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Abstract: Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by 

mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of  

3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant 

manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously 

demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) 

results in impaired osteoblastic differentiation, which may be associated with the skeletal 

manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in 

modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1+/−) 

mice. Nf1+/− MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased 

migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. 
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Additionally, Nf1+/− MSPCs were noted to have significantly enhanced cell adhesion to 

fibronectin with selective affinity for CH271 with an overexpression of its complimentary 

receptor, CD49e. Nf1+/− MSPCs also showed hyperactivation of phosphoinositide  

3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when 

compared to WT MSPCs, which were both significantly reduced in the presence of their 

pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study 

suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced 

migration and adhesion of Nf1 haploinsufficient MSPCs. 

Keywords: neurofibromatosis 1; neurofibroma; oncogene protein p21 (ras); mesenchymal 

stem/progenitor cells 

 

1. Introduction 

Neurofibromatosis type 1 (NF1), also known as Von Recklinghausen’s disease, is an autosomal 

dominant disorder with an incidence of 1 in 3000 live births [1]. NF1 is one of the most common genetic 

disorders with a predilection toward neoplasms, which include astrocytomas, pheochromocytomas, 

myeloid leukemia, and the pathognomonic cutaneous and plexiform neurofibromas [2]. In addition to 

these neoplastic conditions, NF1 patients variably experience skeletal deformations, hyperpigmentation 

of the skin (café-au-lait macules), benign lesions of the iris (Lisch nodules), and intellectual deficits [3,4]. 

NF1 occurs as a result of mutations in the NF1 tumor suppressor gene located on chromosome 

17p11.2, which encodes a p21ras (Ras) guanosine triphosphatase (GTPase)-activating protein (GAP) 

called neurofibromin. The neurofibromin GAP domain controls the conversion of Ras-GTP to its 

inactive GDP-bound state, thereby negatively regulating the activity of downstream signaling 

pathways, including the mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase  

(PI3-K) pathways. Loss of one or both alleles of NF1 leads to aberrant Ras-dependent cellular 

functions including proliferation, differentiation, migration, and survival, in multiple cell lineages [5,6]. 

Mesenchymal stem/progenitor cells (MSPCs) was first isolated from bone marrow by Friedenstein 

in 1970 [7], follow-up studies demonstrated that they effectively support the hematopoietic stem/progenitor 

cell (HSPC) functions through expression of adhesion surface molecules, extracellular matrix, and 

cytokine production within the hematopoietic microenvironment, termed as “niche” [8–11]. MSPCs are 

identified as being positive for CD105, CD73, CD90, and negative for CD45, CD34 and CD117 [12]  

and account for 0.01%–0.0001% of all nucleated cells in the bone marrow [13]. MSPCs also retain  

the capacity for self-renewal and differentiation into many non-hematopoietic mesodermal tissues such as 

osteoblasts, adipocytes, and chondroblasts in vitro [7,14,15] and exhibit the potential to generate complete 

bone/bone marrow organs in vivo [8]. Furthermore, studies have shown that MSPCs produce trophic factors 

that promote their migration resulting in enhanced tissue repair, thereby providing therapeutic benefit 

in inflammatory disease processes and sites of injury [16,17]. Skeletal abnormalities, including 

osteoporosis/osteopenia, osteomalacia, shortness of stature, and macrocephaly are among the common  

non-malignant complications in patients with NF1, and some of these bone manifestations can result in 

significant morbidity. Recent studies indicated that the osseous manifestations in NF1 may due to the 
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impaired maintenance of bone structure and abnormal development of the skeletal system [18–20].  

Given that MSPCs are progenitors of osteoblasts, functional defects of MSPCs may be closely relevant to 

skeletal development. 

Our previous studies have shown that heterozygous loss of Nf1 (Nf1+/−) in MSPCs led to increased 

proliferation, hyper activation of p21-Ras and impaired MSPC differentiation into osteoblasts [21]. We 

have also demonstrated that haploinsufficiency of Nf1 led to hyper activation of the Ras/PI3-K/MAPK 

signaling axis in Schwann cells, osteoclasts, and mast cells [22,23]. Till now, the molecular mechanisms 

underlying the gain-in-migration of NF1 MSPCs remains poorly understood and yet to be elucidated. 

We hypothesized that Nf1 heterozygosity may also lead to alteration of MSPC cellular functions including 

migration and adhesion via p21-Ras mediated hyperactivation of PI3-K or MAPK effector pathways. 

In the present study, we utilize MSPCs derived from bone marrow of wild-type (WT) and Nf1+/− mice 

to investigate whether Nf1 heterozygosity affects MSPC migration and adhesion capabilities. 

2. Results 

2.1. Nf1+/− MSPCs Have Increased Nuclear-to-Cytoplasmic Ratio 

Nf1+/−MSPCs were noted to have elongated, spindle shaped cytoplasm in comparison to the  

branched cytoplasm observed in WT MSPCs (Figure 1A). Quantification of this morphological  

change revealed an increased nuclear-to-cytoplasmic ratio in Nf1+/− MSPCs compared to WT controls  

(Figure 1B). These findings indicated involvement of neurofibromin in regulating MSPC morphology. 

 

Figure 1. Morphological differences between wild-type (WT) and Nf1 haploinsufficient 

(Nf1+/−) mesenchymal stem/progenitor cells (MSPCs). (A) Morphology of WT and Nf1+/− 

MSPCs imaged under 200× amplification by phase contrast microscopy. Cells were stained 

with 400 nM fluorescein isothiocyanate(FITC)-phalloidin and DAPI; (B) A quantitative 

comparison of nuclear-cytoplasmic ratio between WT and Nf1+/− MSPCs based on the 

average ratio of nuclear area/cytoplasm area in 50 cells/field from five different fields. 

Data are represented as mean ± SD from three batches of MSPCs isolated from individual 

mice (* p < 0.05 for Nf1+/− vs. WT MSPCs). 
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2.2. Nf1+/− MSPCs Have Increased Migratory Capacity 

Wound healing assays was performed to assess migration of MSPCs. Nf1+/− MSPCs were noted  

to occupy an increased proportion of the wound space as compared to WT MSPCs 24 h after wound 

formation and continued culture in medium containing 10% fetal bovine serum (FBS) (Figure 2A). 

Quantification of the wound healing assay revealed a significant increase in the number of migrating 

Nf1+/− MSPCs (F = 75.76, Df = 1, p < 0.001; Figure 2B). Actin polymerization was further assessed  

to determine a molecular basis for the increased migration noted in Nf1+/− MSPCs. Nf1+/− MSPCs,  

as compared to WT controls, demonstrated significantly increased F-actin (polymerized actin) content 

after FBS stimulation at 30 s (Figure 2C, Figure S1). Taken together, these results suggested  

an increase in the migratory capacity of Nf1+/−MSPCs secondary to enhanced F-actin polymerization. 

A B

C 

Figure 2. Migration and actin polymerization were significantly enhanced in Nf1+/− MSPCs. 

(A) Wound healing assays were performed by incubating WT and Nf1+/− MSPCs in 10 µg/mL 

of mitomycin C for one hour, after which a linear wound (marked by the white dotted lines) 

was created as shown. Wound healing was allowed to proceed in fresh media for 24 h, 

(original magnification ×200); (B) The number of cells migrating into the wound field were 

quantified, revealing an increased migration in Nf1+/− MSPCs compared with WT MSPCs  

(F = 75.76, Df = 1, *** p < 0.001; *** p < 0.001 for Nf1+/− MSPCs vs. WT MSPCs in the 

presence of 10% FBS, * p < 0.05 for untreated Nf1+/− MSPCs vs. untreated WT MSPCs).  

Data are represented as mean ± SD from duplicate wells from three independent experiments, 

each experiment was performed with different MSPCs culture isolated from individual mice; 

(C) Actin polymerization was measured following 2 h starvation and subsequent treatment 

with 10% FBS for different time periods. Flow cytometry analysis was performed following 

400 nM FITC-phalloidin staining. An increased F-actin content was observed in Nf1+/− 

MSPCs comparison to WT MSPCs. A representative result of one of three independent 

experiments is shown; each experiment was performed with different MSPCs culture isolated 

from individual mice. 
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2.3. Nf1 Haploinsufficiency Enhances Cellular Affinity to CH271 

Nf1+/− MSPCs showed significantly increased adhesion to recombinant fibronectin fragment, CH296, 

pre-coated plates as compared to WT controls (Figure 3A; p < 0.001, Figure 3B). Fibronectin’s binding 

sites, H296 and CH271, were analyzed for preferential affinity in Nf1+/− MSPCs. H296 and CH271 

specific adhesion assays demonstrated a significant increase in Nf1+/− MSPC adhesion in CH271 assays 

but not H296 assays as compared to WT (p < 0.001, Figure 3C). By contrast, WT MSPCs did not show 

preference to either CH271 or H296. To further characterize the increased affinity of Nf1+/− MSPCs  

for CH271, expression of its receptor, CD49e (also known as integrin α5 or fibronectin receptor α), was 

quantified by flow cytometry. The expression level of CD49e in Nf1+/− MSPCs was significantly 

increased as compared to WT MSPCs (Figure 3D). We also analyzed CD49d, the H296 receptor, and 

found no statistical difference in expression between WT and Nf1+/− MSPCs (data not shown). 

A B

 
C D

 

Figure 3. Enhancement of cellular adhesion in Nf1+/− MSPCs. (A) MSPCs were plated  

into wells pre-coated with either 8 µg/mL CH296 (recombinant fibronectin fragment) or  

0.1% bovine serum albumin (BSA). Following a 30 min incubation period at 37 °C, the plates 

were washed and adherent cells were counted on five representative fields/well from six 

replicate wells, (original magnification ×200); (B) Nf1+/− MSPCs had significantly increased 

adhesion to CH296 coated plates in comparison to WT MSPCs (*** p < 0.001 for CH296 

coated Nf1+/− MSPCs vs. CH296 coated WT MSPCs); (C) Preferential adhesion to 

fibronectin binding sites, H296 and CH271, was assessed. Nf1+/− MSPCs exhibited 

significantly greater adhesion to CH271 as compared to H296. (*** p < 0.001 for CH271 

coated Nf1+/− MSPCs vs. CH271 coated WT MSPCs); (D) Expression of CH271 receptor, 

CD49e, was quantified by flow cytometry, demonstrating significantly increased expression 

of CD49e in Nf1+/− MSPCs in comparison to WT. The green lines represent isotype controls 

while the green solid areas represent the experimental samples. Data are one representative 

result of three independent experiments, and each experiment was performed with different 

MSPCs culture isolated from individual mice. 
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2.4. Hyper Activation of the PI3-K and MAPK Pathways in Nf1+/− MSPCs 

Serum starved WT and Nf1+/− MSPCs were stimulated with 10% FBS to assess activation of the  

PI3-K and MAPK pathways downstream of Ras. Baseline expression of phosphorylated (p) Akt  

(also known as protein kinase B) and extracellular-signal-regulated protein kinase (Erk) 1/2 in Nf1+/− 

and WT MSPCs were undetectable. However, stimulation with 10% FBS for 2 and 5 min showed 

significantly enhanced expression of pAkt and pErk1/2 in Nf1+/− MSPCs compared to WT MSPCs. 

Increased pAkt levels were restored to baseline by 30 min pretreatment of a PI3-K inhibitor, 

LY294002, in both WT and Nf1+/− MSPCs. Likewise, pErk1/2 expression was significantly reduced  

in the presence of a MEK inhibitor, PD0325901, in both WT and Nf1+/− MSPCs (Figure 4). The 

pretreatment of LY294002 and PD0325901 has also been prolonged to 4 h, and the results did not 

show a significant pathway cross talk occurred between these two inhibitors (Figure S2). 

Cell viability was not affected by these inhibitors at the concentration applied here. Collectively, 

these data demonstrated that Nf1+/− MSPCs exhibit hyperactivation of both the PI3-K and MAPK 

signaling axes, which can be restored to baseline by pathway specific pharmacologic inhibitors. 

 

Figure 4. Nf1+/− MSPCs exhibit increased Akt (also known as protein kinase B) and 

extracellular-signal-regulated protein kinase (Erk)1/2 phosphorylation, which can be 

inhibited by LY294002 and PD0325901, respectively. Phosphorylation of Akt and Erk1/2 

was determined by Western blot in WT and Nf1+/− MSPCs following 10% FBS stimulation 

in the presence or absence of PI3-K inhibitor, LY294002, or MAPK inhibitor, PD0325901. 

Data represents one of three independent experiments, and each experiment was performed 

with different MSPCs culture isolated from individual mice. 

2.5. Enhanced Nf1+/− MSPCs Migration and Adhesion Is Rescued by LY294002 and PD0325901 

In order to determine the functional implications of pharmacologically inhibiting hyperactivated 

PI3-K and MAPK pathways in Nf1+/− MSPCs, wound healing and adhesion assays were performed to 

assess migration and adhesion of MSPCs in the presence of LY294002 or PD0325901 inhibitors.  

In comparison to WT, Nf1+/− MSPCs demonstrate increased migration in response to either media alone or 

media supplemented with 10% FBS, which was significantly attenuated by LY294002 or PD0325901 

(p < 0.001, Figure 5A). Migration of Nf1+/− MSPCs vs. WT MSPCs responded to different concentrations 

of PD0325901, as shown in Figure S3. A similar trend was noted in the adhesion assay where Nf1+/− 
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MSPCs were significantly more adhesive in comparison to WT in response to either media alone or  

10% FBS stimulation. Likewise, adhesion was markedly reduced in the presence of LY294002 and 

PD0325901 (p < 0.001, Figure 5B). The efficacy of PI3-K and MAPK inhibitors to significantly attenuate 

the enhanced signal transduction, migration, and adhesion of MSPCs with Nf1 haploinsufficiency 

suggests that these two pathways may play important role in mediating Nf1+/− MSPC gain-in-functions. 

 

Figure 5. Migration and adhesion of Nf1+/− MSPCs was mediated by mitogen activated 

protein kinase (MAPK) and phosphoinositide 3-kinase (PI3-K) pathways. (A) Representative 

high power fields (20× objective lens) of wound healing assays for WT and Nf1+/− MSPCs 

cultured with serum free media or 10% FBS in the presence or absence of either LY294002 or 

PD0325901. Nf1+/− MSPCs have enhanced migration in comparison to WT in serum free or 

10% FBS supplemented media, which was significantly decreased by LY294002 and 

PD0325901 (** p < 0.01 for Nf1+/− MSPCs vs. WT MSPCs cultured in media; *** p < 0.001 

for 10% FBS treated Nf1+/− MSPCs vs. 10% FBS treated WT MSPCs; *** p < 0.001 for 

LY294002 or PD0325901 treated and untreated Nf1+/− MSPCs in the presence of 10% FBS); 

(B) Representative high power fields (20× objective lens) from CH296 adhesion assays for 

WT and Nf1+/− MSPCs performed in serum free or 10% FBS supplemented media in the 

presence or absence of LY294002 or PD0325901. The adhesion of Nf1+/− MSPCs was 

significantly increased in comparison to WT MSPCs in either serum free or 10% FBS 

supplemented media. Adhesions were significantly reduced in the presence of LY294002 

and PD0325901 (* p < 0.05 for Nf1+/− vs. WT MSPCs in serum free media; *** p < 0.001 

for Nf1+/− vs. WT MSPCs in 10% FBS supplemented media; *** p < 0.001 for LY294002 

or PD0325901 treated and untreated Nf1+/− MSPCs in the presence of 10% FBS). Data are 

represented as mean ± SD from three individual experiments, and each experiment was 

performed with different MSPCs culture isolated from individual mice. 



Int. J. Mol. Sci. 2015, 16 12352 
 

 

3. Discussion 

NF1 is a heritable or spontaneous autosomal dominant disease, affecting neural tissues, skin, and 

skeleton. Skeletal abnormalities such as scoliosis, sphenoid wing dysplasia and osteopenia are 

common manifestations of NF1. Elevated bone resorption has been proven to contribute to the 

abnormal bone remodeling in NF1 [24]. During bone resorption, the abundant factors released from 

the bone matrix results in recruitment and differentiation of MSPCs for the following bone remodeling.  

In addition, fibroblasts are one of the major cell components of neurofibromas. Through current 

studies indicated that endoneurial fibroblasts are neural crest derivative [25], whereas perineurial 

fibroblasts, which are involved in the nerve degeneration and regeneration of NF1, are mesenchymal 

origin [26,27]. Nevertheless, the relevance between MSPCs and fibroblasts in neurofibromas still 

needs further investigation. Taken together, MSPCs and its progeny cells may play a critical role in the 

pathogenesis of NF1. 

Just like HSPCs, MSPCs migrate and localize throughout the whole body. Several studies have 

demonstrated migratory capabilities of MSPCs are mediated through numerous chemokine-receptor 

interactions and cell adhesion molecules [11,28–32]. Takashima and colleagues have reported the 

presence of neuroepithelium-derived and neural crest-derived MSPCs in cell populations of femoral 

and tibial bones in postnatal mice [33]. A study performed by Mansilla et al. indicated that peripheral 

blood collected from a group of 15 acute burn victims showed a larger percentage of MSPCs compared 

to a group of 15 healthy individuals [34]. Collectively, these studies demonstrated the migratory 

capabilities of MSPCs and implicated their involvement in the regenerative process in vivo. However, 

little is known about the molecular mechanism(s) underlying MSPC migration under the circumstance 

of NF1, which may further inform the role of MSPCs in the pathogenesis of NF1 such as abnormal 

bone remodeling and tissue repair. 

Ponte et al. [35] have shown that bone marrow MSPCs have the tendency to migrate towards 

certain growth factors and chemokines when cultured in vitro. Using transwell migration assay, 

platelet derived growth factor (PDGF) was demonstrated to have the most potent MSPC attractive 

effect. Other studies have shown that when plated with vascular smooth muscle cells, PDGF induces 

an increase in MAPK activity [36]. As an inflammatory cytokine, tumor necrosis factor-alpha (TNF-α) 

is known to significantly increase Ras activity [37]. Furthermore, TNF-α mediated stimulation of  

bone marrow MSPCs was shown to improve their response to certain chemokines such as stromal cell 

derived factor 1 (SDF-1) and RANTES and enhance migratory functions compared to non-stimulated 

control [38]. These aforementioned studies implicate a critical role for Ras and its downstream 

signaling pathway in MSPC migratory functions. We hypothesized that hyperactivation of p21-Ras 

pivotally underpins the enhanced cellular adhesion and migratory functions of Nf1+/− MSPCs. Nf1+/− 

MSPCs demonstrate hyperactivation of p21 Ras secondary to neurofibromin haploinsufficiency. The 

MAPK and PI3-K pathways are direct downstream effectors of p21-Ras. In our study, hyperactivity  

of the PI3-K and MAPK pathways in Nf1+/− MSPCs was confirmed by Western blot demonstrating 

increased levels of pAkt and pErk1/2. Through the adhesion and wound healing assays, we have 

shown that Nf1+/− MSPCs exhibit significantly enhanced adhesion and migration capabilities 

compared to WT MSPCs. Furthermore, inhibition of MAPK and PI3-K pathways in Nf1+/− MSPCs 

using PD0325901 or LY294002, respectively, resulted in a dramatic decrease in the enhanced migratory 
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and adhesive capacity of Nf1+/− MSPCs to levels comparable to WT cells. Similarly, transwell migration 

assay also showed the enhanced migration in Nf1+/− MSPCs was restored to the same level as WT 

MSPCs in the presence of PD0325901 or LY294002 (Figure S4). However, Koivunen et al. [39] 

demonstrated that neither the function of wound healing nor the Ras-MAPK activity were enhanced in 

epidermal cells of NF1 patients, indicated that NF1 gene play a key regulator of Ras signaling only in 

some kinds of cell types. 

Studies have also demonstrated that Ras signaling regulated Nf1 heterozygous cell migration in 

other cell types, indicating that the defects of cell motility may be a common characteristic of 

neurofibromin deficiency. Neurofibromin-deficient macrophages demonstrated increased proliferation, 

migration, and adhesion, which were regulated by Ras-MAPK signaling [40]. Similarly, osteoclasts 

derived from NF1 patients demonstrated increased migration and adhesion capacity associated with 

hyperactivity of MAPK pathways [41]. While in Nf1−/− Schwann cells, not only MAPK but also PI3-K 

pathways contributed to the increased migration capacity [42], which was consistent with our results in 

this study, implying synergistic effect of these two pathways in the migratory phenotype in certain cell 

types. In addition to the impaired osteoblastic differentiation reported by us previously, the enhanced 

migration and adhesion in MSPCs may also be associated with the osseous manifestations in NF1 patients. 

4. Experimental Section 

4.1. Animals and Materials 

Nf1 mice were obtained from Dr. Tyler Jacks at the Massachusetts Institute of Technology 

(Cambridge, MA, USA) in a C57BL/6J.129 background and backcrossed for 13 generations into  

a C57BL/6J strain. Nf1+/− mice were genotyped by polymerase chain reaction (PCR) as previously 

described [22]. These studies were conducted with a protocol approved by the Indiana University 

Laboratory Animal Research Center using four to eight week old WT and Nf1+/− mice. 

4.2. Isolation and Expansion of MSPCs 

MSPCs were generated from WT and Nf1+/− mice as previously described [43]. Briefly, four to 

eight week old WT and Nf1+/− mice were sacrificed by CO2 inhalation followed by cervical 

dislocation. Bone marrow cells were collected by flushing the femurs and tibias with Isccove’s 

Modified Dulbecco’s Medium (IMDM, Gibco-invitrogen, Carlsbad, CA, USA) containing 2% FBS 

using a 23-gauge needle. Bone marrow mononuclear cells (BMMNCs) were then separated by  

low-density gradient centrifugation using Ficoll Hypaque. Cells were washed twice with IMDM and 

suspended in mouse MesenCult basal medium containing mesenchymal cell stimulating supplements 

(Stem Cell Technologies Inc., Vancouver, BC, Canada). The cells were then plated at a density of  

2 × 107 cells in a 10-cm tissue culture dish (BD Falcon, Franklin Lakes, NJ, USA). 

4.3. Phenotypic Analysis of MSPCs 

The expression of cell surface markers were analyzed to measure the purity of the cultured MSPCs. 

One hundred thousand cells were re-suspended in 100 µL of 0.1% BSA/PBS and stained with  

FITC-anti-mouse CD44, R-phycoerythrin (R-PE)-conjugated anti-mouse CD49e, R-PE-conjugated 
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anti-mouse CD29, purified rat anti-mouse CD105, anti-rat R-PE antibody, c-Kit, CD34, CD13, Mac-1, 

B220, and Gr-1 antibodies (BD Pharmingen, San Diego, CA, USA) for 30 min at 4 °C. After washing 

with PBS twice, the labeled cells were analyzed via flow cytometery (Becton-Dickinson, San Jose, 

CA, USA). 

4.4. Cellular Morphology 

Morphological analysis was determined by plating 1 × 104 cells/well in a plastic 8-well chamber 

slide (Ibidi, Martinsried, Germany) for 24 h in MesenCult media with supplemental added. Cells were 

then fixed with 3.7% formaldehyde and permeabilized with 0.1% Triton X/PBS for 5 min and blocked 

for 1 h in 5% Milk/PBS before staining with DAPI and 400nM FITC-phalloidin (Sigma P5282,  

St. Louis, MO, USA). Cells were examined and images were acquired using deconvolution microscope 

(Delta vision Elite, Applied Precision, Mississauga, ON Canada). Average ratio of nuclear to 

cytoplasmic areawas calculated using ImageJ software (NIH, Cambridge, MA, USA). 

4.5. Actin Polymerization 

Actin polymerization was measured as described previously [38]. Briefly, Cells were starved  

for 2 h and then treated with or without 10% FBS for 30 s, 1 min and 5 min and fixed with  

3.7% formaldehyde in PBS and stained with 400 nM FITC phalloidin (Sigma P5282). Cells were then 

incubated for 10 min at 37 °C and transferred to 4 °C for overnight staining. The following day, cells 

were washed and analyzed by flow cytometer (Becton-Dickinson). 

4.6. Adhesion Assay 

MSPCs were starved in DMEM for 2 h, detached with trypsin, washed, and resuspended in  

serum-free media with 0.01% BSA, and then plated in pre-coated plates containing 8 µg/mL CH296,  

30 µg/mL CH271 or 20 µg/mL H296 (Takara Bio., Otsu, Japan). The cells were allowed to attach  

and spread for 1 h at 37 °C, and then unbound cells were removed by gentle washing with PBS.  

Attached cells were fixed with 10% formaldehyde, stained with 0.1% crystal violet and counted [44]. 

4.7. Wound Healing Assay 

The migratory ability of MSPCs was measured using a wound-healing assay [45]. In brief,  

1 × 105 cells were plated on BD Falcon 12-well tissue culture plates at approximately 70% confluence.  

A wound was then created by scratching a linear ridge in the cell monolayer using a 1000 µL pipette 

tip (approximately 1.3 mm wide), ensuring that all wounds were of equivalent width. To prevent width 

change secondary to cellular proliferation, MSPC cultures were treated with 10 µg/mL of mitomycin C 

(Sigma M7949) 1 h prior to wound formation to block cellular mitosis. In experiments with inhibitors, 

LY294002 (10 μM) or PD0325901 (100 nM), cells were co-incubated for 1 h with mitomycin C. Upon 

wound generation, cell culture media was replaced with fresh media, and wound closure was allowed 

to proceed for 24 h prior to Hema-3 staining (Fisher Scientific Company LLC, Kalamazoo, MI, USA). 
  



Int. J. Mol. Sci. 2015, 16 12355 
 

 

4.8. Western Blot 

WT and Nf1+/− MSPCs were deprived of serum and growth factors for 24 h. For the stimulation 

only group, cells were stimulated with 10% FBS for 2 or 5 min. For the inhibitor group, cells were  

pre-incubated with LY294002 (10 μM) or PD0325901 (100 nM) for 30 min, followed by stimulation 

with 10% FBS for 5 min. Cells were lysed in nonionic lysis buffer (20 mM Tris-Cl, 137 mM NaCl,  

1 mM EGTA (ethylene-glycol-tetra-acetic acid), 1% Triton X-100, 10% glycerol, 1.5 mM MgCl2) 

containing protease and phosphatase inhibitors (Amersham Pharmacia Biotech, Piscataway, NJ, USA). 

The protein concentration of the lysates was normalized using a bicinchoninic acid (BCA) assay kit 

(Pierce, Rockford, IL, USA). Proteins were separated by 12.5% sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) and transferred to high-quality polyvinylidene difluoride membranes 

(Roche Diagnostics, Indianapolis, IN, USA) in a Tris (20 mM), glycine (150 mM) and methanol (20%) 

buffer at 250 mV for 2 h. After blocking in 5% nonfat dry milk in phosphate buffered saline tween-20 

(PBST), the membranes were incubated with primary antibodies at 1:1000 dilution (phospho-Erk, 

phospho-Akt, β-Actin; Cell Signaling, Danvers, MA, USA) in 5% milk in PBST overnight at 4 °C. 

Following overnight exposure, the membranes were washed three times with PBST and incubated  

with secondary antibodies (anti-rabbit, anti-mouse, GE Healthcare UK Limited, UK) conjugated  

with horseradish peroxidase at 1:5000 dilution in 5% milk in PBST for 1 h at room temperature. 

Membranes were washed again in PBST three times at room temperature. Membranes were exposed  

to SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, Rockford, IL, USA) and 

protein bands were visualized on an X-ray film (GeneMate, Kaysville, UT, USA). 

4.9. Statistical Analysis 

All statistical analyses were performed with GraphPad Prism 5.0. Unpaired two-tailed student’s  

t tests were used for two variable comparisons. Two-way ANOVA with Bonferroni post-hoc 

corrections was performed for experiments with two different categorical independent variables. Data 

are presented as mean ± SD. The number of biologically-independent replicates, and significance levels 

were shown in the figure legends. Differences were considered statistically significant at p < 0.05. 

5. Conclusions 

In sum, these data indicated a critical role for Nf1 in regulating multiple MSPCs functions, 

including migration and adhesion through both the PI3-K and MAPK pathways. Inhibition of these 

hyperactive pathways independently in Nf1+/− MSPCs resulted in attenuation of their enhanced 

propensity to migrate and adhere. Further characterization of the role of PI3-K and MAPK signal 

transduction in MSPC function is of critical importance to providing continued insight into the homing 

and migratory capabilities of MSPCs with potential future therapeutic applications. 
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