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Abstract

Learning to anticipate future states of the world based on statistical regularities in the environment 

is a key component of perception and is vital for the survival of many organisms. Such statistical 

learning and prediction are crucial for acquiring language and music appreciation. Importantly, 

learned expectations can be implicitly derived from exposure to sensory input, without requiring 

explicit information regarding contingencies in the environment. Whereas many previous studies 

of statistical learning have demonstrated larger neuronal responses to unexpected versus expected 

stimuli, the neuronal bases of the expectations themselves remain poorly understood. Here we 

examined behavioral and neuronal signatures of learned expectancy via human scalp-recorded 

event-related brain potentials (ERPs). Participants were instructed to listen to a series of sounds 

and press a response button as quickly as possible upon hearing a target noise burst, which was 

either reliably or unreliably preceded by one of three pure tones in low-, mid-, and high-frequency 

ranges. Participants were not informed about the statistical contingencies between the preceding 

tone ‘cues’ and the target. Over the course of a stimulus block, participants responded more 

rapidly to reliably cued targets. This behavioral index of learned expectancy was paralleled 

by a negative ERP deflection, designated as a neuronal contingency response (CR), which 

occurred immediately prior to the onset of the target. The amplitude and latency of the CR 

were systematically modulated by the strength of the predictive relationship between the cue and 

the target. Re-averaging ERPs with respect to the latency of behavioral responses revealed no 

consistent relationship between the CR and the motor response, suggesting that the CR represents 

a neuronal signature of learned expectancy or anticipatory attention. Our results demonstrate 

that statistical regularities in an auditory input stream can be implicitly learned and exploited 
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to influence behavior. Furthermore, we uncover a potential ‘prediction signal’ that reflects this 

fundamental learning process.
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1. Introduction

In everyday life we routinely learn that there are contingencies between certain events 

and form expectations about future events based on this learning. For example, when 

listening to speech or music, we readily learn the phonotactics of our language and the 

structure of musical phrases. This learning can generate expectations about what phonemes 

or musical phrases are expected to come next based on what we have heard (Rohrmeier 

and Koelsch, 2012; Koelsch et al., 2019; Saffran et al., 1996, 1999; Warker and Dell, 2006; 

Bonte et al., 2005; Pelucchi et al., 2009). Importantly, we often form these expectations 

implicitly from exposure to sensory input, without being explicitly informed about the 

statistical contingencies in the environment. For instance, infants learn word boundaries 

from the continuous stream of speech they encounter putatively by passive computation of 

the transitional probabilities between phonemes (Saffran et al., 1999, 1996). Similar implicit 

learning capabilities are observed in human adults and non-human animals in non-linguistic 

contexts (Moldwin et al., 2017; Lu and Vicario, 2014; Heimbauer et al., 2018; Schiavo 

and Froemke, 2019; Saffran et al., 1999). This type of statistical learning, herein called 

‘learned expectancy’, is crucial for the survival of many organisms, enabling them to extract 

regularities in the environment and thereby anticipate future events. These processes are 

important for adaptive decision-making (Summerfield and de Lange, 2014).

Despite its critical role in everyday cognition and behavior, the neuronal bases of learned 

expectancy are still not well understood. Many studies of statistical learning investigate 

differences in the neuronal responses to expected versus unexpected stimuli with a diversity 

of results (Auksztulewicz et al., 2017, 2018; Barascud et al., 2016; Southwell et al., 2017; 

Hsu et al., 2015; Heilbron and Chait, 2018; Symonds et al., 2017; Summerfield and de 

Lange, 2014; Richter and de Lange, 2019; den Ouden et al., 2012; Garrido et al., 2013; 

Todorovic et al., 2011). The most general finding of these studies is that unexpected 

stimuli elicit larger neuronal responses in sensory cortical areas than expected stimuli, 

consistent with predictive coding models of cortical processing that postulate top-down 

brain mechanisms which suppress responses to expected stimuli. The larger response 

to unexpected stimuli is often interpreted as a prediction ‘error’ signal that has been 

proposed to reflect the brain’s prioritization of unanticipated sensory inputs (Press et al., 

2020a; Friston, 2005). These previous studies have largely focused on the brain’s increased 

response to unexpected stimuli as an indicator of surprise, or novelty. However, much less is 

known about the neuronal underpinnings of the expectations themselves, which emerge from 

and guide statistical learning (Heilbron and Chait, 2018).
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One potential neuronal signature of expectancy is the contingent negative variation (CNV). 

The CNV is a long-duration event-related brain potential (ERP) that is initiated by a 

stimulus (S1) when a behavioral response to a second stimulus (S2) is dependent upon 

maintaining information about S1. A negative-going ERP deflection is observed between S1 

and S2 which indicates that a brain process was joining the two stimuli. Studies of the CNV 

suggest that it is a composite neurophysiological phenomenon which represents, in addition 

to a motor preparatory response, a neuronal correlate of expectancy for the S2 stimulus that 

follows the presentation of the S1 stimulus (Mento, 2013; Mento et al., 2015; van Boxtel and 

Brunia, 1994a, Bickel et al., 2012; Chennu et al., 2013; Tecce, 1972; Donchin et al., 1972; 

Naatanen and Gaillard, 1974; Hamano et al., 1997; Walter et al., 1964).

Another potential neuronal signature of expectancy has been assessed with omission 

paradigms in which an expected stimulus is unexpectedly omitted. The unexpected omission 

elicits a neuronal response that has been localized to sensory cortical areas involved in 

processing the features of the expected stimulus (Schröger et al., 2015; Kok et al., 2014; 

Arnal and Giraud, 2012; SanMiguel et al., 2013a; SanMiguel et al., 2013b; Bendixen et 

al., 2012; Hughes et al., 2001; Wacongne et al., 2011). These omission studies suggest that 

the brain activates a feature-specific ‘template’ of the expected stimulus like that evoked by 

the corresponding actual stimulus. Hence, the omission response has been interpreted by a 

number of investigators as a ‘prediction signal’ reflecting prior expectations (Heilbron and 

Chait, 2018; Kok et al., 2014; Schröger et al., 2015; de Lange et al., 2018; SanMiguel et al., 

2013b; Chennu et al., 2016; Demarchi et al., 2019).

A third potential neuronal signature of expectancy has been observed in brain oscillations 

recorded from the frontal cortex of patients with epilepsy (Durschmid et al., 2019). 

Durschmid et al., 2019 found a reduction in high-frequency gamma activity originating 

from frontal cortex immediately prior to the onset of expected sounds. It remains unclear, 

however, whether and how this reduction in high-frequency activity relates to other putative 

expectancy signals in lower frequency bands (e.g., theta).

Prior research thus suggests a variety of findings with no real consensus. Moreover, several 

outstanding issues remain. First, the relationships between behavior and the neuronal 

correlates of learned expectancy have been studied in only a small number of studies 

(e.g., Mento, 2017; Coull, 2009; Hillyard, 1969). Second, many studies using the omission 

paradigm have compared neuronal responses to expected versus unexpected stimulus 

omissions (Wacongne et al., 2011; Hughes et al., 2001). However, it is ambiguous whether 

the omission response revealed through this comparison represents a ‘pure’ prediction signal 

or alternatively a prediction ‘error’ signal reflecting the unexpectedness of the omission 

(Schröger et al., 2015). Third, most previous CNV studies kept features of S1 fixed and did 

not investigate whether the participants’ learned expectations were specific to the sensory 

attributes of the stimuli (e.g., their shape or pitch). Finally, many previous CNV studies 

either provided explicit information to participants regarding the behavioral relevance of the 

predictive association between S1 and S2 (e.g., Perchet and Garcia-Larrea, 2005; Gomez et 

al., 2019; Arjona et al., 2016; Mento, 2017; Posner, 1980), or it was unclear what specific 

information was given to participants when instructing them how to perform the behavioral 

task (cf. Mento et al., 2013). Thus, it remains unresolved whether a neuronal correlate 
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of expectancy can arise from implicit learning of stimulus contingencies, similar to the 

statistical learning that is prevalent in everyday life.

The current study was designed to address some of these issues by characterizing behavioral 

and neuronal signatures of learned expectancy. We used an implicit learning paradigm 

to study the buildup of expectations that occurs by repetition of an arbitrary association 

between two sounds. Unlike many previous studies which measured expectancy by the 

strength of the neuronal response to violations of an expected stimulus, our paradigm 

does not contain violations of established expectations. Instead, our experimental design 

is intended to evaluate the neuronal signatures of the expectation itself. In addition, 

we sought to determine whether the behavioral and neuronal signatures of this learned 

expectancy would track specific features of the sounds (e.g., their frequency) and reflect 

the probabilistic relationships between them. To this end, we recorded EEG from the scalp 

while participants listened to a series of sounds consisting of three pure tones in low-, 

mid-, and high-frequency ranges which either reliably or unreliably preceded a target noise 

burst. Participants were instructed to press a response button as quickly as possible upon 

hearing the target. They were not informed about the statistical contingencies between the 

tone ‘cues’ and the target or the behavioral relevance of the tones. We hypothesized that 

participants would implicitly learn the association between the cues and the target, and 

that a distinct neuronal response would emerge reflecting the strength of this relationship. 

Furthermore, we predicted that this implicit learning would facilitate participants’ behavioral 

performance on the target detection task.

2. Materials and methods

2.1. Participants

18 healthy adults (10 females; 8 males; all right-handed, ranging in age from 22– 44 years; 

M = 28, SD=6) participated in the study. All participants passed a hearing screening at 20 

dB HL or better at 500, 1000, 2000, and 4000 Hz bilaterally and had no reported history 

of neurological disorders. All procedures were approved by the Institutional Review Board 

(IRB) of the Albert Einstein College of Medicine. The study was carried out in accordance 

with the Declaration of Helsinki. Participants gave written consent prior to the study and 

were paid for their participation.

2.2. Stimuli and procedures

Stimuli: Fig. 1 provides a schematic diagram of the stimuli. Four stimuli, three pure tones, 

serving as cues, and one noise burst, serving as the target, were generated and presented 

using Neuroscan hardware and software (Compumedics, Inc.). All stimuli were 200 ms 

in duration with 7.5 rise/fall time (Hanning window). Sounds were presented bilaterally 

via insert earphones at a comfortable listening level of approximately 70 dB SPL. Sound 

level was calibrated using a Brüel & Kjaer (Naerum, Denmark) sound level meter with an 

artificial ear. The three pure tones differed only in frequency: 440 Hz (low, A4), 1244.5 

Hz (mid, Eb
5), and 2793 Hz (high, F7) and were presented with equal probability (33%) in 

random order. The stimulus onset asynchrony (SOA) was 1500 ms. The noise burst target 

was presented 100 ms after the offset of one of the three tones.
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Procedures: Participants sat in a sound attenuated booth (IAC, Bronx, NY). There were 

three conditions that varied in the predictability of the target noise burst occurring after a 

pure tone. In Condition 1 the target occurred with 100% probability following the low tone 

(Predictable Target). In Condition 2 the target occurred with 100% probability following the 

high tone (Predictable Target). In Condition 3 the target occurred randomly after either the 

low or the high tone, with equal 50% probability (Unpredictable Target). The target never 

followed the middle tone (Fig. 1). Participants were instructed to press a designated response 

button as rapidly as possible upon detecting the target. Conditions were presented in a Latin 

Square design. Stimuli were presented in 8 stimulus blocks in each of the 3 conditions 

(24 blocks in total) which were randomly distributed across participants. Each block was 

approximately 2.5 min in duration (20 min total). Behavioral and EEG data were averaged 

across the 8 blocks, separately by condition. Tones of each frequency (low, middle, and 

high) were presented 280 times in each experimental condition. Breaks were provided at 

the mid-point and participants were unhooked from the amplifiers so that they could walk 

around and have a snack. Shorter breaks were given as needed. Total session time, including 

instructions, cap placement, recording time, and breaks was approximately 2 h.

Importantly, subjects were only instructed to respond to the target and were not given any 

prior information about the cue-target contingencies. Indeed, subjects were not informed 

that the cues were relevant in any way to the target detection task. Rather, the cue-target 

contingencies could only be learned implicitly through listening to the sound sequences, thus 

modeling the implicit learning (i.e., occurring in the absence of explicit prior information) 

that is common in daily life.

2.3. EEG recording

EEG was recorded with a 32-channel electrode cap (Electro-Cap International Inc., Eaton, 

OH), using the International modified 10–20 system, including electrodes placed on the 

left and right mastoids. The tip of the nose was used for the reference electrode and 

P09 for the ground electrode. A bipolar configuration was used to monitor the horizontal 

electrooculogram (EOG), between electrodes F7 and F8, and between FP1 and an external 

electrode placed below the left eye to monitor the vertical EOG. Impedances were 

maintained below 5 kOhms. EEG was collected with a bandpass filter of 0.05–200 Hz and a 

sampling rate of 1000 Hz. Offline, epochs −100 to 1000 ms from tone onset were created for 

each tone response. Epochs were bandpass filtered at 0.1–30 Hz and baseline-corrected prior 

to subsequent analyses. Artifacts due to movement, eye-blinks, or other noise sources were 

eliminated by removing epochs containing voltage deflections exceeding +/− 75 microvolts. 

Event-related potentials (ERPs) under each experimental condition and for each subject 

were then generated by averaging clean EEG epochs across trials.

2.4. Data and statistical analyses

Behavior: Reaction times (RTs) were recorded by computer for offline analysis and 

measured relative to the onset of the cue tones. Hits were counted as responses that occurred 

0–1200 ms from the onset of the target stimulus. Hit rate was calculated as the total number 

of correct responses to the target divided by the number of targets, in each condition 

separately. False alarm rate was calculated as the number of button-presses to any non-target 
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sound divided by the number of non-target sounds. Misses were counted as the absence of a 

response to a target.

Behavioral reaction times generally do not exhibit a normal distribution of values. This 

deviation from normality was ameliorated by inverse-transforming reaction times prior to 

conducting statistical analyses (Ratcliff, 1993). Studentized t-tests for dependent samples 

were conducted to assess effects of predictability on hit rate and reaction time.

ERPs: Peak amplitude of each obligatory and endogenous ERP component was visually 

identified in the grand-averaged mean ERPs in each condition. These components included 

the P1, N1, and P2 components elicited by the cue tone, a negative-going component elicited 

prior to the onset of the target (described below), and the N1 and P3b elicited by the target. 

The peak latency identified in the grand-mean waveforms was used to determine the window 

for measuring the mean amplitude of each component at the electrode where the components 

had the largest amplitude: the Fz electrode for the P1 and N1, the Cz electrode for the P2 

and the negative-going component, and the Pz electrode for the P3b.

Mean amplitudes were calculated for each participant within a time window that was 

determined from the grand-mean peak of each ERP component, separately for each stimulus 

in each condition. For the P1 and N1, we used a 30 ms window centered on the grand-mean 

peak, for P2 a 40 ms window, and for the negative-going component and the P3b, a 60 ms 

window. Latencies of each component were defined by the time corresponding to the largest 

value occurring within the aforementioned windows. We report latency statistics only for 

those components that were significantly elicited, as determined by one-sample t-tests on the 

mean amplitude.

ERP amplitudes and latencies were statistically compared using repeated-measures t-tests 

or ANOVA (rmANOVA). Where data violated the assumption of sphericity, Greenhouse-

Geisser corrections were applied and epsilon values reported. Effect sizes were computed as 

Cohen's d and Eta-squared (η2), with Cohen’s d = mean difference between groups/standard 

deviation of difference between groups, or t/√N, and η2 = SSeffect/SStotal (Lakens, 2013). For 

post-hoc analyses, Tukey HSD for repeated measures was conducted on pairwise contrasts 

only when main effects or interactions of the rmANOVA were significant. Contrasts were 

reported as significantly different at p < .05. Statistical analyses were performed using 

Statistica 12 software (Statsoft, Inc., Tulsa, OK) and ProStat (Poly Software, Inc., NY). 

Our initial analysis determined no effect of tone frequency (low cue vs. high cue) on target 

responses. Therefore, we collapsed the data across the low and high cue tone responses. 

Except for analyses of responses to the middle ‘control’ tone, all analyses and results 

presented in this report are based upon the combined low and high cue tone responses, with 

target predictability serving as the main independent variable.

3. Results

3.1. Behavior

Reaction time was modulated by the predictability of the targets. RT was significantly 

shorter for Predictable targets (M = 505 ms, SD=78) than for Unpredictable targets 
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(M = 590 ms, SD=51), t(17) = 10.5, p <0.0001). The significantly shorter RT in the 

Predictable condition indicates that subjects implicitly learned the cue-target contingencies 

and exploited this implicit knowledge to improve their behavioral performance. Hit rate 

was significantly higher for Unpredictable targets than for Predictable targets, although the 

difference was small (M = 0.99, SD = 0.01 and M = 0.98, SD=0.02, respectively, t(17)=3.2, 

p = .005; difference in hit rate: M = 0.015, SD=0.02). The distribution of differences in hit 

rate between Predictable and Unpredictable conditions did not show a significant deviation 

from normality as measured by a Kolmogorov—Smirnov test (D = 0.2238; p > .20).

Fig. 2A displays the mean RTs of all participants for each of the first 25 trials of the 

Predictable (red line) and Unpredictable (blue line) target blocks. The difference in RT 

between Predictable and Unpredictable conditions significantly increased from the 1st to the 

2nd half of these trials (trials 1–13 and 14–25, respectively; mean difference between 1st and 

2nd half trials=26 ms, SD=19.5), thus indicating that learning of the cue-target contingencies 

improved over the course of a stimulus block (paired, two-tailed t-test t(17) = 5.6; p < 

.00005; Cohen’s d = 1.3; Fig. 2B).

3.2. ERP results

Fig. 3 displays the grand-mean ERPs elicited in the 100% (Predictable, red trace), 50% 

(Unpredictable, blue trace), and 0% (Predictable, black trace) target probability conditions at 

Fz, Cz, and Pz electrodes. Figs. 4 and 5 show corresponding ERP component amplitudes and 

latencies, respectively, measured in individual subjects.

There were no significant differences in the amplitudes of the P1 and N1 components 

across stimulus conditions (P1: F2,34 = 1.3, p = .33; N1: F2,34 <1, p = .93). Effects of 

target predictability emerged in the amplitude of the positive-going P2 component, which 

varied systematically with the conditional probability of the target (Fig. 3, Cz electrode). 

Specifically, P2 was largest, intermediate, and smallest in amplitude when the conditional 

probability of the target was 0, 50, and 100%, respectively (P2: F2,34= 10.9, ε = 0.71, p < 

.001, ηp
2 = 0.39).

Furthermore, when the conditional probability of the target was 100%, when the target 

always followed a specific cue tone, a distinct negative-going deflection was observed 

during the delay period between cue offset and target onset, which peaked at approximately 

300 ms (Fig. 3, red trace). This negative component was absent when the conditional 

probability of the target was 0%, that is, when the target never followed that specific cue 

tone (Fig. 3, black trace). Thus, henceforth, we provisionally refer to this component as a 

‘contingency response’ (CR). There was a main effect of target predictability on the CR 

component amplitude (F2,34 = 13.7, ε = 0.90, p < .0001, ηp
2 =0.45). Post-hoc analysis 

revealed no significant difference in the amplitude of the CR between Predictable (100%) 

and Unpredictable (50%) conditions (p = .92), and that the CR amplitude was significantly 

larger when the conditional probability of the target was 100% and 50% than when the 

conditional probability of the target was 0% (p < .001).

With the exception of the N1 component, the peak latency of all components elicited by the 

cue tone decreased with increasing conditional probability of the target, consistent with the 
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degree to which subjects could expect the target to appear based on the frequency of the cue 

tone (P1: F2,34 = 4.5, p = .02, η2 = 0.07; N1: F2,34 = 3.2, p = .05; P2: F2,34 = 16.0, p < .0001, 

η2 = 0.23;. The peak latency of the CR in the Predictable (100%) condition was significantly 

shorter than in the Unpredictable (50%) condition (t(17) = 3.68, p = .002).

The amplitude of the N1 evoked by the target was significantly larger when the conditional 

probability of the target was 50% compared to when the conditional probability was 100% 

(Fig. 3, Target N1 blue vs red traces; t(17) = 3.0, p = .008, Cohen’s d = 0.71). The peak 

latency of the target N1 was significantly shorter in the Predictable than in the Unpredictable 

condition (t(17) = 7.0, p < .0001, Cohen’s d = 1.65). The amplitude of the P3b evoked by 

the target was similar between the Predictable and Unpredictable conditions (t(17) = 1.7, p 
= .11). However, the peak latency of the P3b was significantly shorter when the target was 

predictable than when it was unpredictable (t(17) = 18.55, p < .0001, Cohen’s d = 4.36).

Correlations between behavioral RTs and ERP amplitudes and latencies are summarized in 

Table 1. There were no significant relationships between RT and the P1 and N1 components. 

RT was significantly correlated with the amplitudes of the P2 and the CR, but not with those 

of either of the target-related components (N1 and P3b). RT was significantly correlated 

with the latencies of the CR and both target-related components.

To further test the feature-specificity of putative neuronal signatures of learned expectancy, 

we compared the amplitude of the CR elicited by the mid-frequency ‘control’ tone, which 

was never followed by the target in any of the conditions, with that of the CR elicited 

by the low-and high-frequency tones. We reasoned that if the CR is feature-specific, for 

example, tracking only those features that serve as cues to the target, then the CR elicited 

by the low and high tones should be significantly larger than the CR elicited by the middle 

tone. Furthermore, the effect size corresponding to this difference should be larger in the 

Predictable (0 and 100%) than in the Unpredictable (50%) condition. Consistent with the 

feature-specificity hypothesis, the amplitude of the CR elicited by the low and high tones 

was significantly larger (more negative) than the amplitude of the ERP elicited by the middle 

tone within the same time period in both the Predictable and Unpredictable conditions (Fig. 

6A; CR amplitude Predictable: t(17) = 4.4, p < .0005, Cohen’s d = 1.04; CR amplitude 

Unpredictable: t(17) = 3.4, p = 0.003, Cohen’s d = 0.8). Moreover, the effect size was larger 

in the Predictable than in the Unpredictable condition.

Because the mid-frequency tone was not behaviorally relevant, we expected that ERPs 

elicited by this tone would not vary with the predictability of the target. However, the 

response to the control tone was modulated by the predictability of the target (Fig. 6B). The 

amplitude of the P1 was significantly reduced and the waveform in the latency range of the 

CR was significantly more positive when the target was predictable (100%) compared with 

when the target was unpredictable (50%) (P1: t(17) = 2.4, p = .03, Cohen’s d = 0.57; CR: 

t(17) = 3.5, p = .003, Cohen’s d = 0.83). Additionally, the latency of the P2 component 

was significantly shorter when the target was unpredictable compared with when it was 

predictable (t(17) = 2.5, p = .02, Cohen’s d = 0.59).
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3.3. ERP scalp topography

Grand-mean ERP voltage distributions under the three conditional probability conditions 

for the N1, CR, and the P3b components and corresponding derived scalp current density 

(SCD) topographies are shown in Fig. 7. SCD is a reference-independent measure of the 

distribution of current sources and sinks contributing to the distribution of scalp ERPs, 

which mainly reflects the activity of cortical generators (Pernier et al., 1988; Tenke and 

Kayser, 2012). The N1 displayed a fronto-central distribution of SCD with bilateral negative 

peaks consistent with neuronal dipole sources in the right and left auditory cortex along 

the superior temporal plane (Giard et al., 1994; Naatanen and Picton, 1987). In contrast, 

the CR component displayed a single fronto-central negative peak. The P3b component 

showed a single focus with a broad distribution centered around the Pz electrode. Given 

its posterior-parietal scalp distribution (Figs. 3 and 7), we identified this component as a 

P3b, as described in previous studies (Wronka et al., 2012; Polich, 2007; Volpe et al., 

2007). Consistent with amplitude data shown in Fig. 4, the peak value of SCD for the N1 

component elicited by the low and high tones did not vary with the conditional probability of 

the target. Similarly, the positive peak of SCD corresponding to the P3b component did not 

differ as a function of conditional probability. In contrast, the peak value of SCD for the CR 

increased with increasing conditional probability.

3.4. Assessment of motor contributions to the CR and P2

The amplitudes of the P2 and CR components were moderately correlated with individual 

subjects’ reaction times. This raises the possibility that modulations of these components 

partly reflect processes involved in preparing to execute the behavioral task (van Boxtel and 

Brunia, 1994b; van Boxtel and Brunia, 1994a; Brunia and van Boxtel, 2001). Although we 

cannot completely rule out a motor contribution to these components, two lines of evidence 

suggest that these responses cannot be explained solely by motor preparatory activity. First, 

motor preparatory activity would be expected to be similar in the Predictable (100%) and 

Unpredictable (50%) conditions. Specifically, in the Unpredictable condition, subjects would 

have learned that the target could follow either the high tone cue or the low tone cue and 

hence prepared to respond upon hearing one or the other (without being certain whether or 

not the target would follow them). Similarly, in the Predictable condition, subjects would 

have learned that the target always follows the low tone cue in one block and the high 

tone cue in the other block and prepared to respond accordingly. Despite this putative 

similarity in subjects' motor preparation, the amplitude and latency of the CR and P2 

components differed depending on the predictability of the target. Second, we more directly 

tested whether the increased CR amplitude and the reduced P2 amplitude reflected subjects’ 

preparation to make a motor response, by re-averaging the EEG epochs with respect to the 

latency of the button press on each trial for each subject in the 50% and 100% conditions 

rather than stimulus onset. If the increased CR amplitude and reduced P2 amplitude were 

exclusively related to motor response preparation and execution, then a prominent negative 

deflection (accounting for the CR and reduction in P2) consistently locked to the timing of 

the subjects’ button press should be evident in the re-averaged ERP within the time frame 

preceding the button press. On the other hand, if the CR and reduced P2 amplitude reflect 

subjects’ expectation for the target’s appearance, there should be no such negativity in the 

re-averaged ERP-or at least it should be markedly reduced compared with the difference 
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in amplitude between the CR in the 0% conditional probability condition (wherein there 

were no targets and button press responses) and that in the other conditions (50% and 

100% conditional probability) when ERPs are averaged with respect to the onset of the 

cue and target (as shown in Fig. 3). Importantly, no negative deflections were evident in 

the grand-mean re-averaged ERP waveforms that could account for the CR and reduced 

P2 amplitudes (Fig. 8). However, the re-averaged ERPs did display a prominent positive 

component following the button press, which likely corresponds with the P3b, consistent 

with the significant correlation observed between P3b latency and subjects’ reaction times.

Based on these lines of evidence, we conclude that modulations in the amplitude of the 

CR and P2 components elicited in our implicit learning paradigm predominantly reflected 

learned expectancy for, or anticipatory attention to, the target rather than motor preparatory 

activity.

4. Discussion

We investigated behavioral and neuronal correlates of learned expectancy. Results 

demonstrated implicit learning of the arbitrary association between a target sound and a cue 

tone that reliably predicted the target’s appearance. Implicit learning was revealed by shorter 

reaction times to the target when it was reliably predicted compared with when it was 

unreliably predicted. In addition, we observed a negative-going ERP component (which we 

denote here as a contingency response [CR]), and a positive-going component (P2) whose 

amplitudes and latencies were systematically modulated by the degree to which the cue tone 

predicted the target. That is, CR amplitude was largest and P2 amplitude was smallest when 

the target always followed a given cue (100% conditional probability) compared to when the 

target never followed the cue (0% conditional probability). Additionally, the peak latencies 

of both components were shortest when the target was fully predicted by the cue. It is 

likely that the roughly inverse relationship observed between modulations of the P2 and CR 

amplitude and latency by target predictability is due to partial overlap of these temporally 

contiguous components. Moreover, the amplitude of the response to the mid-frequency tone, 

which never served as a cue to the target, was significantly reduced (more positive) in the 

CR latency range. Thus, the P2 and CR tracked probabilistic cue-target relationships that 

participants implicitly derived from the stimulus statistics. These findings suggest that the P2 

and CR constitute neuronal signatures of learned expectancy insofar as their amplitude and 

latency reflect the degree to which participants implicitly learn the cue-target contingencies 

occurring within a stimulus block that allow them to predict when a target will occur. The 

P2 and CR components may represent ERP correlates of a ‘prediction signal’ in line with 

the predictive coding framework (Friston, 2005; Durschmid et al., 2019). Alternatively, the 

modulation of the amplitude and latency of these components may represent the confidence 
with which subjects could expect the target to appear (Sherman et al., 2016).

Learning of cue-target contingencies was observed in real time, as demonstrated by 

the increase in the difference in reaction times between Predictable and Unpredictable 

conditions over trials. Expectancies were learned implicitly in that participants were 

instructed only to respond to the target stimulus and were not given explicit information 

about the cue-target contingencies. Although it is possible that participants ultimately 
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became aware of the specific cue-target contingencies over the course of a given stimulus 

block, the learning of the association was derived implicitly because it occurred in the 

absence of explicit information about any contingencies in the stimulus sequence and 

about the behavioral relevance of the cue tones for their response to the target. Hence, 

the modulations of the CR and P2 by target predictability and their behavioral correlates 

reflect the type of learned expectancy that is common in everyday life and which emerges 

spontaneously by exposure to statistical patterns in the environment. However, an alternative 

interpretation is that the CR and P2 represent an effect of attention, where the listener is 

learning what to attend to- the cue that reliably predicts the target- rather than reflecting 

expectation for the target per se.

Consistent with earlier CNV studies, the CR component had a fronto-central scalp 

distribution compatible with sources within the supplementary motor area and frontal cortex 

(Rosahl and Knight, 1995; Hamano et al., 1997; Chennu et al., 2013; Mento et al., 2013). 

Based on this anatomical and functional similarity, we tentatively identify the CR as a 

type of CNV. The supplementary motor area, in particular, is thought to play an important 

role in processing temporal information and generating temporal expectations (Mento et al., 

2013; Wiener et al., 2010). It is noteworthy that the CR was highly circumscribed in time, 

occurring largely within the short 100 ms delay between the offset of the cue tones and 

the onset of the target. This short duration contrasts with the much longer development of 

the CNV, typically on the order of seconds, reported in previous work, and more closely 

parallels the considerably shorter timescales over which perceptual expectations operate 

in everyday life, such as when processing phonemic transitions in speech and melodic 

transitions in music.

The reduced P2 amplitude and the negativity associated with the CR were not observed 

when ERPs were re-averaged with respect to the latency of subjects’ button press responses. 

This indicates that these ERP components reflect expectancy for, or anticipatory attention to, 

the target rather than only motor preparatory activity. Thus, insofar as the CR reported here 

is related to the CNV described in previous studies, the present work adds to the evidence 

that the CNV is not purely a motor phenomenon (van Boxtel and Brunia, 1994b, van 

Boxtel and Brunia, 1994a; Brunia and van Boxtel, 2001; Mento et al., 2013). It is not clear 

how the CR relates to the reported prediction-related reduction in high-frequency gamma 

activity, recorded using ECoG from the frontal cortex of patients with epilepsy (Durschmid 

et al., 2019), except in the timing of the events, with both response modulations occurring 

immediately prior to expected sounds. As high-frequency activity is not readily detectable 

using scalp EEG, establishing a link between these electrophysiological indices will likely 

require investigations using invasive techniques.

We found that the latency of the P1 component elicited by the cue tones became 

progressively shorter as the conditional probability of the target increased from 0 to 100%. 

This suggests enhanced neuronal processing of cues which are highly predictive of the 

target even at the earliest stages of cortical processing. This early neuronal enhancement 

may reflect an allocation of selective attention to the frequency of the cue that is most 

behaviorally relevant in a given stimulus block (Woldorff et al., 1993; Rao et al., 2010; 

Fritz et al., 2007) and is consistent with the ‘learned predictiveness’ model of attention 
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and associative learning (Le Pelley et al., 2016; Mackintosh, 1975), whereby attention 

is preferentially allocated to cues that accurately predict behaviorally significant events. 

However, neither the amplitude nor the latency of the N1 component elicited by the cue 

tones was modulated by the predictability of the target. This result contrasts with earlier 

findings showing modulations of the N1 by both statistical learning and selective attention 

(Naatanen and Picton, 1987; Woldorff et al., 1993; Hillyard et al., 1973; Abla et al., 2008; 

Teinonen and Huotilainen, 2012). The lack of an effect of expectancy on the N1 elicited 

by the cues may be explained by the fact that in our paradigm expectancies were formed 

with respect to the target’s appearance, given a particular cue, and not to the appearance of 

a particular cue tone, which was random and thus unpredictable. Because the cues were not 

predictable, it is perhaps not surprising that the obligatory N1 responses to the cues were not 

modulated by expectancy.

An unanticipated finding was that the response to the middle frequency ‘control’ tone, the 

tone that never cued the target, was modulated by target predictability. The more predictable 

the target was, the smaller the amplitude of the P1 and the more positive the waveform 

occurring within the time frame of the CR. Moreover, the latency of the P2 elicited by the 

control tone was significantly shorter when the target was less predictable. One possible 

interpretation of these results is that when the target followed the low and high tone cues 

less reliably, each with 50% probability, participants may have expected that the target 

could randomly follow any of the three tones in the sequence. Even though the target 

never followed the middle frequency tone, with only implicit information to rely on it was 

always possible that the middle tone could become behaviorally relevant, as supported by 

the fact that the ERP within the time frame of the CR was less positive in the Unpredictable 

condition (50%) than the Predictable condition (100%), in which the target exclusively 

followed one of the three tones. We speculate that modulation of the response occurred due 

to lack of explicit information about the middle tone’s irrelevance to the performance of the 

target detection task.

Target-specific N1 and P3b responses were also modulated by predictability. The N1 evoked 

by the target was significantly larger when the target was unexpected (its conditional 

probability was 50%) compared with when it was expected (its conditional probability 

was 100%; see Figs. 3 and 4 ). This result is consistent with predictive coding models in 

which unexpected events elicit greater activity when a mismatch between the expected and 

the sampled input is detected (Friston, 2005), and also fits with models of ’expectation 

dampening’ in which predicted sensory inputs are directly suppressed (Heilbron and Chait, 

2018; Friston, 2005; Todorovic et al., 2011; Symonds et al., 2017; Han et al., 2019; 

Summerfield and de Lange, 2014; Richter and de Lange, 2019; den Ouden et al., 2012; 

Press et al., 2020a). Targets which were cued with less reliability (in the 50% probability 

condition) may have been perceived as more salient or ‘surprising’ than those which were 

more reliably associated with a preceding cue (in the 100% probability condition). A 

different interpretation of this result, however, is that the N1 to the target was actively 

enhanced under the 50% probability condition due to changes in sensory gain. In particular, 

in cases where predictive relationships are less certain (as in the 50% probability condition) 

agents may increase the weight they give to incoming signals to aid learning (Summerfield 
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and Egner, 2009; Frings et al., 2019; Press et al., 2020b). Unfortunately, we cannot 

distinguish between these interpretations in the present study.

The P3b has been variously considered an index of voluntary attention, context updating 

in working memory, stimulus uncertainty and classification (e.g., as a target), and of the 

link between stimuli and task-relevant responses (Sutton et al., 1965; Polich, 2007; Verleger, 

2020). Its peak latency is thought to relate to stimulus evaluation speed (Sutton et al., 1965; 

Polich, 2007; Wronka et al., 2012; Verleger et al., 2018). In broad agreement with these 

interpretations, we found that the peak latency of the P3b was significantly correlated with 

subjects’ reaction times (Polich, 2007) and was significantly shorter when the target was 

predictable compared to when it was unpredictable. Hence, the P2, CR, and P3b all appear 

to track subjects’ degree of uncertainty about the statistical relationship between the cue and 

target and reflect interrelated neuronal processes underlying the generation of predictions 

(P2 and CR) and the top-down evaluation of task-relevant events (P3b) modulated by the 

strength of these predictions.

In summary, our results demonstrate implicit learning of cue-target contingencies and 

identify the CR as a potential neuronal signature of expectancies that are built up during 

the learning process. The CR occurred immediately prior to the onset of the target and 

its amplitude and latency were systematically modulated by the strength of the cue-target 

relationship: The more predictive the cue was of the target’s appearance, the larger 

the amplitude and the earlier the latency of the CR. Behavioral and neurophysiological 

correlates of learning emerged through ‘passive’ exposure to the statistical regularities in 

the sensory input without explicit or prior knowledge of the ‘rules’ regarding the arbitrary 

relationships in the stimulus sequence. Thus, the CR may represent a neuronal correlate of 

prediction.
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Fig. 1. 
Schematic diagram of the experimental paradigm. A. Stimuli consisted of randomly 

presented pure tones differing in frequency (low, mid, high). Pure tones served as cues to a 

white noise burst target that followed them. B. Two predictable conditions (PT), in which the 

target followed the low tone or the high tone with 100% probability, and one unpredictable 

condition (UT), in which the target followed either the low or the high tone randomly within 

the block. The target never followed the middle tone, which served as a control.
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Fig. 2. 
Behavioral results. A. Mean reaction times (RTs) are plotted for the first 25 trials within a 

stimulus block separately for the Predictable (red line) and Unpredictable (blue line) target 

conditions. Error bars represent the standard error of the mean. RTs are relative to cue-tone 

onset. B. Mean difference in average RT between Predictable and Unpredictable target 

conditions are separately plotted, along with individual subject data, for the first half (1–13) 

and second half (14–25) of trials within a stimulus block. Error bars represent standard error 

of the mean difference between conditions. Asterisks indicate significant difference between 

first and second half trials (p <0.0001).
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Fig. 3. 
Grand mean ERPs elicited by the low and high cue tones and targets for each target 

probability condition. ERPs elicited in conditions where the target appeared with 0% (black 

trace), 50% (blue trace), and 100% (red trace) probability following the cue tone are shown. 

Data from Fz, Cz, and Pz electrodes are displayed in panels A, B, and C, respectively. Time 

frames of cue tones and targets are represented by the horizontal black and gray bar above 

the panels. Major response components are indicated in the plots. Mean reaction times (RTs) 
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under the 50% and 100% probability conditions are represented by the square symbols at the 

top of Panel A. Error bars represent the upper and lower ranges of RT.
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Fig. 4. 
Amplitudes of the P1, N1, P2, CR, Target N1, and Target P3b components elicited by the 

low and high cue tones and by the target as a function of the conditional probability of the 

target. Data from individual subjects are plotted, with large horizontal bars representing the 

mean across subjects and smaller error bars representing 95% confidence intervals. The sign 

of negative-going ERP component (N1 and CR) amplitudes is reversed for display purposes. 

Asterisks represent significant differences across conditions (repeated measures ANOVA for 

3-condition comparisons, and repeated measures t-test for 2-condition comparisons), with 

corresponding p-values indicated in the plots; ‘ns’: not statistically significant. Data for each 

of the components are plotted on different ordinate scales to facilitate visual comparison of 

differences across conditions.
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Fig. 5. 
Peak latencies of the P1, N1, P2, CR, Target N1, and Target P3b components elicited by 

the low and high cue tones and by the target as a function of the conditional probability of 

the target. Data from individual subjects are plotted, with large horizontal bars representing 

the mean across subjects and smaller error bars representing 95% confidence intervals. 

Asterisks represent significant differences across conditions (repeated measures ANOVA 

for 3-condition comparisons, and repeated measures t-test for 2-condition comparisons), 

with corresponding p-values indicated in the plots; ‘ns’: not statistically significant. Mean 

data for each of the components are plotted on different ordinate scales to facilitate visual 

comparison of differences across conditions. Note that latency data are not reported for the 

CR at a conditional probability of 0% because there was no significant CR elicited in this 

condition.
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Fig. 6. 
A. Amplitudes of the CR elicited by the low and high frequency tones and the middle 

frequency ‘control’ tone under the Unpredictable (blue symbols) and Predictable (red 

symbols) target conditions. Same conventions as in Figs. 4 and 5. Effect sizes (Cohen’s 

d) corresponding to each comparison are indicated in the plot. B. Grand mean ERPs at Cz 

elicited by the control tone under the Unpredictable (blue trace) and Predictable (red trace) 

target conditions.
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Fig. 7. 
Grand-mean ERP voltage and corresponding derived scalp current density (SCD) 

distributions under the three conditional probability conditions for the N1 and CR elicited by 

the low and high tone cues and the P3b elicited by the target. Distributions for the N1, CR, 

and Target P3b components are shown in the top, middle, and bottom rows, as indicated. 

Distributions under the 0, 50, and 100% conditional probability conditions are shown in 

the left, middle, and right columns, as indicated. Warmer (redder) and cooler (bluer) colors 

represent progressively more positive and negative values, respectively, of voltage and SCD. 

Red circles indicate the location of the electrode contacts. Contour lines demarcate values of 

voltage and SCD differing by steps of 0.20 μV and 0.02 μV/cm2, respectively. Voltage and 

SCD values have been normalized to the maximum value across all of the components and 

conditions shown.
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Fig. 8. 
Grand mean ERPs elicited at the Cz electrode in the 50% and 100% conditional probability 

conditions are shown re-averaged with respect to the latency of subjects’ button press 

responses on individual trials (blue and red thin lines, respectively) to assess motor-related 

activity. Included for comparison are the differences in grand mean ERPs, averaged with 

respect to cue tone onset, elicited in the 50% and 100% conditional probability conditions 

and the 0% conditional probability condition, represented by the blue and red thick lines, 

respectively. Mean reaction times in the 50% and 100% conditions are denoted by the blue 

and red vertical dashed lines. Negative deflections corresponding to the CR and target N1 

components are indicated by arrows. Note the absence of negative deflections in the ERP 

waveforms that were re-averaged relative to the latency of the button press.
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Table 1

Pearson correlations (r) between the amplitudes and peak latencies of ERP components and individual 

subjects’ reaction times. P-values are included below the correlation coefficients, with statistically significant 

correlations indicated by asterisks.

P1 N1 P2 CR Target N1 Target P3b

Amplitude r = 0.22 r = 0.24 r = 0.45 r = 0.42 r = −0.30 r = −0.08

p = .19 p = .15 p = .006 * p = .01 * p = .07 p = .63

Latency r = 0.20 r = −0.26 r = 0.20 r = 0.45 r = 0.51 r = 0.61

p = .13 p = .13 p = .15 p = .006 * p = .002 * p = .0001 *
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