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Abstract: Neoantigens are tumor-specific antigens able to induce T-cell responses, generated by
mutations in protein-coding regions of expressed genes. Previous studies demonstrated that only a
limited subset of mutations generates neoantigens in microsatellite stable tumors. We developed a
method, called VENUS (Vaccine-Encoded Neoantigens Unrestricted Selection), to prioritize mutated
peptides with high potential to be neoantigens. Our method assigns to each mutation a weighted
score that combines the mutation allelic frequency, the abundance of the transcript coding for the
mutation, and the likelihood to bind the patient’s class-I major histocompatibility complex alleles. By
ranking mutated peptides encoded by mutations detected in nine cancer patients, VENUS was able
to select in the top 60 ranked peptides, the 95% of neoantigens experimentally validated including
both CD8 and CD4 T cell specificities. VENUS was evaluated in a murine model in the context of
vaccination with an adeno vector encoding the top ranked mutations prioritized in the MC38 cell
line. Efficacy studies demonstrated anti tumoral activity of the vaccine when used in combination
with checkpoint inhibitors. The results obtained highlight the importance of a combined scoring
system taking into account multiple features of each tumor mutation to improve the accuracy of
neoantigen prediction.
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1. Introduction

The development of therapeutic vaccines for the treatment of solid tumors had only
limited success in the past, likely because vaccine-induced T-cells are inhibited by several
immunosuppressive mechanisms activated in tumor microenvironment [1]. More recently,
the success of immunotherapy based on immune checkpoint inhibitors has opened the
opportunity to revisit therapeutic vaccines based on tumor antigens as a potentially comple-
mentary mechanism of action to improve clinical efficacy when delivered in combination
with anti-PD-1 or other checkpoint inhibitors (CPIs) [2,3].

Tumor antigens can be classified into different categories: self-antigens, tissue differ-
entiation antigens, and neoantigens derived from mutated self-proteins. Whether and to
what extent spontaneous immune responses against self-antigens have an impact on tumor
growth is still being evaluated [4]. In contrast, there is compelling evidence that supports
the concept that neoantigens represent a promising target for cancer vaccination [5]. Cancer
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neoantigens are present exclusively in tumor cells and not in normal cells and have been
shown to play a significant role in recognition and killing of tumor cells by CD8 and CD4
T-cell mediated immune responses [6].

The advent of next generation sequencing (NGS) has unveiled the mutational spectra
of human tumors highlighting the fact that the total number of somatic mutations may
vary considerably with tumor histology and from patient to patient. The results obtained
indicate single nucleotide variants (SNVs) as the major source of mutations generating
neoantigens, with insertion/deletion mutations (indels) generating a frame shift peptide
(FSP) being a second source, though less frequent [7]. However, indels, different from
SNVs, encode in many cases a relatively long neo-antigenic amino acid sequence and are
expected to be particularly immunogenic because of their reduced similarity with “self”
proteins [8], even if relatively rare FSPs should be considered in addition to SNVs, for
vaccine design.

Several studies have provided clear evidence that, for mismatch repair machinery
proficient tumor types, very few somatic mutations are shared among patients [2,3]. There-
fore, the development of therapeutic cancer vaccines requires a personalized analysis of
each patient tumor. Importantly, such an analysis often results in the identification of hun-
dreds of tumor-specific mutations; however, only few of them are actually immunogenic
neoantigens and can induce T cells capable of recognizing the tumor. For some mutations,
the corresponding potential neoantigens may not be recognized by the immune system
because their neo-epitopes are not processed or presented by the tumor cells or because
immune tolerance mechanisms led to the elimination of T cells reactive against the mutated
neo-peptides later occurring when they are too similar to the wild type counterpart [9].

Most currently tested cancer vaccine platforms have limited capacity to deliver a large
number of neoantigens, making it impossible to target all or even most of the tumor specific
mutations, thus raising the need for an efficient method to select the most suitable mutated
peptides to be targeted by a vaccine [10]. Although several neoantigen prioritization
methods have been published, the prediction of effective neoantigens that are mutated
peptides displayed on the tumor cell and recognized by the immune system is still a
challenging task.

Many of the current prioritization methods apply fixed thresholds on the likelihood
of binding to class I major histocompatibility complex (MHC), although experimental
data support the notion that effective immunogenic neoantigens cover a broad range of
predicted affinities for a patient’s MHC alleles [11]. Moreover, estimating the abundance
of a neoantigen in a tumor sample needs to accounts not only for the number of tumor
cells that carry the mutation, but also the expression levels of mRNA transcripts of the
gene and, more specifically, of the gene region comprising the mutation. Therefore, it is
crucial to develop prioritization methods that select neoantigens avoiding the limitations
of current methods.

We have developed a scoring method, called VENUS (vaccine-encoded neoantigens
unrestricted selection), to prioritize mutated peptides with a high likelihood of inducing
an immune response effective against tumor cells. We have validated our prioritization
method for its ability to include among the top selected, those that have been experimentally
shown to induce a spontaneous immune response in human subjects.

The method of neoantigen selection was also validated using a tumor mouse model in
which we demonstrated the therapeutic activity of an adeno viral vector vaccine encoding
the top scored neoantigens identified by VENUS.

2. Materials and Methods
2.1. Analysis of NGS Data from Patients with Solid Tumours

Publicly available Exomeseq and RNAseq data from nine patients with different
solid tumors were downloaded from the SRA database (Bioproject IDs: PRJNA298330;
PRJNA298310; PRJNA298376). A preliminary quality control of the raw sequence data was
performed by filtering out reads of low quality with Trimmomatic-0.33 [12] (LEADING: 5;
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TRAILING: 5; SLIDINGWINDOW: 4:20; MINLEN: 50). The remaining DNA and RNA read
pairs were then aligned against the human reference genome version GRCh38/hg38 using
BWA-mem [13] and hisat2 [14], respectively. Read pairs for which only one read is mapped
and paired reads that align to more than one genomic locus with the same mapping
score were filtered out. Exomeseq alignments were then further processed by optimizing
the local alignment around small indels, marking duplicated reads and recalibrating the
final base quality score in the realigned regions (program, parameters) with Picard tools
(http://broadinstitute.github.io/picard/ (v2.20 accessed on September 2019). Somatic
variant calling of SNVs and indels was performed on the recalibrated DNA read data using
mutect2, Varscan2, and SCALPEL by explicitly comparing the tumor DNA data versus the
normal (blood) control DNA data [15–17]. Only SNVs that generate a non-synonymous
(missense) change within a codon or indels that generate a change of the reading frame
within the coding sequence of protein-coding genes, identified by at least one variant caller,
were retained. The initial list of SNVs and frame shift indels was then further reduced by
selecting only mutations that fulfil the following criteria:

- mutation allele frequency (MF) in the tumor DNA sample ≥ 10%;
- ratio of the MF in the tumor DNA sample and in the control DNA sample ≥ 5;
- number of mutated reads at chromosomal position of somatic variant in the tumor

DNA > 2;
- number of mutated reads at chromosomal position of somatic variant in the normal

DNA < 2.

Each somatic variant is then translated into a peptide containing the mutated amino
acid in order to predict binding of the putative neoantigen to the patient’s MHC class-I
alleles. For missense SNVs, the neoantigen peptides are generated as 25 mer peptides with
the mutated amino acid flanked upstream and downstream by 12 wild type (wt) amino
acids. For indels generating frame shift, the FSP starts with the first mutated amino acid
generated by the insertion/deletion and extends downstream up to the first encountered
stop codon. All mutations generating a FSP of at least 1 aa in length are retained. A
modified FSP is then generated by addition of 12 wild type amino acids upstream to the
first new aa. Only modified FSPs that have a final length of at least nine amino acids
are retained.

To avoid the inclusion of FSP sequence stretches with a low probability of being
presented by MHC Class-I, a “tailoring” procedure is then applied (Supplementary Figure
S1) taking into account the MHC Class-I binding IC50 values for all possible 9-mer epitopes
within the complete modified FSP. Each 9-mer epitope is then extended into a 25 mer by
adding eight amino acids to both ends. All FSP-derived 25 mers are then added to the list
of SNV-derived 25 mer and subjected to the ranking procedure.

Gene expression estimates were performed using the Rsubsreads package [18] and
converting the raw counts estimated on refseq annotated genes, in transcripts for mil-
lion (TPM).

HLA class-I binding prediction is based on patient-specific HLA class-I type assess-
ment performed by aligning the QC-filtered DNA reads from the healthy sample on the
portion of hg38 genome that encodes the class-I human haplotypes with BWA-mem. Read
pairs for which only one read is aligned and read pairs aligned to more than one locus with
the same mapping score are filtered out using Samtools 1.4 [19]. Finally, determination of
the patient’s most likely haplotypes is performed with Optitype [20]. MHC-I binding pre-
dictions for 25 mers are performed using the consensus method of the IEDB 2.17 software
considering only predicted epitopes comprising a non-wt amino acid [21].

2.2. Exome and RNA Sequencing of Mice Tumors

DNA and RNA library construction and NGS of tumor samples were performed
at CeGaT GBMH (Tubingen, Germany). Genomic DNA was fragmented and used for
Illumina library construction. Exonic regions were captured in solution using the Agilent
mouse Sure Select All Exon kit 50 Mb. Paired-end sequencing (2 × 100 bp) was performed

http://broadinstitute.github.io/picard/
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with the Hiseq2000 Genome Analyser (Illumina, San Diego, California) at a target coverage
of 120×. RNA was fragmented and the sequencing library was prepared using Illumina
TruSeq mRNA stranded kit. Sequencing was performed with the Hiseq2000 Genome
Analyser (Illumina) at a target depth of 60 million read pairs (2 × 100 bp). Germline
sequence data of the C57/bl6 murine strain were downloaded from SRA (experiment
id: SRX089130) and used as normal control sample. Raw NGS data were aligned on
mm10 genome. The analysis of mouse NGS was performed with the same protocol used
for the human samples.

2.3. VENUS RSUM Score

The VENUS RSUM score is the weighted sum of individual ranks obtained by sorting
the list of detected neo-peptide derived 25 mers according to three independent parameters.

RSUM = (RFREQ + REXPR + (k + RIC50))∗WF (1)

RFREQ corresponds to the minor allele frequency of the mutation present in the 25mer
neo-peptide.

REXPR is the expression level of a mutation estimated from the tumor RNAseq data
as starting from gene-centered TPM value. This TPM value is then modified taking into
account the number of mutated and wild type reads detected in the fragment containing
the mutation by the RNAseq transcriptome data and called corrected TPM (corrTPM) (2):

corrTPM = TPM(gene) ∗
(

num reads (mut) + 0.1
num reads (mut) + num reads (wt) + 0.1

)
(2)

RIC50 is the predicted likelihood of binding to MHC-I as estimated by the IEDB
software.

k is a constant value (penalty) that is added to the RIC50 value in case the predicted
epitope has an IC50 value higher than 1000 nM (3).

k =

{
number of candidate neoantigens if MHCIIC50 prediction > 1000 nM

0 if MHCIIC50 prediction ≤ C50 pre
(3)

Finally, a down-weighting factor (WF) is introduced according to the scheme provided
below to penalize cases where, in general for technical reasons, the RNAseq data do not
provide coverage at the location of the mutation, neither for the wild type aa (wt control
reads) nor for the mutated aa (tumor reads) in an otherwise expressed gene.

WF =


1 mut reads RNAseq > 0
2 mut reads RNAseq = 0; wt reads RNAseq = 0; TPM ≥ 0.50
3 mut reads RNAseq = 0; wt reads RNAseq > 0; TPM ≥ 0.50
4 mut reads RNAseq = 0; wt reads RNAseq = 0; TPM < 0.50
5 mut reads RNAseq = 0; wt reads RNAseq > 0; TPM < 0.50

(4)

2.4. GAd Vector Production

To generate the adeno viral vectors (Ad), the selected candidate neoantigens were
joined head to tail to generate artificial poly-epitope proteins. A signal peptide was added
at N-Term, corresponding to aa 1–29 of the human TPA (tissue plasminogen activator)
protein (NP_000921.1). The resulting transgenes were synthesized by GeneART (Thermo
Fisher Scientifics) and then transferred into the genome of a Gorilla Adenoviral vector
(serotype group C) deleted in E1, E3, and E4 regions and carrying Ad5 E4 ORF6. The
resulting recombinant vectors were produced by transfection of adherent M9 cells and
amplification in suspension M9 cells. Vectors were then purified from infected cells by
Vivapure Adenopack 20 RT (Sartorius).
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2.5. Mice

Six-week-old female C57BL/6 mice were purchased from Envigo. All day-to-day care
was performed by trained mouse house staff at Plaisant, Castel Romano. All experimental
procedures were approved by the Italian Ministry of Health and were carried out in
accordance with the applicable Italian laws (D.L.vo 26/14 and following amendments), the
Institutional Animal Care and ethic Committee of Allevamenti Plaisant SRL.

2.6. In Vivo Tumor Growth

2 × 105 MC38 cells were s.c. injected into the lower right flank. Before the start of
treatments (day 0), animals were randomized (tumor size average per group 70–100 mm3).
Mice were sacrificed as soon as signs of distress or a tumor volume above 2000 mm3

occurred. Tumor growth was measured using digital caliper every 3–4 days. Tumor
volume was calculated using the following formula: 0.5 × length × width2, where the
length was the longer dimension.

2.7. In Vivo Treatments

Vaccine was administered via intramuscular injections in the quadriceps in a volume
of 50 µL per side at the dose of 5 × 108 vp. For efficacy studies, α-mPD1 (BioXcell, clone
RMP114, Cat. Number: BE0146) was administered twice a week until day 16 post treatment
start. To deplete T-cell subsets, α -mCD8 (BioXcell, clone YTS169.4, Cat. Number: BE0117)
was administered.

2.8. Ex Vivo Immune Analysis

Spleens were harvested 3 weeks post immunization and ex vivo IFN-γ ELISpot was
performed as described previously [22].

3. Results
3.1. VENUS RSUM Score Provides a Ranked List of Neo-Peptides Ordered According to a
Balanced Three-Parameter Score

VENUS RSUM score utilizes DNA and RNA sequencing data from a patient’s tumor
biopsy/healthy tissue to identify mutations in the tumor. Both SNVs and indels generating
an FSP are analysed.

The method firstly assigns a score to the following three parameters: allele frequency
of the mutations, abundance of the transcripts carrying the mutation, and the likelihood
of the generated neo-peptide to bind the patient’s MHC class-I molecules. Then, a final
score is assigned to each neo-peptide by summing up the individual scores of the three
parameters and applying correction factors (Figure 1 and methods). The characteristic
feature of VENUS RSUM is that each parameter independently contributes to the final
score thus leading to a final rank for each neo-peptide balanced for the fitness of each
single parameter.

To test the performance of the VENUS RSUM method, we analysed available public
datasets with complete NGS raw data (healthy/tumor exome and tumor transcriptome)
from biopsies of nine cancer patients in which neoantigens inducing spontaneously a T cell
response were experimentally verified [11,23,24].

For each patient, we simulated the selection of neoantigens for a putative therapeutic
vaccine by first determining an overall list of neo-peptides originating from SNVs or indels
(details in methods). The patient-specific mutation lists were then ranked by VENUS
(Supplementary Table S1). In total, we identified 2691 potential neoantigens (median of
267 neo-peptides per patient) derived from 1693 somatic mutations (Supplementary Ta-
ble S1). The discrepancy between the number of potential neoantigens and the total number
of detected somatic mutations is due to the detection of few indels encoding FSPs in almost
all of the analysed samples. In fact, FSPs, once processed by the MHC presenting machin-
ery, can give rise to multiple smaller peptides, with different likelihoods to be exposed to
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the immune system. Therefore, all the possible 25 mer peptides derived from the same FSP
are ranked independently (details in methods) by the VENUS system.
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Figure 1. Schematic description of the vaccine-encoded neoantigens unrestricted selection (VENUS)
RSUM prioritization method: Schematic description of the ranking procedure applied with VENUS
RSUM score. The mutations-encoded neo-peptides are ranked independently three times using
three different parameters. For each neo-peptide, the individual ranks are summed and corrected
according to weighting factors (k; WF; details in methods) that penalize neo-peptides with a predicted
IC50 > 1000 nM (k) and mutations that fall in regions with low read coverage or within not expressed
genes according to the next generation sequencing (NGS) mRNA transcriptome data (WF).

3.2. Venus RSUM Score Captures Validated Neoantigens Eliciting an Immune Response in Humans

To verify the predictive value of VENUS, we then determined the position of neoanti-
gens eliciting an experimentally verified T cell response within the ranked list of neopep-
tides detected in each patient.

The dataset contains 20 experimentally validated neoantigens (1–4 epitopes per patient;
Table 1), for which a specific T cell was identified in the tumor infiltrating lymphocytes
(TILs). Therefore, a successful prioritization implies the capability of VENUS to efficiently
rank mutations that have been able to prime T cells [11,23,24].

All experimentally validated neoantigens from the validation datasets were ranked
among the top 25% neo-peptides for each patient (median top 5%; Table 1).

As neoantigen-specific immunotherapies are often limited, for practical and/or tech-
nical reasons, by the number of neoantigens that can be targeted, we determined the
number of experimentally validated neoantigens that fell within the top 20 or top 60 ranked
neo-peptides for each patient. The results show that 70% (14 out of 20) and 95% (19 out
of 20) of experimentally validated neoantigens would have been targeted by vaccination
platforms targeting the 20 or 60 top VENUS ranked neo-peptides, respectively (Figure 2).
Interestingly, two validated CD4 T-cell epitopes are captured within the top 20 selection
even if VENUS ranks neoantigens only on the basis of MHC-I binding predictions. In
this context, the expression level determined as corrected TPM (corrTPM) by VENUS was
shown to be very impactful as a single parameter. In fact, the corrTPM looks at the RNA
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value of the entire mutated gene as well as the value of the small region containing the
mutations highlighting the importance to consider both values to determine the expected
abundance of the mRNA carrying the mutation.

Table 1. Position of experimentally validated neoantigens in patient-specific lists of ranked according to VENUS score. For each
patient, the total number of mutation-derived neo-peptides, the position of the neoantigens with validated T-cell reactivities in the
protein, and the position of the neoantigen within the VENUS ranked list are reported, and for each neoantigen, the percentage of
neo-peptides that were ranked with a better score is reported.

Tumor Type Patient ID Total Detected
Neo-Peptides

Experimentally
Validated Neoantigens

Position in VENUS
Ranked List

Percentage of
Neo-Peptides
Ranked Better

Melanoma

3998 268

MAGEA6_E168K 1 0%

PDS5A_H1007Y 3 1%

MED13_P1691S 13 5%

3784 494

FLNA_R2049C 5 1%

SON_R1927C 36 7%

KIF16B_L1009P 110 22%

3903 435 KIF1BP_P246S 8 2%

Rectal 3942 396

GPD2_E426K 19 5%

NUP98_A359D 21 5%

KARS_D328H 58 15%

Colon

3995 138

RNF213_N1702S 13 9%

TUBGCP2_P265L 20 14%

KRAS_G12D 28 20%

4007 262 SKIV2L_R653H 1 0%

4032 136

API5_R243Q 2 1%

PHLPP1_G566E 4 3%

RNF10_E572K 16 12%

4166 180 NPLOC_G1473V 1 0%

SUN1_A127T 9 5%

Pancreas 4069 371 ZFYVE27_R6H 41 11%
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We then tested different alternative ways of selecting the top 60 neo-peptides for
each patient. All the combinations tested had a reduced capability of selecting validated
neoantigens compared with VENUS (Figure 3). Notably, the application of a filter applying
fixed thresholds for MHC-I prediction and expression funnel results in a poor performance
with only 65% (13 out of 20) of the validated neoantigens selected.
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predicted as major histocompatibility complex (MHC)-I binders (9 mer; predicted IC50 ≤ 500 nM) and encoded by an
expressed gene (transcripts for million (TPM) ≥ 0.50).

We also compared the performance of VENUS with MuPeXi, a publicly available
neoantigen prioritization tool that applies a sigmoidal logistic function to rank neoantigens
on the basis of peptide-HLA binding affinity and includes additional features such as
the sequence similarity to non-mutated self-proteins [25]. Only 5 (25%) and 12 (60%)
experimentally validated neoantigens were ranked in top 20 and 60 selection obtained with
MuPeXi, respectively (Figure 3A,B).

3.3. Generation of Viral Vectors Targeting the Best Neoantigens Ranked by VENUS in MC38
Tumour Model

In order to validate the VENUS method in vivo in the context of vaccination, we used
a murine model, namely the MC38 colon cancer model. Tumors derived from the MC38
cell line grown in vivo were resected from C57BL/6 mice and sequenced. Exomeseq and
RNAseq data were analysed to identify and rank tumor mutations (Figure 4A).

The adenoviral vector (Ad) platform has the unique feature of encoding very long
antigens (up to 2000 amino acids). The ability of Ad vectors to accommodate large gene
inserts, and thus target many neoantigens, makes them an ideal platform for cancer vaccine
immunotherapy. In the present experiments, this high capacity allowed for encoding 62
mutated peptides selected out of 3605 potential neoantigens by the VENUS RSUM score
(Supplementary Table S1).

The 62 potential neoantigens were joined head to tail to generate an artificial trans-
gene that was then cloned into a non-human Great Apes-derived Adenovirus (GAd)
vector (GAd-MC38-62). Only 3 (AATF_A500T; CPNE1_D302Y; DPAGT1_V213L) out of the
62 selected candidate neoantigens correspond to sequences previously described in this
model [26].
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Figure 4. Vaccination with VENUS-identified neoantigens encoded in a GAd vector is effective in the established MC38
tumor model in combination with anti-PD1. (A) Schematic of the approach used to identify MC38 tumor specific mutations
and generation of the vaccine. (B) In vivo immunogenicity of GAd-MC38-62. T-cell responses were measured by IFN-γ
ELISpot on splenocytes of naive mice 3 weeks post immunization with 5 × 108 vp of GAd-MC38-62. Responses against the
eight immunogenic neoantigens (nAgs) are shown. Neoantigens IDs inducing CD8+ or CD4+ T-cell responses are indicated
in red and blue, respectively. Data are representative of two independent experiments. (C) Mice were inoculated s.c. with
MC38 cells. One week later, animals were randomized according to tumor volume and treated with anti-PD1 alone or in
combination with GAd-MC38-62. Vaccine was administered at day 0 (i.m.) following randomization, whereas anti-PD1
was given twice per week until day 17 (i.p.). Tumor growth over time is shown for individual mice. Black curves indicate
responder mice showing a complete response post treatment. (D) Frequency of tumor free (black) and tumor bearing mice
(white) upon treatment with GAd-MC38-62 and anti-PD1 depleted for CD8+ T cells or undepleted.

3.4. Vaccination with VENUS-Identified Neoantigens Is Effective in Eradicating Large MC38
Tumours in Combination with Anti-PD1

A single intramuscular injection of GAd-MC38-62 vector in naïve mice elicited a strong
T cell immunity as measured by ex-vivo IFN-γ ELISpot, with eight of the predicted neoanti-
gens being immunogenic (Figure 4B). Among the most potent immunogenic neoantigens,
four induced CD8+ T cells and one CD4+ T cell (Supplementary Figure S2) were identified
by intracellular cytokine staining (ICS), confirming that CD4 neoantigens are also captured
by the VENUS method.

Previously, we have demonstrated that immunization with a GAd vector encoding
neoantigens is effective in eradicating large tumors in combination with anti-PD1 [22].



Vaccines 2021, 9, 880 10 of 14

Efficacy of the GAd-MC38-62 cancer vaccine was thus evaluated in the MC38 mouse
model in an aggressive tumor setting. MC38 tumoral cells were inoculated subcutaneously
in mice and 8 days post inoculum, once tumors reached a mass volume of 70–100 mm3, the
GAd-MC38-62 vaccine was administered. In this setting, large tumors are already present
at the time of vaccine administration and the vaccine treatment alone is not effective,
but requires combination with anti-PD1 treatment for tumor eradication as previously
demonstrated [22]. While anti-PD1 alone was effective only in 10% of treated mice, the
combined treatment of GAd and anti-PD1 induced tumor eradication in 45% of treated
animals (Figure 4C). Vaccine efficacy was shown to be due to the induction of CD8 T cells,
given the fact that selective depletion of CD8+ T cells completely abrogated the antitumor
effect (Figure 4D). Therefore, the VENUS approach selects neoantigens effective for a
therapeutic vaccination approach.

4. Discussion

The identification of the best neoantigens to be targeted by a personalized thera-
peutic cancer vaccine is still a challenging task limited by (a) the accuracy of existing in
silico methods and/or (b) the time needed to potentially test all experimentally candidate
neoantigens [27].

Here, we demonstrate that the VENUS algorithm can successfully select validated
neoantigens inducing effective T-cell mediated immune responses. By testing different
prioritization strategies, we have demonstrated that the prediction of neoantigens inducing
an immune response in cancer patients is poorly related to single properties like high
expression or the high predicted likelihood of binding to MHC class I, but instead requires
the combination of multiple parameters to reach an improved predictive power.

One advantage of VENUS is that the score assigned to each neopeptide includes three
independent distinct features combining the abundance and expression across the tumor
cells of the mutated peptide with the likelihood of being presented by MHC-I. The way
in which these features are combined and weighted generates a balanced score that well
represents the population of neoantigens presented to T cells, while reducing the chance
to include potentially irrelevant mutated peptides. By applying a selection strategy on a
human validation datasets, we demonstrated the ability of the VENUS method to capture
95% of validated neoantigens within the top 60 ranked. Moreover, we demonstrated that
VENUS out-performed other publicly available methods including one applying expression
and MHC-I likelihood of binding in a sequential way.

We acknowledge that one limitation of VENUS is the absence class II HLA bind-
ing predictions. We decided to focus only on class-I, because CD8+ T cell responses to
neoantigens have been linked to clinical efficacy of immune checkpoint inhibition [28,29].
Furthermore, the accuracy of algorithms to predict class II bound CD4 peptides is still low
compared with the accuracy obtainable by class I methods [30,31]. However, despite the
formal absence of class II MHC binding predictions, the two validated CD4 neoantigens
from two human cancer patients, one for each patient, were correctly ranked at the top of
neoantigens selected by VENUS. Focusing only on class I predictions thus does not exclude
the possibility to include neoantigens that are recognized by HLA class II for which the
selection is based only on the other two weighted parameters.

To demonstrate that VENUS accurately identifies neoantigens to be used in an effec-
tive therapeutic vaccine, we validated VENUS-selected epitopes in the MC38 mouse model.
Previous data documented the ability of the Adenovector platform to efficiently deliver
antigenic proteins up to 2000 aa long as well as being suitable to encode for many neoanti-
gens joined one after the other in an artificial gene [32,33]. Based on the analysis of human
data, we decided to target at least 60 mutated peptides in the vaccine to increase the chance
of including effective neoantigens. Several mechanisms allow the tumor to evade T-cell
attack and, in this complex scenario, the ability of GAd vectors to allow targeting many
neoantigens offers the advantage to potentially overcome the issue of tumor heterogene-
ity and escape through immunoediting. To validate the strategy, the top 62 neoantigens
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scored by Venus in the MC38 tumor cell line were delivered via GAd vaccine vector. To
our knowledge, 62 represents the highest number of tumor neoantigens targeted by a
personalized cancer vaccine. Vaccination induced in mice a potent T cell response against
the number of encoded neoantigens comprising antigen-specific IFN-γ secreting CD8+
and CD4+ T cells. Importantly, in line with our previous findings, therapeutic vaccination
with a GAd vector encoding neoantigens showed synergy with PD1 blockade, resulting
in eradication of large established tumors in about 50% of mice treated with the combo
versus 15% in those treated with anti-PD1 monotherapy. Interestingly, all but three of the
peptides selected by VENUS have not been reported in previous studies based on mass
spectrometry analysis on the same murine tumor model. This finding highlights the limit
of MS spectra-based methods capturing only a subset of the effective neoantigens [34].

For the development of personalized genetic vaccines, it is very important to produce
viral vectors targeting the “private” neoantigens owned by a patient in the shortest time-
frame since biopsy collection. In this context, an added value of VENUS RSUM score is that
the lack of fixed thresholds for selecting the neo-peptides to be targeted by genetic vaccines
eases the design steps and contributes to speeding up the entire manufacturing process.

The VENUS algorithm is now in use to select up to 60 patients specific neoantigens in
a Phase 1b personalized vaccine trial (NOUS-PEV-01) in NSCLC and melanoma metastatic
patients. The vaccination regimen is based on heterologous prime boost with GAd and
MVA viral vectors used in combination with anti-PD1 check point inhibitor.

5. Conclusions

In conclusion, we developed an innovative score methodology, called VENUS RSUM,
to prioritize tumor specific neo-peptides with high probability to induce a T-cell mediated
immune response against cancer cells. The efficacy of our tool was demonstrated in silico by
reanalyzing NGS data of patients with different solid tumor types for whom experimental
data were available. Based on the analysis of this human dataset, we developed a viral vec-
tor platform able to target at least 60 mutated peptides to maximize the chance of including
effective neoantigens and potentially overcoming the issue of tumor heterogeneity and
escape through immunoediting. To further validate the strategy, the top 62 neoantigens
scored by VENUS in the MC38 tumor cell line were delivered via GAd vaccine vector.
Sixty-two represents the highest number of tumor neoantigens targeted by a personalized
cancer vaccine, and the vaccination induced in mice a potent T cell response in mice against
a number of encoded neoantigens comprising antigen-specific IFN-γ secreting CD8+ and
CD4+ T cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vaccines9080880/s1. Figure S1: Tailoring procedure applied to FSPs: Figure S2: Vaccine-
encoded immunogenic neoantigens induce CD8+ and CD4+ T cell responses. TableS1 list of somatic
mutations encoding neo-peptides ranked by VENUS.
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Abbreviations

CPIs Check point inhibitors
NGS Next generation sequencing
SNVs Single nucleotide variants
FSP Frame shift peptide
MHC Major histocompatibility complex
VENUS Vaccine-encoded neoantigens unrestricted selection
MF Mutation allele frequency
TPM Transcripts for million
corrTPM corrected transcripts for million
TPA Tissue plasminogen activator
TetO Tet operator
Ad Adenoviral vector
GAd Great apes-derived adenovirus
TIL Tumor infiltrating lymphocytes
s.c Subcutaneous
i.v Intravenous
i.m Intramuscle
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