicated with a thick vertical line, and whiskers extend up to the most extreme
point with 1.5 times the inter-quantile-range from the box edge (Tukey convention). Lines connecting boxes and asterisks indicate significant difference
(Fisher-Pitman permutation test, α = 0.05). E) Aperiodic knee frequency cortical-region effect (after accounting for subject effect) vs. anatomical regions,
as defined in the MMP1 atlas, for regions sampled from 10 or more subjects. To avoid effects from differences in sampling density, statistics were
done on the average per region per subject. Error bars indicate the SEM across subjects. Significant differences denoted by thin lines and asterisks
(Tukey’s HSD test, α = 0.05). Scale on the right indicates mapping of the region-effect to knee frequencies of an “average” subject. (F) Same as (E) for the
aperiodic exponent (PD: Parkinson’s disease, ET: essential tremor, UPDRS: Unified Parkinson’s Disease Rating Score, VIM: ventral intermediate nucleus
of the thalamus, STN: subthalamic nucleus, GPi: globus pallidus internus, CI95: 95% confidence interval, FDR: false discovery rate, MMP1: Multi-Modal
Parcellation 1 Atlas).
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Fig. 4. Power spectra of extracellular potentials from STN, VIM, and GPi show no knee and lower aperiodic exponent than cortical recordings. (A)
Anatomical localizations of cortical and subcortical electrodes from the DBS lead relative to the STN, GPi, and VIM (DISTAL and Morel atlases,
respectively). (B) Representative example of power spectra, aperiodic component (continuous lines), and full model fit (dashed lines) for an STN and
a cortical contact from the same subject. Note that the full-model fits were displaced vertically for visual clarity, as indicated by the arrows on the
left of the plot. (C) Same as (B) for VIM. (D) Same as (B) for GPi. (E) Distribution of aperiodic exponents for STN, VIM, and GPi compared to cortex in
individual subjects. Each dot corresponds to the median, and error bars to the standard deviation of all electrodes within the corresponding brain region.
Dashed lines indicate significant differences between subcortical and cortical values in individual subjects (FDR-corrected permutation test, α = 0.05).
Overarching solid lines and asterisks indicate significant group-level differences (paired Wilcoxon test, α = 0.05). (F) Same as (E) for the aperiodic knee
frequency. Note that the y axis is in log-scale. The dashed horizontal gray line represents the smallest positive frequency acquired fmin. Fits with knee
frequencies smaller than fmin indicate spectra without observable knee. (G) Same as (E) for the aperiodic offset (PD: Parkinson’s disease, ET: essential
tremor, VIM: ventral intermediate nucleus of the thalamus, STN: subthalamic nucleus, GPi: globus pallidus internus, Ctx: cortex).

Table 1. Mean and dispersion of aperiodic parameters across patient cohorts and brain structures.

Cohort Location Electrode
type

Ns Exponent Offset
(μV2/Hz)

fk (Hz) P
(
fk < fmin

)
τ (ms)

PDSTN-DBS STN DBS lead 13 1.30 ± 0.21 7.6 [2.9; 20] < 1 85 ± 4% > 159
Cortex ECoG 26 3.41 ± 0.30 55 [15; 208] 17.6 [13.3; 23.3] 1.1 ± 0.2% 9.0 [6.8; 12.7]

ETVIM-DBS VIM DBS lead 15 1.42 ± 0.14 11.7 [6.0; 23] < 1 87 ± 3% > 159
Cortex ECoG 18 3.20 ± 0.36 38 [11; 133] 17.0 [12.9; 22.6] 0.9 ± 0.2% 9.4 [7.0; 12.3]

PDGPi-DBS GPi DBS lead 3 1.43 ± 0.10 17.8 [8.4; 38] < 1 73 ± 9% > 159
Cortex ECoG 4 2.91 ± 0.32 63 [42; 94] 11.4 [7.2; 18.2] 1.6 ± 0.6% 13.9 [8.7; 22.1]

EPsEEG Thalamus sEEG 8 1.33 ± 0.23 4.2 [1.0; 18.2] < 1 79 ± 4% > 159
Cortex sEEG 8 2.96 ± 0.36 96 [14; 664] 7.6 [3.1; 18.3] 3.7 ± 1.6% 20.9 [8.7; 51.3]

Exponent: mean ± Standard deviation across patients. Offset (μV2/Hz): Median [Q16; Q84], note the asymmetric distribution. fk: knee frequency in Hz, median

[Q16; Q84]. P
(
fk < fmin

)
: percentage (± standard error) of electrodes with knee frequency lower than fmin. τ = (

2πfk
)−1: aperiodic neural timescale in

milliseconds. Abbreviations: PD, Parkinson’s disease; ET, essential tremor; EP, epilepsy; STN, subthalamic nucleus; VIM, ventral intermedius nucleus of the
thalamus; GPi, globus pallidus internus; Ns, number of subjects.

The calculated aperiodic knee frequency also exhibited a strik-
ingly different distribution for STN and VIM compared to for
the cortex (Table 1, P = 2 × 10−4 and 6 × 10−5 respectively, paired
Wilcoxon test, Fig. 4F). While the cortical knee frequencies center
at 17 ± 5 Hz (median ± standard deviation across subjects), those
for STN, GPi, and VIM were significantly lower for all individual
subjects (FDR-corrected permutation test, Fig. 4F), converging to
values lower than the smallest positive frequency of the power

spectra (fmin = 1 Hz, gray horizontal dashed line in Fig. 4F) and, in
many cases, reaching the lower boundary allowed for the fitting
algorithm (0.1 Hz). It is important to note that knee frequency
values smaller than fmin should not be interpreted quantitively;
instead, they indicate the absence of a knee in the power spectra
within the frequency range acquired. In other words, if there is
a knee for the STN, GPi, and VIM power spectra, this value is
lower than 1 Hz. Due to the high-pass frequency filters applied at
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acquisition, exploring lower frequencies in this dataset is not pos-
sible. The proportion of power spectra without a knee P

(
fk < fmin

)
is significantly higher for STN, VIM, and GPi recordings than for
cortical recordings (Table 1, P < 10−6, Fisher test).

The fitting range used for specparam can have substantial
effects on the aperiodic parameters (Gerster et al. 2022). Therefore,
we performed a fitting range sensitivity analysis (Fig. S6) and
verified that our results are robust to the frequency ranged used.
Importantly, the aperiodic parameters (including the knee) are not
substantially modified by removing beta frequencies (12–30 Hz)
from the fitting range (Fig. S6, rightmost panels), indicating that
the prominent beta oscillations are not affecting the estimation
of aperiodic parameters. We also calculated the PSD at higher
frequencies for selected channels from the 30-kHz recordings,
observing that the noise floor starts around 250 Hz (Fig. S7).

Given the large difference observed in aperiodic parameters
for STN, GPi, and VIM as compared to cortex, we asked if these
differences are specific to the types of electrodes used to record
from subcortical nuclei in movement disorder patients or, on the
contrary, generalize to other electrode types, subcortical struc-
tures, and diagnoses. To this end, we explored baseline record-
ings from 8 epilepsy patients undergoing intracranial monitoring
with electrodes implanted in the thalamus to assess thalamic
participation in the hypothesized seizure network and potential
for therapeutic neuromodulation (Richardson 2022) (Fig. 5A). In
these recordings, the same type of stereo-EEG electrode contacts,
and in some cases, contacts on the same electrode, were used for
cortical and thalamic targets. Thalamic contacts covered several
thalamic nuclei from the ventral division (VLpd, VPLp, VLpv, VLa,
VPM) to intralaminar nuclei (CM, MDpc, Pf, CL) (Morel 2007) (see
Table S3), whereas selected cortical contacts covered parietal and
frontal regions (Fig. 5A). As before, we found that thalamic power
spectra show no observable knee, whereas cortical spectra from
the same patients show prominent aperiodic knees (Fig. 5B).

A significant difference in aperiodic exponent between cortical
and thalamic electrodes was observed (P = 0.008, paired Wilcoxon
test, Fig. 5C, Table 1), consistent with the results obtained from
movement disorder patients (Fig. 4E). This difference holds at the
single-subject level, showing consistent changes across subjects
(FDR-corrected permutation test, red dashed lines, Fig. 5C). The
aperiodic knee frequency also showed significant differences for
thalamic and cortical contacts (Fig. 5D), with thalamic values
falling almost exclusively below fmin (smallest positive frequency
of the spectra) and cortical values above this threshold (P < 10−6,
Fisher exact test). A sensitivity analysis showed that reducing the
frequency range used in the fitting can result in larger values for
the aperiodic knee only in thalamic sEEG recordings (Fig. S8D),
which could be due to the noise-floor starting at lower frequencies
(Fig. S8G). Nevertheless, the differences between thalamic and
cortical knee values remained significant (Fig. S8G center).

Note that the aperiodic exponent of thalamic sEEG recordings
in epilepsy patients (1.33 ± 0.23) was not significantly different
than that of DBS lead recordings in movement disorder patients
(Table 1, P > 0.05 for all pairwise comparisons by FDR-corrected
permutation test). Similarly, the knee frequency extracted was
below the cutoff value of fmin = 1 Hz, as for DBS recordings.

Discussion
Almost every cortical region projects to and receives projections
from the thalamus and other subcortical structures (Caviness and
Frost 1980; Sherman 2016). These interactions provide a substrate
for communication between distant cortical regions, facilitating

spatial integration of the brain (Grant et al. 2012) and creating cir-
cuits with massive convergence and divergence in cell number at
different nodes, as in the cortico-basal ganglia-thalamo-cortical
loop (Wilson 2013; Bergman 2021). This organization involves
regions whose cell types differ on many levels, including chan-
nel and receptor expression, morphology, cytoarchitectures, and
proportions of excitatory and inhibitory interactions. These differ-
ences allow for distinct dynamical behaviors and computational
properties across brain structures.

In this study, we systematically analyzed the aperiodic
component of brain recordings from multiple locations of
the cortico-basal ganglia-thalamo-cortical loop by fitting a
phenomenological model to the power spectra of LFPs (Donoghue
et al. 2020). We developed a novel parameterization of the aperi-
odic component with the following advantages: (1) well-defined
units for all parameters, (2) easily interpretable parameters,
(3) structurally uncorrelated parameters, (4) parameters with
more constrained physiological ranges, and (5) the ability to
fit spectra with or without an aperiodic “knee” using the same
model (see Fig. 2 and Supplementary Materials). Interestingly,
even with the novel parameterization of the aperiodic exponent,
which removes structural correlations between parameters
(Cedersund and Roll 2009), a residual positive correlation
between the aperiodic knee and the exponent of the spectra
(Fig. S2B) was observed, suggesting that these parameters could
be coupled.

Using this model to fit power spectra from baseline ECoG
recordings from patients undergoing DBS implantation surgery
(inter-trial-gaps of a speech task as described in methods), we
found that dorsolateral-prefrontal and inferior-frontal cortical
aperiodic exponents correlate with Parkinson’s disease severity as
assessed by the preoperative UPDRS III (ON-medication, Fig. 3B).
This novel result aligns with an MEG finding showing higher
aperiodic exponents for PD patients compared to healthy controls
(Vinding et al. 2020). In our data, the correlation with the aperiodic
exponent did not reach significance for the preoperative UPDRS-
OFF score, even though patients were in an OFF state during the
intra-operative recordings. This could be due to less sensitivity
or higher variability for the UPDRS-OFF score (compared to the
ON score) for the clinical population undergoing DBS treatment,
which is biased to high symptom severity. There were no signifi-
cant correlations of the STN LFP aperiodic exponent with UPDRS-
III score (ON nor OFF levodopa), consistent with a recent report in
humans (Wiest et al. 2022), but opposite to findings in rats (Kim
et al. 2022).

Total beta power correlates with PD disease severity in the
basal ganglia (Brown et al. 2001; Cassidy et al. 2002; Kühn et al.
2004) and sensory-motor cortex (Williams et al. 2002; Pollok et al.
2012). Specparam was designed to decouple oscillations from the
underlying aperiodic component, which reflects features of the
entire spectrum, not just a specific band. Indeed, accounting for
the aperiodic component reveals a stronger correlation between
beta oscillations and Parkinsonian symptoms (Martin et al. 2018;
Kim et al. 2022). However, estimations of aperiodic parameters
can be affected by oscillatory components that extend beyond the
fitting range (Gerster et al. 2022). This is not the case for our data
since beta (12–30 Hz) frequencies are above the lower frequency
acquired (fmin = 1 Hz), and removing beta frequencies does not
substantially affect the aperiodic parameters (Supplementary Fig.
S6). Additionally, we included a regularization term penalizing
peaks below fmin to avoid this pitfall (see Methods and Fig. S8I).
Indeed, the fact that we obtained a significant correlation of the
aperiodic exponent with UPDRS for frontal cortex but not in the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data


Bush et al. | 9

Fig. 5. Power spectra from thalamic sEEG recordings show no knee and lower aperiodic exponent than cortical sEEG signals. (A) Anatomical localizations
of selected sEEG electrodes for epilepsy patients with thalamic implantations. (B) Representative example of power spectra aperiodic component
(continuous line) and full-model fit (dashed lines) from a cortical sEEG contact (Ctx) and thalamic sEEG (Thal) recordings. The full-model fits were
displaced vertically for visual clarity, as indicated by the colored arrows on the left. (C) Distribution of aperiodic exponents for thalamic recordings
compared to cortex in individual subjects. Each dot corresponds to the median, and the error bars to the standard deviation of all contacts within
the thalamus and cortex. Dashed lines indicate significant difference in values between thalamus and cortex in individual subjects (FDR-corrected
permutation test, α = 0.05). Overarching solid lines and asterisks indicate significant group-level differences (paired Wilcoxon test, α = 0.05). (D) Same as
(C) for the knee frequency. Note that the y axis is in log-scale. The dashed horizontal line represents fmin. (E) Same as (C) for the aperiodic offset. (Ctx:
cortex, Thal: thalamus).

basal ganglia (which has prominent pathological beta oscillations)
suggests that the method is correctly decoupling the aperiodic
component from oscillatory features.

The main finding of this work is the conspicuous difference in
the aperiodic component of the spectra between cortical record-
ings and those of basal ganglia and thalamic nuclei (Figs. 4 and 5).
Whereas cortical recordings showed an aperiodic knee with sig-
nificant changes across cortical regions (Fig. 3E, consistent with
recent reports; Muthukumaraswamy and Liley 2018; Gao et al.
2020; Chaoul and Siegel 2021), spectra from basal ganglia and
thalamic nuclei show no knee, an observation we could systemat-
ically evaluate thanks to the novel parameterization of the aperi-
odic component. Spectra from subcortical regions showed an ape-
riodic exponent close to one (χ = 1.3 ± 0.2), significantly smaller
than in cortex (χ = 3.2±0.3). These results are reproducible across
patients, two medical centers, electrode types, recording systems,
diagnoses, and subcortical structures. Furthermore, the value for
the aperiodic exponent in the STN we measured is consistent with
recent studies that estimated this parameter (Huang et al. 2020;
Wiest et al. 2022).

A limitation of this work is that for the PD and ET cohorts,
the ECoG electrodes lie over the pia mater, whereas the DBS leads
penetrate the brain parenchyma. However, our data from epilepsy

patients were recorded from the same type of sEEG electrodes
for cortical and thalamic regions. Notably, these multi-contact
electrodes are similar in size, shape, and impedance value to DBS
lead contacts (Supplementary Table S1). We observed the same
qualitative difference in aperiodic parameters between cortical
and subcortical regions in both datasets, suggesting that these
differences cannot be fully explained by electrode type and are
due to structural and/or functional properties of the recorded
brain areas. Another important limitation of our work is that
different subcortical regions were recorded from different clinical
populations. Due to this unavoidable confound, we did not com-
pare parameters across subcortical regions and instead limited
our analysis of cortical vs. subcortical aperiodic activity to within-
subject comparisons. Another limitation of the model is the
assumption of constant power for frequencies below the knee. Fit-
ting an additional aperiodic exponent could potentially improve
the fits at frequencies below the knee. However, we did not imple-
ment this modification since it would increase the complexity of
the model and could exacerbate parameter unidentifiability.

Neural morphology affects the shape and amplitude of extra-
cellular potentials and could explain the differences in aperiodic
activity observed between cortical and subcortical structures.
For example, cells with large spatial separation between current

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae186#supplementary-data
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sinks and return currents (like cortical pyramidal neurons) induce
substantial extracellular ionic flows and large perturbations of
the extracellular potential (Johnston and Wu 1995). In contrast,
neurons with roughly spherically symmetric dendritic arbors (like
thalamocortical or STN neurons) do not produce strong current
dipoles, with smaller contributions to recorded extracellular field
potentials (Johnston and Wu 1995; Buzsáki et al. 2012). However,
synaptic inputs to subcortical structures may have asymmet-
ric distributions which can produce measurable field potentials
(Lindén et al. 2010; Buzsáki et al. 2012; Tanaka and Nakamura
2019), for example, having inhibitory synapses closer to the soma
and more distal excitatory inputs (Wilson 2010; Lempka and
McIntyre 2013; Mazzoni et al. 2015).

Although neuronal densities are comparable between cortical
gray matter, STN, and VIM (Lévesque and Parent 2005; Bergman
2021), the spatial arrangement of neurons can also have a large
effect on the recorded extracellular potential (Johnston and Wu
1995; Gold et al. 2006; Pettersen et al. 2008). In neuronal pop-
ulations organized in layers, such as the six-layered neocortex,
simultaneous contributions from multiple similarly oriented cells
will add up to give large fluctuations of the extracellular potential.
In contrast, in neurons with spatially isotropic arrangements, as
in subcortical nuclei, simultaneous contributions from different
units in diverse orientations can cancel out to some extent, pro-
ducing smaller extracellular potentials (Johnston and Wu 1995).
These structural differences can explain why the overall power of
field potentials is lower in subcortical nuclei than in neocortex.
However, they do not explain why the aperiodic exponent and
knee differ across these structures.

Several mechanisms have been suggested as the origin of the
1/fχ aperiodic component, including ionic diffusion and induction
of electric fields in passive cells (Bédard et al. 2006a; Bédard and
Destexhe 2009). The shape and length of the dendrites and the
location of the synaptic input can give rise to different frequency
dependences of the intrinsic dendritic filtering (Lindén et al. 2010).
The distinct morphology of cortical versus thalamic and basal
ganglia neurons could contribute to the observed difference in
aperiodic exponent. However, this parameter depends on dynam-
ical aspects of neural activity and cannot be fully explained
by morphology and cytoarchitecture with studies showing the
change in aperiodic exponent in the STN with Propofol anesthesia
(Huang et al. 2020), dopaminergic medication, and DBS treatment
(Wiest et al. 2022).

The origins of the aperiodic exponent have also been linked to
functional differences such as post-synaptic currents’ profile and
characteristic duration. For example, sharp rise and exponential
decays for post-synaptic currents give rise to a 1/f2 decline of
power (Bédard et al. 2006b; Miller et al. 2009; Milstein et al. 2009).
Transitions between UP and DOWN states (i.e. rapid trains of
correlated synaptic inputs followed by quiescent periods) can
also give rise to power spectra following 1/f2 decline (Milstein
et al. 2009; Baranauskas et al. 2012). Different types of stochastic
noise can affect the aperiodic exponent (Kramer and Chu 2023),
whereas Poissonian inputs that are uncorrelated across cells do
not contribute to the frequency dependency of the spectra (Bédard
et al. 2006b; Miller et al. 2009; Milstein et al. 2009). Interestingly,
there is a surprisingly low spike-timing correlation in the pallidum
(Nini et al. 1995; Raz et al. 2000; Bar-Gad et al. 2003) and structures
with strong pallidal input, including GPi, STN, and several nuclei
of the ventral thalamus will have low input correlation, which
contributes to the low amplitude (Lindén et al. 2011) and slow
decline with frequency of the power spectra in these regions.
Finally, the ratio of excitatory to inhibitory inputs can also affect

the aperiodic exponent of the spectra (Gao et al. 2017; Wiest et al.
2023). Since multiple functional characteristics can affect the
aperiodic exponent, it is not possible to directly ascribe a change
in χ to a single phenomenon (i.e. changes in E/I balance) without
additional experiments or analysis, especially when comparing
across brain structures.

There is no consensus on the physiological interpretation of
the aperiodic knee and its change across brain structures. Miller
et al. showed in ECoG recordings an aperiodic slope of χ = 2 for
frequencies above 15 Hz up to a “knee” around 75 Hz, at which
the aperiodic slope changed to χ = 4, implying the existence of a
characteristic timescale τ = (

2π fk
)−1 = 2−4 ms (Miller et al. 2009).

Using similar reasoning on the knee observed around 10 Hz, Gao
et al. proposed the existence of an “aperiodic neural timescale”
(of around 10–50 ms) that can be interpreted as the character-
istic duration of an aperiodic fluctuation of the LFP (Gao et al.
2020). This timescale is approximated from the power spectra’s
aperiodic knee, via the Wiener–Khinchin theorem that relates the
PSD function and the autocorrelation function (Gao et al. 2020).
In our data, this timescale is in the range of 10–20 ms (Table 1)
and changes across cortical locations (Fig. 3e), which is consistent
with previous findings and suggests that this parameter might
be reflecting an intrinsic feature of cortical micro-circuitry and
computation (Gao et al. 2020).

The lack of an observable aperiodic knee for thalamic and basal
ganglia recordings (i.e. the fitted value is lower than the cutoff
frequency fmin; Figs 4 and 5) could be interpreted as reflecting the
absence of any characteristic duration of aperiodic fluctuations
(strict 1/f power law). However, these regions’ neural morphology
and cytoarchitecture might prevent characteristic aperiodic fluc-
tuations from being reflected in LFPs. Alternatively, the aperiodic
neural timescale could be longer than what can be detected by our
method due to the technical limitations of the recording system,
which result in a lower bound of 159 ms (τ >

(
2π fmin

)−1 = 159 ms
for fmin = 1 Hz) for the subcortical LFPs. This interpretation
suggests that basal ganglia and ventral thalamic nuclei are slower
than cortex in terms of their aperiodic fluctuations. Although
speculative, this interpretation suggests that the basal ganglia-
thalamo-cortical loop could be a site of temporal integration,
a notion that aligns well with the known role of this circuit
in spatial integration, action selection, and motor control (Mink
1996; DeLong and Wichmann 2010; Turner and Desmurget 2010;
Grant et al. 2012; Bergman 2021).
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