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Abstract: The gut microbiome plays a major role in the maintenance of human health. Characterizing
the taxonomy and metabolic functions of the human gut microbiome is necessary for enhancing
health. Here, we analyzed the metagenomic sequencing, assembly and construction of a meta-gene
catalogue of the human gut microbiome with the overall aim of investigating the taxonomy and
metabolic functions of the gut microbiome in Thai adults. As a result, the integrative analysis
of 16S rRNA gene and whole metagenome shotgun (WMGS) sequencing data revealed that the
dominant gut bacterial families were Lachnospiraceae and Ruminococcaceae of the Firmicutes phylum.
Consistently, across 3.8 million (M) genes annotated from 163.5 gigabases (Gb) of WMGS sequencing
data, a significant number of genes associated with carbohydrate metabolism of the dominant
bacterial families were identified. Further identification of bacterial community-wide metabolic
functions promisingly highlighted the importance of Roseburia and Faecalibacterium involvement in
central carbon metabolism, sugar utilization and metabolism towards butyrate biosynthesis. This
work presents an initial study of shotgun metagenomics in a Thai population-based cohort in a
developing Southeast Asian country.

Keywords: gut microbiome; Thai adults; whole metagenome shotgun (WMGS) sequencing; meta-
gene catalogue; metabolic functions

1. Introduction

The human gut ecosystem is extremely large and harbors hundreds of microbiome [1]
with over three million genes encoded by their collective genomes, which accounts for
150 times more than the human gene complement [2]. Therefore, it is not surprising that
many specific genes, which are lacking in the human genome, perform a role in the gut
microbiome where they facilitate host metabolism and have the capacity to retain energy
and nutrients from the diet through extraordinary metabolic interactions that exchange
metabolites across a number of microbial species (∼570 species) and host cells in the gut
environment [3,4]. Moreover, the microbiome plays an essential role in human immune
maturation by mediating host immune responses [5]. Both host and environmental factors
can influence microbial colonization and functions. Several bacterial taxa, such as Prevotella
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and Bifidobacterium, which predominantly colonize in healthy humans, together with other
microbial members of the gut, such as Blautia and Roseburia species, synthesize short-
chain fatty acids (SCFA) including acetate, propionate and butyrate [6]. These microbial-
derived SCFA are subsequently taken up by the host as an energy source [7]. In particular,
butyrate has been found to suppress inflammatory and allergic responses to food antigens
by mediating the differentiation of colonic regulatory T cells in the colon [8]. Besides,
it has been observed that some microbial members are capable of producing vitamins
and neurotransmitters, such as γ-aminobutyric acid (GABA), with sufficient amounts
in the human gut [9,10]. Thus, the diversity of gut microbiome and their functions are
considerably associated with host nutrition and health status whereas dysfunctions of
the gut microbiome can predispose the host to a number of human diseases, such as
diabetes [11], inflammatory bowel disease [12], cardiovascular disease [13] and respiratory
illness [14].

Therefore, understanding the fitness and features of the human gut microbiome has
become an important area of research, which could provide an alternative therapeutic
avenue for the relevant co-morbidities [14]. In recent years, next generation sequencing
based on 16S rRNA gene sequencing and shotgun sequencing has become more feasible,
not only to obtain taxonomic information, but also to assess the functional attributes of the
human gut microbiome [15,16]. A recent metagenomic study of a cohort of immigrants in
the United States (US) revealed that the enrichment of the fiber-degrading ability of the gut
microbiome in healthy Hmong was remarkably associated with diet. This highlighted the
prevalence of plant-based ingredients in their traditional foods during pre-immigration in
Northern Thailand. It has been noted that the diversity and richness of fiber-degrading
bacteria in Hmong gut microbiome are the highest in Thailand, and decrease according
to prolonged American diet acculturation after relocation to the US [17]. Loss of native
gut microbiome has remarkably increased the risk of obesity and other chronic diseases
in US immigrants compared to the Hmong people who currently live in Thailand [17].
Regarding Thai populations, the effects of different dietary habits and health conditions
on the composition of gut microbiota have been previously investigated in different Thai
cohorts of children, adults and elderly persons [18–22]. However, these analyses were only
based on 16S rRNA gene sequencing data [23] and could not provide the full taxonomic
information and metabolic function of gut microbiome.

Therefore, this study aimed to investigate the taxonomic profiles and to annotate
metabolic functions of the gut microbiome of Thai adults using integrative 16S rRNA
gene and whole metagenome shotgun (WMGS) sequencing data. The 16S rRNA gene and
WMGS sequencing data were initially obtained from the gut microbiome of Thai adults by
DNA extraction from fecal samples, and then run through Illumina sequencing. After that,
the sequencing data were processed through different bioinformatics tools and databases
for analysis of the taxonomic profiles of gut microbiome. Then, metagenome annotation
was performed for the construction of a meta-gene catalogue of Thai gut microbiome. These
were used to further identify the metabolic functions of gut microbiome of Thai adults. This
study serves as a framework for bacterial community-wide metabolic functional studies of
the gut microbiome. Our work presents an initial study of shotgun metagenomics in a Thai
population-based cohort in a developing Southeast Asian country.

2. Results and Discussion

Among 60 Thai adults from the middle region of Thailand that were enrolled in the
cohort, 56 participants were selected based on stringent inclusion and exclusion criteria
(see Methods) for further assessment and analysis. Briefly, they were well-characterized
in terms of their physical and cognitive health status with regular diets. As summarized
in Supplementary Materials, Table S1, the gender ratio of the studied cohort was 0.3:1
(male: female) and the mean age and body mass index (BMI) of all participants was
30.0 ± 5.2 years and 21.3 ± 2.0 kg/m2, respectively. In addition, the daily energy and
nutrient intakes estimated from the recorded food intake of all participants, as listed in
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Tables S2 and S3, were consistent with the dietary recommendations for young Thai adults
from Ivanovitch et al. (2014) [24].

2.1. Assessment of Taxonomic Profiles of Gut Microbiome from Thai Adults Using 16S rRNA Gene
Sequencing Data

To assess the taxonomic profiles of gut microbiome from 56 participants, 16S rRNA
gene sequencing was initially performed. As presented in Figure 1, interestingly, we
found that four phyla, i.e., Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria
were most commonly identified. Among these four phyla, Firmicutes showed the highest
relative abundance of bacterial community, accounting for 82.1%, of which the order
Clostridiales, belonging to the class Clostridia in the phylum Firmicutes was dominant with
high abundances (>25%). Considering the majority of the samples from the 56 participants
and the top ten bacterial families (see Table S4), we found two dominant families, namely,
Lachnospiraceae and Ruminococcaceae in Thai adults. These two families are consistent with
the findings of La-ongkham et al. (2020) [22], whose study focused on the core taxonomic
feature of the Thai gut microbiome.

Figure 1. The taxonomic profiles of gut microbiome from Thai adults using 16S rRNA gene sequencing data.

Furthermore, a comparative analysis of taxonomic profiles of the gut microbiome
among Thai adults from this study, Hmong adults and American adults in the US [17] was
performed using 16S rRNA gene sequencing data and literature surveys. As a result, we
found that the high relative abundance of Ruminococcaceae in Thai adults was similar to
Hmong adults who were currently living in Thailand whereas the lowest abundance of
Ruminococcaceae was observed in Hmong and American adults who were currently living in
the US [17]. In addition, it was noticed that the high relative abundances of Lachnospiraceae
and Ruminococcaceae in Thai adults were consistent with many previous reports in other
Asian cohorts, i.e., Japanese [25], Chinese [26] and Indonesian [27].

Moreover, the association analysis between demographic and clinical characteristics
in the cohort (e.g., age, gender and BMI), as well as the relative abundance of the domi-
nant bacterial families was performed using Spearman’s rank correlation (Table S5). As
a result, we found a weak association between the abundance of Ruminococcaceae and
BMI (Figure S1). As observed, the higher abundance of Ruminococcaceae was found with
lower BMI. This finding is in agreement with other studies that have shown an associa-
tion between Ruminococcaceae and a lower risk of weight gain in a Caucasian cohort of
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volunteer adult twins from the United Kingdom through enhanced carbohydrate and
energy metabolism [28,29]. Accordingly, this suggests that the identification of bacterial
community-wide metabolic functions should be further performed.

The remaining phyla showed low relative abundances in the bacterial community,
accounting for 6.7, 3.7, 4.2, and 3.3% of Bacteroidetes, Actinobacteria, Proteobacteria and
others, respectively.

2.2. Construction of Meta-Gene Catalogue of Thai Gut Microbiome from WMGS Sequencing Data

As the gut microbiome exhibits a number of bacterial species that are genetically
diverse, and therefore, contain different sets of metabolic functions and pathways, it was
of interest to investigate the functional roles of the gut microbiome of Thai adults. How-
ever, because of the limitations of the 16S rRNA gene sequencing method, which does
not sequence a specific functional gene directly, the metabolic functional annotation of
genes and pathways of the microbiome can only be implied based on the taxonomic infer-
ences [30]. Thus, the WMGS sequencing method, which is a powerful culture-independent
method for annotating meta-genes and functions of the complex microbial communities,
was selected in this study. The schematic overview of the WMGS sequencing assessment is
illustrated in Figure 2A. Initially, the metagenomic DNA isolated from the fecal samples
of ten participants selected from the 56 participants were sequenced and raw reads were
obtained at an average depth of 55.0 ± 8.8 million (M) paired-end reads per sample. After
removing adaptors and low-quality sequences, as well as human genomic contaminants,
the clean data were finally retrieved with the percentage quality of sequences accounting
for 99.1 ± 0.4% on average (Table S6).

Figure 2. Schematic overview of whole metagenome shotgun (WMGS) sequencing assessment and meta-gene catalogue of
Thai gut microbiome construction. (A) Assessment of WMGS sequencing data obtained from the gut microbiome of Thai
adults and (B) An integrated pipeline for constructing the meta-gene catalogue of Thai gut microbiome.

Once all the clean reads obtained from each sample were combined, a large fraction
of 163.5 Gb was acquired and processed through an integrated pipeline for construct-
ing the meta-gene catalogue of Thai gut microbiome (Figure 2B). This resulted in the
identification of a total of 3.8 million (M) genes from the metagenomics of Thai gut mi-
crobiome, which comprises 1.7 M newly predicted genes (see Methods, Section 4.5) and
2.1 M genes homologous with the global reference gene catalogue of human gut micro-
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biome [2]. Taken together, the meta-gene catalogue of Thai gut microbiome is available at
https://github.com/sysbiomics/meta-gene (accessed on 19 February 2021).

2.3. Annotation of Genes Associated with Metabolic Functions of Thai Gut Microbiome from
WMGS Sequencing Data

To annotate genes associated with the metabolic functions of the gut microbiome in
Thai adults, a total of 3.8 M genes in the meta-gene catalogue of Thai gut microbiome were
searched against the KEGG database. As a result, there were 1.6 M genes classified to the
KEGG orthology (KO), which distributed them into five functional categories including
metabolism (0.77 M genes), genetic information processing (0.38 M genes), cellular pro-
cesses (0.32 M genes), environmental information processing (0.09 M genes) and poorly
characterized functions (0.08 M genes), as shown in Figure 3A.

Figure 3. Number of genes involved in metabolic functions of Thai gut microbiome. (A) The
distribution of genes across the five main functional categories, and (B) The number of genes
involved in metabolic functions across the different metabolic pathways.

Considering the major category, 559,792 genes out of 0.77 M genes that belonged to
the functional category of metabolism, were annotated with metabolic functions involved
in metabolism of carbohydrates (192,915 genes), amino acids (108,385 genes), cofactors
and vitamins (69,076 genes), nucleotide (64,668 genes), energy (45,553 genes), glycan
(35,040 genes), lipid (28,238 genes) and other metabolites, e.g., terpenoids, polyketides
and secondary metabolites (15,917 genes), as illustrated in Figure 3B. The results clearly
showed that the highest number of genes were involved in carbohydrate metabolism of
the gut microbiome in Thai adults. In addition, a comparative analysis of the meta-gene
catalogues of the gut microbiome at the functional level, between Thai adults from this
study and multiple populations from China, European countries and US was performed [2].
According to KEGG, the results showed that a total of 66 KOs were uniquely found in Thai
adults, as listed in Table S7. Among these KOs, the number of enzymes involved in carbo-
hydrate metabolism were identified, for example, sorbose reductase (EC: 1.1.1.289) and

https://github.com/sysbiomics/meta-gene
https://github.com/sysbiomics/meta-gene
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1,5-anhydro-D-fructose reductase (EC: 1.1.1.263). As observed, the results are in agreement
with earlier shotgun metaproteomic studies in Sardinian and Swedish cohorts [31–33].

2.4. Bacterial Community-Wide Metabolic Functional Analysis Involved in
Carbohydrate Metabolism

To further assess the taxonomic profiles of the gut microbiome involved in carbo-
hydrate metabolism, the analysis of bacterial community-wide metabolic functions was
thoroughly applied to 192,915 genes involved in carbohydrate metabolism. As a result,
99.93% of genes were taxonomically assigned to Firmicutes, Bacteroidetes, Proteobacteria
and Actinobacteria, as depicted in Figure 4A. Among these phyla, Firmicutes displayed a
significant number of genes (127,403 genes), which accounted for 66.0% of carbohydrate
metabolism, of which 98,874 out of 127,403 genes were identified in the class of Clostridia.
This result highlighted how to best find the families, genus or species level and their
functional roles in carbohydrate metabolism. As a result of the utility of the bacterial
community-wide metabolic functional analysis, a total of 98,874 genes involved in carbo-
hydrate metabolism were grouped according to their taxonomic lineages at genus level
and metabolic functions/pathways. Accordingly, as schematized in Figure 4B, two families
across 12 genera were identified. Promisingly, nine genera in Lachnospiraceae and three
genera in Ruminococcaceae were identified with a high number of genes involved in carbo-
hydrate metabolism under the threshold of 10,000 genes/family and 2000 genes/genus.
Furthermore, metabolic functions were associated with central carbon metabolism (e.g., gly-
colysis, TCA (tricarboxylic acid) cycle and pentose-phosphate pathway), sugar metabolism
and utilization (e.g., pentoses, fructose, mannose, galactose, starch, and sucrose), glyoxylate
and dicarboxylate metabolism, and propionate and butyrate biosynthesis.

More interestingly, the high number of gene functions identified among butyrate-
producing bacteria, such as Blautia, Enterocloster, Mediterraneibacter (Ruminococcus torques)
and Faecalibacterium, include glucokinase (EC: 2.7.1.2), 6-phosphofructokinase (EC: 2.7.1.11),
phosphoglucomutase (EC: 5.4.2.2), phosphoglycerate kinase (EC: 2.7.2.3), formate C-
acetyltransferase (EC: 2.3.1.54), acetolactate synthase (EC: 2.2.1.6), and many other enzymes
responsible for the essential steps of glycolysis and propionate and butyrate biosynthesis
(Table S8). These observed results were consistent with the metabolic traits of butyrate-
producing bacteria for butyrate production, which are normally identified in gut micro-
biome in healthy adults [32].

Moreover, we also found that Roseburia exhibited a high number of genes involved
in xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (Xfp, ECs: 4.1.2.9 and
4.1.2.22), which is the key catalytic enzyme in the hemicellulosic complex oligosaccharides
fermentation pathway [34]. This finding is consistent with the most recent genome-scale
metabolic reconstruction of the carbohydrate degradation and utilization pathways of
Roseburia, which demonstrated the ability of Roseburia species to ferment pentoses (e.g.,
xylose and arabinose) and oligosaccharides (e.g., xylooligosaccharides, arabinoxylans and
arabinogalactans) as carbon sources for growth through Xfp [35]. Additionally, it has been
noticed that Xfp plays a pivotal role in intermediary carbohydrate metabolism, providing
an efficient way of generating acetyl-CoA and acetate when grown on pentose as the
sole carbon source [36]. Here, acetyl-CoA and acetate are key metabolites for dietary
carbohydrate and SCFA metabolism, which have been shown to be important for the
growth and butyrate production of the gut microbiome, e.g., Faecalibacterium [37]. This
result suggests that bacterial community-wide metabolic functions are key for gut health
through providing preferential metabolic precursors, e.g., acetyl-CoA and acetate for
butyrate production.
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Figure 4. Bacterial community-wide metabolic functional analysis involved in carbohydrate
metabolism. (A) Total number of genes involved in carbohydrate metabolism across the differ-
ent phyla, and (B) Distribution of genes involved in metabolic functions and pathways involved
in carbohydrate metabolism across taxonomic profile of bacterial community. Abbreviated en-
zyme names are as follows: GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Xfp xylulose-5-
phosphate/fructose-6-phosphate phosphoketolase.

3. Conclusions

Our Illumina-based metagenomic data were obtained by using 16S rRNA gene and
WMGS sequencing methods and were analyzed through the integration of bioinformat-
ics and a systems biology approach, which successfully identified the number of genes
involved in carbohydrate metabolism of the gut microbiome in Thai adults, and showed
they belonged to dominant families, e.g., Lachnospiraceae and Ruminococcaceae of the Fir-
micutes phylum. Further identification of bacterial community-wide metabolic functions
highlighted the importance of Roseburia and Faecalibacterium involvement in central car-
bon metabolism, sugar utilization and metabolism for butyrate biosynthesis. Future
potential applications of microbiome-based large-scale datasets to determine microbial
community-wide metabolic functions are therefore needed to shed further light on the
gut-microbiome-metabolic axis implicated in human health.



Genes 2021, 12, 331 8 of 12

4. Materials and Methods
4.1. Participants and Fecal Sample Collection

Sixty Thai adults living in Bangkok and near the capital city of Thailand, aged between
18–45 years and with a BMI of 18.5–24.0 kg/m2 were enrolled in the cohort. It is worth
noting that this study was initially expected to have a high number of participants under
stringent inclusion and exclusion criteria for age, health status and dietary intake. Of
60 Thai adults, 56 participants hereby completed the study under criteria as summarized
in Table S1. Briefly, all participants (non-smoker with regular bowel habits including
normal defecation frequency) were recruited at King Chulalongkorn Memorial Hospital,
Bangkok, Thailand in 2019. All participants had no history of intestinal diseases and
diarrhea in the months prior to sampling as well as no family history of colorectal cancer.
In addition, none of them had received antibiotics within at least three months as well
as probiotics, prebiotics and synbiotics within one month before fecal sample collection.
Participants with food intolerance or allergy to coconut were also excluded. This study
was approved by the Thai Clinical Trials Registry under the trial identification number
TCTR20190426003 and the Ethics Committee of King Chulalongkorn Memorial Hospital,
Bangkok, Thailand (IRB No. 388/61). All methods were performed in accordance with the
relevant guidelines and regulations. Written consent was obtained from all participants.
Apart from the demographic and clinical characteristics, dietary information was also
collected from all participants by a dietary record questionnaire form that inquired about
their menu and food ingredients. The INMUCAL-Nutrients V.4.0, Database version NB.4
was used for estimating the energy (kcal/day) and nutrient content (g, mg, or µg) of
the recorded foods of the participants before the fecal sample collection. As detailed in
Table S2, the average total energy expenditure from the recorded foods of all participants
(1400.90 ± 736.17 kcal/day) was consistent with the energy intake of a sample of Thai
sedentary workers in the Bangkok city area, aged 20–50 years (1428 and 1485 kcal/day for
females and males, respectively) [24]. In particular, the energy intake from carbohydrate
(48.64 ± 10.77%), protein (19.05 ± 6.79%) and total fat (32.31 ± 8.58%) were similar across
the studied cohort at the time of sampling (Table S3). Notably, all participants did not
consume excessive alcohol (<3 drinks per day). For sample collection, fresh fecal was
collected and placed into the collection tube and kept it in a cooler bag, immediately at the
time of defecation. Then, they were delivered to the laboratory and stored at −80 ◦C.

4.2. Metagenomic DNA Extraction

The 56 fecal samples were prepared for metagenomic DNA extraction according to
the modified method of Nakphaichit et al. (2014) [38]. Briefly, the fecal samples were
centrifuged at 13,000× g for 2 min and supernatant was discarded. The remaining pellet
was washed twice by 1 mL phosphate-buffered saline solution (PBS) with centrifugation
at 13,000× g for 5 min and subsequently suspended with 900 µL PBS. The total DNA
was extracted and purified from the suspension sample by the magnetic bead-based
method using a bead meter and QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany),
respectively, and stored at −20 ◦C.

4.3. 16S rRNA Gene Sequencing, Reads Processing and Microbial Composition Analysis

The variable regions of V3-V4 of 16S rRNA gene from a total of 56 metagenomic
DNA samples were amplified by forward and reverse primers, i.e., Imina-V3-V4-F (5′-
TCGTCGG CAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and
Imina-V3-V4-R (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACTACHVG
GGTATCTAATCC-3′) with cycling conditions of initial denaturation of 94 ◦C for 2 min,
followed by 25 cycles of denaturation at 94 ◦C for 20 s, annealing at 57 ◦C for 30 s, extension
at 72 ◦C for 30 s and a final extension at 72 ◦C for 10 min. The amplified products were
then purified using NucleoSpin Gel and PCR Clean-up (MACHEREY-NAGEL Inc., USA)
according to the manufacturer’s protocol and sequenced by the Illumina MiSeq platform
at Omics Sciences and Bioinformatics Center (Chulalongkorn University, Thailand). Raw
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sequencing pair-end reads were subjected to quality filtering using BBDuk program in
the BBTools (Bushnell B.—sourceforge.net/projects/bbmap) and the primer at the 5′ was
removed using seqtk (https://github.com/lh3/seqtk (accessed on: 25 November 2020)).
After chimera removal through the DADA2 pipeline [39], the high-quality clean reads
were obtained with an average of 41,843 ± 10,553 reads per sample and subjected for
taxonomy identification by QIIME 2 (version 2019.1) [40] using Greengenes version 13.8 as
a bacterial/archaeal 16S rRNA gene sequence database [41]. The cut-off confidence was
indicated at 0.7.

For association analysis between demographic and clinical characteristics of the study
cohort (i.e., age, gender and BMI), as well as the relative abundance of the dominant
bacterial taxa across the 56 participants, the Spearman’s rank correlation was applied
using the “cor.test” command in the “stats” package version 4.0.2 in R. Using a threshold
(p < 0.05), the strong, the moderate and the weak associations between the variables were
defined by the absolute value of the correlation coefficient (r) ranges of 0.5–1.0, 0.3–0.49
and 0.1–0.29, respectively [22]. A scatter plot was used to display the correlation between
the two variables (i.e., relative abundance and BMI), which was generated by using the
“ggscatter” command in the “ggpubr” package version 0.4.0 in R.

4.4. Assessment of Whole Metagenome Shotgun (WMGS) Sequencing Data Obtained from the Gut
Microbiome of Thai Adults

The metagenomic DNA isolated from the fecal samples of ten participants selected
from the 56 participants were purified and they underwent quality control assessments
including: (1) DNA purity test by Nanodrop (OD260/OD280), (2) DNA degradation and
potential contamination test by agarose gel electrophoresis, and (3) DNA quantification
by Qubit 2.0. Afterwards, the qualified DNA samples were sheared into fragments by
restriction enzyme and then ligated with adapter for NEBNext library preparation for
Illumina sequencing. The genomic DNA libraries were generated and subsequently se-
quenced with paired-end mode of 150 base pairs (2 × 150 bps) by Illumina NovaSeq6000
System at Novogene (Hong Kong, China) as shown in Figure 2A. Raw sequencing data
were subjected to quality filtering and a human genome removal process using BBDuk
and BBMap programs in the BBTools (Bushnell B.—sourceforge.net/projects/bbmap). The
clean reads unmapped to human genome were yielded as the WMGS sequencing data
from each sample.

4.5. An Integrated Pipeline for Constructing the Meta-Gene Catalogue of Thai Gut Microbiome
from WMGS Sequencing Data

In order to obtain virtually all of the prevalent gut microbial genes in Thai adults, the
WMGS sequencing data were processed through an integrated pipeline for constructing
the meta-gene catalogue of Thai gut microbiome (Figure 2B). This integrated pipeline was
developed based on the reference-based and de novo assembly-based methods. For the
reference-based method, the WMGS sequencing data were mapped against the integrated
gene catalogue (IGC) of human gut microbiome, which comprised of 9,879,896 genes in
total, according to previously described method using BWA-MEM and SAMtools [2,42–44],
in which only genes mapped with WMGS sequencing data were retrieved. For the latter
method, the WMGS sequencing data were subjected to the de novo assembly process by
MEGAHIT version 1.2.9 [45] and meta-gene prediction. Briefly, the assembly of metage-
nomic datasets, i.e., assembled contigs larger than 500 bps of gut microbiome of individual
samples was performed for gene prediction by Prodigal version 2.6.3 [46], in which, the
predicted gene length higher than 100 bps from all individuals were retrieved. Then,
overall retrieved genes from the two methods were combined and redundant genes were
eliminated by clustering using CD-HIT version 4.8.1 with a 95% sequence identity [47].
Finally, the meta-gene catalogue of the Thai gut microbiome was obtained and subjected to
functional annotation and taxonomic assignment by eggNOG-mapper version 2.0.0 [48,49]
and GhostKOALA [50], respectively (Figure 2B).

https://github.com/lh3/seqtk
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Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/3/331/s1, Supplementary Figure S1: Spearman’s correlation between the abundance of
Ruminococcaceae and BMI of 56 Thai adults. Supplementary Table S1: Demographic characteristics of
56 Thai adults participating in the study cohort. Supplementary Table S2: The energy and nutrient
contents of the recorded foods of 56 Thai adults. Supplementary Table S3: The energy distribution
of the recorded foods of 56 Thai adults. Supplementary Table S4: The relative abundances of the 10
dominant bacterial families identified in the fecal samples of 56 Thai adults. Supplementary Table S5:
Spearman’s correlation between the abundance of the dominant bacterial families and demographic
and clinical characteristics of 56 Thai adults. Supplementary Table S6: Whole metagenome shotgun
(WMGS) sequencing data of the ten selected samples out of 56 Thai adults. Supplementary Table S7:
The list of unique KOs for the meta-gene catalogue of Thai gut microbiome. Supplementary Table S8:
Bacterial community-wide metabolic functional analysis of gut microbiome involved in carbohydrate
metabolism.

Author Contributions: N.R. analyzed the data, wrote the manuscript; M.N., N.S. and S.K. carried
out the cohort study and sample preparation; W.S. assisted in sample preparation for DNA extrac-
tion; W.W. collected clinical data and fecal samples; W.V. conceived and designed all experiments,
interpreted all results, and supervised throughout the study; N.R., M.N., N.S. and W.V. revised the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received funding from Kasetsart University Research and Development
Institute (KURDI; grant no.

Genes 2021, 12, 331 10 of 13 
 

 

including: (1) DNA purity test by Nanodrop (OD260/OD280), (2) DNA degradation and 
potential contamination test by agarose gel electrophoresis, and (3) DNA quantification 
by Qubit 2.0. Afterwards, the qualified DNA samples were sheared into fragments by re-
striction enzyme and then ligated with adapter for NEBNext library preparation for Illu-
mina sequencing. The genomic DNA libraries were generated and subsequently se-
quenced with paired-end mode of 150 base pairs (2 × 150 bps) by Illumina NovaSeq6000 
System at Novogene (Hong Kong, China) as shown in Figure 2A. Raw sequencing data 
were subjected to quality filtering and a human genome removal process using BBDuk 
and BBMap programs in the BBTools (Bushnell B.—sourceforge.net/projects/bbmap). The 
clean reads unmapped to human genome were yielded as the WMGS sequencing data 
from each sample.  

4.5. An Integrated Pipeline for Constructing the Meta-Gene Catalogue of Thai Gut Microbiome 
from WMGS Sequencing Data 

In order to obtain virtually all of the prevalent gut microbial genes in Thai adults, the 
WMGS sequencing data were processed through an integrated pipeline for constructing 
the meta-gene catalogue of Thai gut microbiome (Figure 2B). This integrated pipeline was 
developed based on the reference-based and de novo assembly-based methods. For the 
reference-based method, the WMGS sequencing data were mapped against the integrated 
gene catalogue (IGC) of human gut microbiome, which comprised of 9,879,896 genes in 
total, according to previously described method using BWA-MEM and SAMtools [2,42–
44], in which only genes mapped with WMGS sequencing data were retrieved. For the 
latter method, the WMGS sequencing data were subjected to the de novo assembly pro-
cess by MEGAHIT version 1.2.9 [45] and meta-gene prediction. Briefly, the assembly of 
metagenomic datasets, i.e., assembled contigs larger than 500 bps of gut microbiome of 
individual samples was performed for gene prediction by Prodigal version 2.6.3 [46], in 
which, the predicted gene length higher than 100 bps from all individuals were retrieved. 
Then, overall retrieved genes from the two methods were combined and redundant genes 
were eliminated by clustering using CD-HIT version 4.8.1 with a 95% sequence identity 
[47]. Finally, the meta-gene catalogue of the Thai gut microbiome was obtained and sub-
jected to functional annotation and taxonomic assignment by eggNOG-mapper version 
2.0.0 [48,49] and GhostKOALA [50], respectively (Figure 2B). 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Supple-
mentary Figure S1: Spearman’s correlation between the abundance of Ruminococcaceae and BMI of 
56 Thai adults. Supplementary Table S1: Demographic characteristics of 56 Thai adults participating 
in the study cohort. Supplementary Table S2: The energy and nutrient contents of the recorded foods 
of 56 Thai adults. Supplementary Table S3: The energy distribution of the recorded foods of 56 Thai 
adults. Supplementary Table S4: The relative abundances of the 10 dominant bacterial families iden-
tified in the fecal samples of 56 Thai adults. Supplementary Table S5: Spearman’s correlation be-
tween the abundance of the dominant bacterial families and demographic and clinical characteris-
tics of 56 Thai adults. Supplementary Table S6: Whole metagenome shotgun (WMGS) sequencing 
data of the ten selected samples out of 56 Thai adults. Supplementary Table S7: The list of unique 
KOs for the meta-gene catalogue of Thai gut microbiome. Supplementary Table S8: Bacterial com-
munity-wide metabolic functional analysis of gut microbiome involved in carbohydrate metabo-
lism. 

Author Contributions: N.R. analyzed the data, wrote the manuscript; M.N., N.S. and S.K. carried 
out the cohort study and sample preparation; W.S. assisted in sample preparation for DNA extrac-
tion; W.W. collected clinical data and fecal samples; W.V. conceived and designed all experiments, 
interpreted all results, and supervised throughout the study; N.R., M.N., N.S. and W.V. revised the 
manuscript. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received funding from Kasetsart University Research and Development In-
stitute (KURDI; grant no. ป-3.1(ด)7.28.62). -3.1(

Genes 2021, 12, 331 10 of 13 
 

 

including: (1) DNA purity test by Nanodrop (OD260/OD280), (2) DNA degradation and 
potential contamination test by agarose gel electrophoresis, and (3) DNA quantification 
by Qubit 2.0. Afterwards, the qualified DNA samples were sheared into fragments by re-
striction enzyme and then ligated with adapter for NEBNext library preparation for Illu-
mina sequencing. The genomic DNA libraries were generated and subsequently se-
quenced with paired-end mode of 150 base pairs (2 × 150 bps) by Illumina NovaSeq6000 
System at Novogene (Hong Kong, China) as shown in Figure 2A. Raw sequencing data 
were subjected to quality filtering and a human genome removal process using BBDuk 
and BBMap programs in the BBTools (Bushnell B.—sourceforge.net/projects/bbmap). The 
clean reads unmapped to human genome were yielded as the WMGS sequencing data 
from each sample.  

4.5. An Integrated Pipeline for Constructing the Meta-Gene Catalogue of Thai Gut Microbiome 
from WMGS Sequencing Data 

In order to obtain virtually all of the prevalent gut microbial genes in Thai adults, the 
WMGS sequencing data were processed through an integrated pipeline for constructing 
the meta-gene catalogue of Thai gut microbiome (Figure 2B). This integrated pipeline was 
developed based on the reference-based and de novo assembly-based methods. For the 
reference-based method, the WMGS sequencing data were mapped against the integrated 
gene catalogue (IGC) of human gut microbiome, which comprised of 9,879,896 genes in 
total, according to previously described method using BWA-MEM and SAMtools [2,42–
44], in which only genes mapped with WMGS sequencing data were retrieved. For the 
latter method, the WMGS sequencing data were subjected to the de novo assembly pro-
cess by MEGAHIT version 1.2.9 [45] and meta-gene prediction. Briefly, the assembly of 
metagenomic datasets, i.e., assembled contigs larger than 500 bps of gut microbiome of 
individual samples was performed for gene prediction by Prodigal version 2.6.3 [46], in 
which, the predicted gene length higher than 100 bps from all individuals were retrieved. 
Then, overall retrieved genes from the two methods were combined and redundant genes 
were eliminated by clustering using CD-HIT version 4.8.1 with a 95% sequence identity 
[47]. Finally, the meta-gene catalogue of the Thai gut microbiome was obtained and sub-
jected to functional annotation and taxonomic assignment by eggNOG-mapper version 
2.0.0 [48,49] and GhostKOALA [50], respectively (Figure 2B). 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Supple-
mentary Figure S1: Spearman’s correlation between the abundance of Ruminococcaceae and BMI of 
56 Thai adults. Supplementary Table S1: Demographic characteristics of 56 Thai adults participating 
in the study cohort. Supplementary Table S2: The energy and nutrient contents of the recorded foods 
of 56 Thai adults. Supplementary Table S3: The energy distribution of the recorded foods of 56 Thai 
adults. Supplementary Table S4: The relative abundances of the 10 dominant bacterial families iden-
tified in the fecal samples of 56 Thai adults. Supplementary Table S5: Spearman’s correlation be-
tween the abundance of the dominant bacterial families and demographic and clinical characteris-
tics of 56 Thai adults. Supplementary Table S6: Whole metagenome shotgun (WMGS) sequencing 
data of the ten selected samples out of 56 Thai adults. Supplementary Table S7: The list of unique 
KOs for the meta-gene catalogue of Thai gut microbiome. Supplementary Table S8: Bacterial com-
munity-wide metabolic functional analysis of gut microbiome involved in carbohydrate metabo-
lism. 

Author Contributions: N.R. analyzed the data, wrote the manuscript; M.N., N.S. and S.K. carried 
out the cohort study and sample preparation; W.S. assisted in sample preparation for DNA extrac-
tion; W.W. collected clinical data and fecal samples; W.V. conceived and designed all experiments, 
interpreted all results, and supervised throughout the study; N.R., M.N., N.S. and W.V. revised the 
manuscript. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received funding from Kasetsart University Research and Development In-
stitute (KURDI; grant no. ป-3.1(ด)7.28.62). )7.28.62).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Ethics Committee of King Chulalongkorn Memorial Hospital, Bangkok, Thailand (IRB No. 388/61).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Raw sequencing data are available in the National Center for Biotech-
nology Information Sequence Read Archive (NCBI-SRA) repository under the BioProject accession
number PRJNA637175.

Acknowledgments: This research was also supported by Kasetsart University Research and Devel-
opment Institute (KURDI) and the Postdoctoral Fellowship from Kasetsart University. N.R. gratefully
acknowledges the Postdoctoral Fellowship from Kasetsart University for financial support. W.V.
would also like to thank the Department of Zoology, International SciKU Branding (ISB), Faculty of
Science, Kasetsart University, Omics Center for Agriculture, Bioresources, Food, and Health, Kaset-
sart University (OmiKU). The authors thank Preecha Patumcharoenpol and Amornthep Kingkaw
for valuable comments and discussion. The authors also acknowledge the Computational Biomod-
elling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart
University for computing facilities and resources and Department of Biotechnology, Faculty of Agro-
Industry, Kasetsart University and Division of Allergy and Immunology, Department of Pediatrics,
Faculty of Medicine, Chulalongkorn University for laboratory facilities and cohort study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science

2005, 307, 1915. [CrossRef]
2. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A

human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [CrossRef]
3. Sung, J.; Kim, S.; Cabatbat, J.J.T.; Jang, S.; Jin, Y.S.; Jung, G.Y.; Chia, N.; Kim, P.J. Global metabolic interaction network of the

human gut microbiota for context-specific community-scale analysis. Nat. Commun. 2017, 8, 15393. [CrossRef] [PubMed]
4. LeBlanc, J.G.; Chain, F.; Martín, R.; Bermúdez-Humarán, L.G.; Courau, S.; Langella, P. Beneficial effects on host energy metabolism

of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 2017, 16, 79. [CrossRef]
5. Cianci, R.; Pagliari, D.; Piccirillo, C.A.; Fritz, J.H.; Gambassi, G. The microbiota and immune system crosstalk in health and

disease. Mediat. Inflamm. 2018, 2018, 2912539. [CrossRef] [PubMed]
6. Benitez-Paez, A.; Kjolbaek, L.; Gomez Del Pulgar, E.M.; Brahe, L.K.; Astrup, A.; Matysik, S.; Schott, H.F.; Krautbauer, S.; Liebisch,

G.; Boberska, J.; et al. A multi-omics approach to unraveling the microbiome-mediated effects of arabinoxylan oligosaccharides in
overweight humans. mSystems 2019, 4, e00209-19. [CrossRef] [PubMed]

https://www.mdpi.com/2073-4425/12/3/331/s1
https://www.mdpi.com/2073-4425/12/3/331/s1
http://doi.org/10.1126/science.1104816
http://doi.org/10.1038/nature08821
http://doi.org/10.1038/ncomms15393
http://www.ncbi.nlm.nih.gov/pubmed/28585563
http://doi.org/10.1186/s12934-017-0691-z
http://doi.org/10.1155/2018/2912539
http://www.ncbi.nlm.nih.gov/pubmed/29849485
http://doi.org/10.1128/mSystems.00209-19
http://www.ncbi.nlm.nih.gov/pubmed/31138673


Genes 2021, 12, 331 11 of 12

7. Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the
interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [CrossRef]

8. Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al.
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450.
[CrossRef] [PubMed]

9. Magnúsdóttir, S.; Ravcheev, D.; de Crécy-Lagard, V.; Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests
co-operation among gut microbes. Front. Genet. 2015, 6, 148. [CrossRef] [PubMed]

10. Barrett, E.; Ross, R.P.; O’Toole, P.W.; Fitzgerald, G.F.; Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the
human intestine. J. Appl. Microbiol. 2012, 113, 411–417. [CrossRef]

11. Doumatey, A.P.; Adeyemo, A.; Zhou, J.; Lei, L.; Adebamowo, S.N.; Adebamowo, C.; Rotimi, C.N. Gut microbiome profiles are
associated with type 2 diabetes in urban Africans. Front. Cell. Infect. Microbiol. 2020, 10, 63. [CrossRef] [PubMed]

12. Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham,
K.S.; Brislawn, C.J.; et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019, 569, 655–662.
[CrossRef] [PubMed]

13. Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut
flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [CrossRef]

14. Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.; Cheung, C.P.; Chen, N.; et al. Alterations in gut
microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020, 159, 944–955. [CrossRef] [PubMed]

15. Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.;
Fulton, R.S.; et al. The human microbiome project, structure, function and diversity of the healthy human microbiome. Nature
2012, 486, 207–214.

16. Almeida, A.; Mitchell, A.L.; Boland, M.; Forster, S.C.; Gloor, G.B.; Tarkowska, A.; Lawley, T.D.; Finn, R.D. A new genomic
blueprint of the human gut microbiota. Nature 2019, 568, 499–504. [CrossRef] [PubMed]

17. Vangay, P.; Johnson, A.J.; Ward, T.L.; Al-Ghalith, G.A.; Shields-Cutler, R.R.; Hillmann, B.M.; Lucas, S.K.; Beura, L.K.; Thompson,
E.A.; Till, L.M.; et al. US immigration westernizes the human gut microbiome. Cell 2018, 175, 962–972. [CrossRef] [PubMed]

18. Ruengsomwong, S.; Korenori, Y.; Sakamoto, N.; Wannissorn, B.; Nakayama, J.; Nitisinprasert, S. Senior Thai fecal microbiota
comparison between vegetarians and non-vegetarians using PCR-DGGE and real-time PCR. J. Microbiol. Biotechnol. 2014, 24,
1026–1033. [CrossRef]

19. Kittipongpattana, P.; Chatchatee, P.; Senavonge, A.; Vongsangnak, W.; Patumcharoenpol, P.; Weerapakorn, W.; Nitisinprasert, S.;
Roytrakul, S.; Nakphaichit, M.; Suratannon, N. Alteration of gut microbiota and microbial products in distinct allergic phenotypes:
Data from an Asian birth cohort study. J. Allergy Clin. Immunol. 2020, 145, AB64. [CrossRef]

20. Kisuse, J.; La-ongkham, O.; Nakphaichit, M.; Therdtatha, P.; Momoda, R.; Tanaka, M.; Fukuda, S.; Popluechai, S.; Kespechara, K.;
Sonomoto, K.; et al. Urban diets linked to gut microbiome and metabolome alterations in children: A comparative cross-sectional
study in Thailand. Front. Microbiol. 2018, 9, 1345. [CrossRef]

21. Ruengsomwong, S.; La-Ongkham, O.; Jiang, J.; Wannissorn, B.; Nakayama, J.; Nitisinprasert, S. Microbial community of healthy
Thai vegetarians and non-vegetarians, their core gut microbiota and pathogen risk. J. Microbiol. Biotechnol. 2016, 26, 1723–1735.
[CrossRef] [PubMed]

22. La-ongkham, O.; Nakphaichit, M.; Nakayama, J.; Keawsompong, S.; Nitisinprasert, S. Age-related changes in the gut microbiota
and the core gut microbiome of healthy Thai humans. 3 Biotech 2020, 10, 276. [CrossRef]

23. Hillmann, B.; Al-Ghalith, G.A.; Shields-Cutler, R.R.; Zhu, Q.; Gohl, D.M.; Beckman, K.B.; Knight, R.; Knights, D. Evaluating the
information content of shallow shotgun metagenomics. mSystems 2018, 3, e00069-18. [CrossRef]

24. Ivanovitch, K.; Klaewkla, J.; Chongsuwat, R.; Viwatwongkasem, C.; Kitvorapat, W. The intake of energy and selected nutrients
by Thai urban sedentary workers: An evaluation of adherence to dietary recommendations. J. Nutr. Metab. 2014, 2014, 145182.
[CrossRef] [PubMed]

25. Nishijima, S.; Suda, W.; Oshima, K.; Kim, S.W.; Hirose, Y.; Morita, H.; Hattori, M. The gut microbiome of healthy Japanese and its
microbial and functional uniqueness. DNA Res. 2016, 23, 125–133. [CrossRef] [PubMed]

26. Zhang, J.; Guo, Z.; Xue, Z.; Sun, Z.; Zhang, M.; Wang, L.; Wang, G.; Wang, F.; Xu, J.; Cao, H.; et al. A phylo-functional core of gut
microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J. 2015, 9, 1979–1990. [CrossRef]

27. Rahayu, E.S.; Utami, T.; Mariyatun, M.; Hasan, P.N.; Kamil, R.Z.; Setyawan, R.H.; Pamungkaningtyas, F.H.; Harahap, I.A.;
Wiryohanjoyo, D.V.; Pramesi, P.C.; et al. Gut microbiota profile in healthy Indonesians. World J. Gastroenterol. 2019, 25, 1478–1491.
[CrossRef]

28. Menni, C.; Jackson, M.A.; Pallister, T.; Steves, C.J.; Spector, T.D.; Valdes, A.M. Gut microbiome diversity and high-fibre intake are
related to lower long-term weight gain. Int. J. Obes. 2017, 41, 1099–1105. [CrossRef] [PubMed]

29. John, G.K.; Mullin, G.E. The gut microbiome and obesity. Curr. Oncol. Rep. 2016, 18, 45. [CrossRef]
30. Patumcharoenpol, P.; Nakphaichit, M.; Panagiotou, G.; Senavonge, A.; Suratannon, N.; Vongsangnak, W. MetGEMs Toolbox:

Metagenome-scale models as integrative toolbox for uncovering metabolic functions and routes of human gut microbiome. PLoS
Comput. Biol. 2021, 17, e1008487. [CrossRef] [PubMed]

31. Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy,
S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [CrossRef] [PubMed]

http://doi.org/10.1194/jlr.R036012
http://doi.org/10.1038/nature12721
http://www.ncbi.nlm.nih.gov/pubmed/24226770
http://doi.org/10.3389/fgene.2015.00148
http://www.ncbi.nlm.nih.gov/pubmed/25941533
http://doi.org/10.1111/j.1365-2672.2012.05344.x
http://doi.org/10.3389/fcimb.2020.00063
http://www.ncbi.nlm.nih.gov/pubmed/32158702
http://doi.org/10.1038/s41586-019-1237-9
http://www.ncbi.nlm.nih.gov/pubmed/31142855
http://doi.org/10.1038/nature09922
http://doi.org/10.1053/j.gastro.2020.05.048
http://www.ncbi.nlm.nih.gov/pubmed/32442562
http://doi.org/10.1038/s41586-019-0965-1
http://www.ncbi.nlm.nih.gov/pubmed/30745586
http://doi.org/10.1016/j.cell.2018.10.029
http://www.ncbi.nlm.nih.gov/pubmed/30388453
http://doi.org/10.4014/jmb.1310.10043
http://doi.org/10.1016/j.jaci.2019.12.725
http://doi.org/10.3389/fmicb.2018.01345
http://doi.org/10.4014/jmb.1603.03057
http://www.ncbi.nlm.nih.gov/pubmed/27381339
http://doi.org/10.1007/s13205-020-02265-7
http://doi.org/10.1128/mSystems.00069-18
http://doi.org/10.1155/2014/145182
http://www.ncbi.nlm.nih.gov/pubmed/25525512
http://doi.org/10.1093/dnares/dsw002
http://www.ncbi.nlm.nih.gov/pubmed/26951067
http://doi.org/10.1038/ismej.2015.11
http://doi.org/10.3748/wjg.v25.i12.1478
http://doi.org/10.1038/ijo.2017.66
http://www.ncbi.nlm.nih.gov/pubmed/28286339
http://doi.org/10.1007/s11912-016-0528-7
http://doi.org/10.1371/journal.pcbi.1008487
http://www.ncbi.nlm.nih.gov/pubmed/33406089
http://doi.org/10.1038/nature12506
http://www.ncbi.nlm.nih.gov/pubmed/23985870


Genes 2021, 12, 331 12 of 12

32. Tanca, A.; Abbondio, M.; Palomba, A.; Fraumene, C.; Manghina, V.; Cucca, F.; Fiorillo, E.; Uzzau, S. Potential and active functions
in the gut microbiota of a healthy human cohort. Microbiome 2017, 5, 79. [CrossRef] [PubMed]

33. Verberkmoes, N.C.; Russell, A.L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarson, J.; Lefsrud, M.G.; Apajalahti, J.; Tysk, C.;
Hettich, R.L.; et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009, 3, 179–189. [CrossRef]

34. Scarborough, M.J.; Lawson, C.E.; Hamilton, J.J.; Donohue, T.J.; Noguera, D.R. Metatranscriptomic and thermodynamic insights
into medium-chain fatty acid production using an anaerobic microbiome. mSystems 2018, 3, e00221-18. [CrossRef]

35. Hillman, E.T.; Kozik, A.J.; Hooker, C.A.; Burnett, J.L.; Heo, Y.; Kiesel, V.A.; Nevins, C.J.; Oshiro, J.M.K.I.; Robins, M.M.; Thakkar,
R.D.; et al. Comparative genomics of the genus Roseburia reveals divergent biosynthetic pathways that may influence colonic
competition among species. Microb. Genom. 2020, 6, mgen000399. [CrossRef] [PubMed]

36. Panagiotou, G.; Andersen, M.R.; Grotkjaer, T.; Regueira, T.B.; Hofmann, G.; Nielsen, J.; Olsson, L. Systems analysis unfolds the
relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. PLoS ONE 2008, 3, e3847. [CrossRef]

37. Duncan, S.H.; Holtrop, G.; Lobley, G.E.; Calder, A.G.; Stewart, C.S.; Flint, H.J. Contribution of acetate to butyrate formation by
human faecal bacteria. Br. J. Nutr. 2007, 91, 915–923. [CrossRef] [PubMed]

38. Nakphaichit, M.; Thanomwongwattana, S.; Phraephaisarn, C.; Sakamoto, N.; Keawsompong, S.; Nakayama, J.; Nitisinprasert, S.
The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler
chickens. Poult. Sci. 2011, 90, 2753–2765. [CrossRef]

39. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef]

40. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arummugam, M.;
Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef]

41. McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An
improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J.
2012, 6, 610–618. [CrossRef] [PubMed]

42. Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association
study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [CrossRef]

43. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef]

44. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence align-
ment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef] [PubMed]

45. Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [CrossRef]

46. Hyatt, D.; LoCascio, P.F.; Hauser, L.J.; Uberbacher, E.C. Gene and translation initiation site prediction in metagenomic sequences.
Bioinformatics 2012, 28, 2223–2230. [CrossRef]

47. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012,
28, 3150–3152. [CrossRef] [PubMed]

48. Huerta-Cepas, J.; Forslund, K.; Coelho, L.P.; Szklarczyk, D.; Jensen, L.J.; von Mering, C.; Bork, P. Fast genome-wide functional
annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 2017, 34, 2115–2122. [CrossRef]

49. Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.;
Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090
organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [CrossRef]

50. Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and
metagenome sequences. J. Mol. Biol. 2016, 428, 726–731. [CrossRef] [PubMed]

http://doi.org/10.1186/s40168-017-0293-3
http://www.ncbi.nlm.nih.gov/pubmed/28709472
http://doi.org/10.1038/ismej.2008.108
http://doi.org/10.1128/mSystems.00221-18
http://doi.org/10.1099/mgen.0.000399
http://www.ncbi.nlm.nih.gov/pubmed/32589566
http://doi.org/10.1371/journal.pone.0003847
http://doi.org/10.1079/BJN20041150
http://www.ncbi.nlm.nih.gov/pubmed/15182395
http://doi.org/10.3382/ps.2011-01637
http://doi.org/10.1038/nmeth.3869
http://doi.org/10.1038/s41587-019-0209-9
http://doi.org/10.1038/ismej.2011.139
http://www.ncbi.nlm.nih.gov/pubmed/22134646
http://doi.org/10.1038/nature11450
http://doi.org/10.1093/bioinformatics/btp324
http://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://doi.org/10.1093/bioinformatics/btv033
http://doi.org/10.1093/bioinformatics/bts429
http://doi.org/10.1093/bioinformatics/bts565
http://www.ncbi.nlm.nih.gov/pubmed/23060610
http://doi.org/10.1093/molbev/msx148
http://doi.org/10.1093/nar/gky1085
http://doi.org/10.1016/j.jmb.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/26585406

	Introduction 
	Results and Discussion 
	Assessment of Taxonomic Profiles of Gut Microbiome from Thai Adults Using 16S rRNA Gene Sequencing Data 
	Construction of Meta-Gene Catalogue of Thai Gut Microbiome from WMGS Sequencing Data 
	Annotation of Genes Associated with Metabolic Functions of Thai Gut Microbiome from WMGS Sequencing Data 
	Bacterial Community-Wide Metabolic Functional Analysis Involved in Carbohydrate Metabolism 

	Conclusions 
	Materials and Methods 
	Participants and Fecal Sample Collection 
	Metagenomic DNA Extraction 
	16S rRNA Gene Sequencing, Reads Processing and Microbial Composition Analysis 
	Assessment of Whole Metagenome Shotgun (WMGS) Sequencing Data Obtained from the Gut Microbiome of Thai Adults 
	An Integrated Pipeline for Constructing the Meta-Gene Catalogue of Thai Gut Microbiome from WMGS Sequencing Data 

	References

