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Curvature controlled defect 
dynamics in topological active 
nematics
Francesco Alaimo1,2, Christian Köhler1 & Axel Voigt1,2,3

We study the spatiotemporal patterns that emerge when an active nematic film is topologically 
constraint. These topological constraints allow to control the non-equilibrium dynamics of the 
active system. We consider ellipsoidal shapes for which the resulting defects are 1/2 disclinations 
and analyze the relation between their location and dynamics and local geometric properties of the 
ellipsoid. We highlight two dynamic modes: a tunable periodic state that oscillates between two 
defect configurations on a spherical shape and a tunable rotating state for oblate spheroids. We further 
demonstrate the relation between defects and high Gaussian curvature and umbilical points and point 
out limits for a coarse-grained description of defects as self-propelled particles.

Active systems are characterized by constant input of energy, which is converted by autonomous constituents into 
directed motion, leading to spatiotemporal patterns. These phenomena range from the macro-scale, e.g. flocks 
of birds1 or schools of fish2 to the micro-scale, e.g. bacterial colonies3, migrating tissue cells4 or active nematic 
films5. If such systems are confined on curved surfaces, topological constraints strongly influence the emerging 
spatiotemporal patterns. Using these topological constraints to guide collective cell behavior might be a key in 
morphogenesis6 and active nematic films on surfaces have been proposed as a promising road to engineer syn-
thetic materials that mimic living organisms7. However, the complex dynamics of such topological active systems 
remains wildly unexplored. As in passive systems the mathematical Poincaré-Hopf theorem forces topological 
defects to be present in the nematic film. On a sphere this leads to an equilibrium defect configuration with four 
+1/2 disclinations arranged as a tetrahedron8–10, see Fig. 1 The disclinations repel each other and this arrange-
ment maximizes their distance. In active systems unbalanced stresses drive this configuration out of equilibrium. 
But in contrast to planar active nematics with continuous creation and annihilation of defects11–14 the creation of 
additional defect pairs can be suppressed on curved surfaces, which is demonstrated in refs 7 and 15 for an active 
nematic film of microtubules and molecular motors, encapsulated within a spherical lipid vesicle. This provides 
an unique way to study the dynamics of the four defects in a controlled manner and led to the discovery of a 
tunable periodic state that oscillates between the tetrahedral and a planar defect configuration. We confirm this 
finding by computer simulations, see Fig. 1.

Within a coarse-grained model +1/2 disclinations in planar active nematic films can be effectively described 
by self-propelled particles with a velocity proportional to the activity5. In ref. 7 this relation is extended to spher-
ical nematics. Four self-propelled particles on a sphere also oscillate between the planar and tetrahedral con-
figuration. Both descriptions can be quantitatively linked to each other, but also differences can be pointed out, 
which become more evident for more general surfaces. For non-constant Gaussian curvature constraints local 
geometric properties influence the position of the defects and thus can be used to control defect dynamics. We are 
concerned with a systematic investigation of the impact of such constraints on the emergence of complex patterns 
and oscillations.

Results
For active systems in flat geometries various theoretical descriptions have been proposed, see e.g. refs 16 and 17.  
One of the most studied approaches are Vicsek-like models18. They consider particles, which travel at a con-
stant speed to represent self-propulsion, whose direction changes according to interaction rules which comprise 
explicit alignment and noise. In contrast to equilibrium systems long-range order emerges for two dimensional 
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systems with low noise. We consider an extension of these models which includes excluded volume19–22 and clas-
sify systems by the head-tail symmetry of their particles in polar or nematic. We do not include any noise term in 
our model and also do not consider hydrodynamic interactions. For active polar particles these models have been 
formulated on a sphere23 and on ellipsoidal surfaces24. In these situations a robust rotating-band structure around 
the waist, with two +1 defects at the poles is found on a sphere. On an ellipsoid the location of the defects is linked 
to local geometric properties, similar to vortices in surface fluids25–28. The defects are related to the Gaussian 
curvature and to the umbilical points of the surface (see Materials and Methods for a geometric description). For 
spheroidal ellipsoids there are two umbilical points, which locate the two +1 defects. This configuration is more 
stable for prolate spheroids, where the umbilical points are at the points of maximal Gaussian curvature at the 
poles and less stable for oblate spheroids, where the umbilical points and the maximum in Gaussian curvature are 
separated. As in the spherical case a rotating-band structure is formed, with possible sub-bands which counter 
rotate depending on the initial condition. New dynamical features are found for non-spherical ellipsoids. They 
have four umbilical points. For lower velocities the defects encircle pairs of umbilical points and for larger veloci-
ties the defects are found at the high Gaussian curvature regions between each pair of umbilical points. With this 
richness in dynamics found for active polar particles on non-constant Gaussian curvature surfaces, we expect 
similar behavior for active nematic particles and ask up to which complexity of the geometry the dynamics of the 
four 1/2 disclinations can be effectively described by self-propelled polar particles.

To answer these questions, we first analyze the spherical case in more detail. In addition to the oscillation 
between the planar and tetrahedral defect configuration on a spherical vesicles and a tunable frequency by the 
activity and self-propulsion velocity we also track the positions of the defects. Computing the power spectrum 
from the time series for the average angle α α= ∑ <i j ij

1
6

, where the angles αij denote the angle between the radii 
from the center of the sphere As a consequence for each activity in the nematic film a self-propulsion velocity can 
be determined in the coarse-grained description, which resamples the frequency of the planar-tetrahedral defect 
oscillation. Differences between both descriptions are found if we compare the trajectories of the defects and 
self-propelled particles. Within the considered time interval the 1/2 disclinations are locally confined, each defect 
only covers part of the vesicle. This is in contrast to the trajectories of the self-propelled particles, which rotate 
within a band structure leaving parts of the vesicle uncovered, see Fig. 2. The experimental defect trajectories in 
ref. 7 differ from both descriptions, they are global, covering the whole vesicle. The discrepancy might be a con-
sequence of the considered short-range interactions in the model for the active nematic film.

We next consider spheroidal ellipsoids. They are characterized by the aspect ratio a/c and a = b, with a, b and 
c the length of the major axis. Due to the symmetry all geometric properties can be characterized with respect to 
the polar axis. As the geometry is topologically equivalent to a sphere we expect for passive systems again a min-
imal energy configuration with four 1/2 disclinations. They still try to maximize their distance, but are now also 
influenced by local geometric properties. The 1/2 disclinations tend to accumulate in regions of high Gaussian 
curvature29, 30. Computer simulations for thin nematic shells have shown that for prolate ellipsoids pairs of defects 

Figure 1.  Defect oscillations: (a) Top: Kymograph showing the time evolution of the angles αij. Bottom: 
Oscillation of the average angle 〈α〉. The blue and the green line correspond to the planar (〈α〉 = 120°) and 
tetrahedral (〈α〉 = 109.5°) defect configuration. (b) Snapshots showing the planar and tetrahedral defect 
configuration within a simulation of 1.000 particles (the four 1/2 disclinations are highlighted, the director field 
is shown - black lines - and the color coding corresponds to the nematic order parameter P, with minima in the 
four defects). The results are in excellent agreement with the experimental results in ref. 7. A video is provided 
in the SI.

http://SI
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are located at opposite ends close to the poles. The defects in each pair arrange at opposite sides of the surface 
and tend to align perpendicular to the pair at the other pole29. As the distance between the defects is no longer 
maximized, the geometric effect seems to dominate the repulsion in this case. For oblate ellipsoids the 1/2 discli-
nations are found near the waist, where the Gaussian curvature is largest. Again two pairs of defects are found, 
one on each side. They repel each other and are mutually perpendicular to the other pair, leading to an alternating 
ring of 1/2 disclinations, one above and one below the waist. This behavior seems to be independent of the film 
thickness29, we have confirmed this behavior by our surface model without activity.

For active systems we observe again oscillatory behavior, see Fig. 3. For prolate spheroids (a/c < 1) only two 
1/2 disclinations are located at the poles, whereas the other two oscillate around the waist. The oscillations are 
very noisy and can not be tuned by the activity. Even if the distance between the two 1/2 disclinations at the waist 
is not optimal the average distance between all four defects is larger than in the passive case. While the 1/2 discli-
nations are still attracted by the high curvature regions at the poles, the active forces push one of the defects away 
leading to the observed metastable configuration. Within a transition zone ( ≈a c/ 1) we observe similar behavior 
as in the spherical case (a/c = 1) without any defect localization. The behavior changes for oblate spheroids 
(a/c > 1), where all four 1/2 disclinations are along the waist, maintaining a maximal distance to each other. This 
behavior is similar to the passive system. However, the defects now oscillate between both sides. The frequency of 
the alternating oscillations above and below the waist can be extracted for various activities. However, a clear 
functional dependency on the activity could not be found. If the aspect ratio is further increased the situation 
changes to pairs of 1/2 disclinations which rotate around the umbilical points at the poles. The defects are no 

Figure 2.  Model comparison: (a) Top: Oscillation of the average angle 〈α〉 from Fig. 1, Middle: The power 
spectrum of 〈α〉 obtained by using the Fast Fourier Transform (FFT), the peak is associated with the planar-
tetrahedral oscillations, Bottom: Oscillation of the average angle 〈α〉 for four self-propelled particles. (b) Top: 
Trajectories of the four 1/2 disclinations, each color corresponds to one defect, shown on the sphere and using 
the Gall-Peters projection, Bottom: same as Top but for the four self-propelled particles. (c) Frequency for the 
planar-tetrahedral oscillation corresponding to the peak in the power spectrum as a function of the activity 
for various realizations (blue curve). The trajectories of the four self-propelled particles show a perfect planar-
tetrahedral oscillation, the frequency is obtained as the distance between consecutive maxima and shown as a 
function of the self-propulsion velocity (red curve).
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longer located at positions of maximal Gaussian curvature. The high curvature value at the waist creates a distor-
tion of the nematic film, which can be seen from the nematic order parameter. It somehow serves as a barrier for 
the 1/2 disclinations preventing them from crossing the waist. The rotation is a consequence of the activity and 
the unfavorable short distance with respect to each other. The frequency of the rotation depends on the activity 
and can be tuned, see Fig. 4. Also the transition to this rotating state depends on the strength of the activity. As 
stronger the activity as longer it is possible for the defects to cross the barrier at the waist. A tendency to locate the 
defects away from the high Gaussian curvature waist can also be seen for the passive case.

The four different regimes are shown in Fig. 5 using the average height h of the defects along the polar axis as 
the order parameter η = h . We have η = 1 if all defects are at the poles, η = 0 if they are at the waist and 
η = .0 5 if they are homogeneously distributed along the polar axis.

Within the coarse-grained description by self-propelled polar particles, using the corresponding 
self-propulsion velocity according to Fig. 2, we obtain a qualitatively different behavior. Within the considered 
parameter regime, the values for η are independent of the self-propulsion velocity. For aspect ratios a/c < 0.5 the 
particles rotate on closed trajectories, well separated from each other at approximately equal distance along the 
polar axis. The transition zone with sphere-like behavior is more extended than for the nematic defects. For 
0.5 < a/c < 2 a band structure is formed around the waist, which shrinks with increasing aspect ratio. For a/c > 2 
all particles are positioned at the waist, rotating in one direction and maintaining their distance. The regime with 
pairwise rotating defects around the umbilical points could not be found within the coarse-grained model (A 
more detailed description is given in the SI).

Non-spherical ellipsoids, which are characterized by ≠a b, ≠a c and ≠b c, have four umbilical points. They 
are either prolate-like or oblate-like but in any case have two distinct points of maximal Gaussian curvature. We 
thus analyze the distance of the four 1/2 disclinations with respect to the umbilical points and the points of max-
imal Gaussian curvature using the average geodesic distances 〈DDU〉 and 〈DDG〉, respectively. Figure 6, which is 
inspired by ref. 24 shows the distances as a function of the aspect ratios a/b and a/c. Spheroids are also included, 
the first column shows the previous results for oblate and the diagonal for prolate geometries. Each row in 
between thus corresponds to a transition from oblate-like to prolate-like geometries. In most cases the 1/2 discli-
nations are closer to the high Gaussian curvature points than to the umbilical points, with the only exception for 
oblate-like ellipsoids with a large aspect ration a/c ≥ 4. This leads to the conclusion that 1/2 disclinations tend to 
be attracted by points of high Gaussian curvature.

Figure 3.  Defect localization on spheroids: (a) Snapshot showing the defect configuration within a simulation 
of 1.000 particles on a prolate spheroid with a/c = 0.25 (the four 1/2 disclinations are highlighted, the director 
field - black lines - is shown and the color coding corresponds to the nematic order parameter P, with minima in 
the defects). In addition the trajectories of the four 1/2 disclinations are shown (each color corresponds to one 
defect). The height hi for each defect with respect to the waist is also shown as a function of time. (b) same as (a) 
for a oblate spheroid with a/c = 2. The oscillations of the four defects have the same frequency and alternate with 
respect to each other. Videos for (a) and (b) are provided in the SI.

http://SI
http://SI
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Discussions
In ref. 7 it was shown that in a confined active system, a dense suspension of microtubules and molecular motors 
on the surface of a spherical lipid vesicle, cyclic oscillations between defect configurations can be observed. They 
result from topological constraints and the coupling between velocity fields and defect-defect interactions. These 
findings may push forward the design of systems that harness the ability of nanoscale active matter to trans-
form chemical energy into mechanical work. On non-spherical surfaces defects are known to be strongly influ-
enced by local geometric properties. The induced geometric interaction can lead to locating of defects, which is 
established for vortices in surface fluids25, 26, 28 and vortices, sources and sinks in polar systems24, 31. For strong 

Figure 4.  Defect rotations: (a) Snapshots from above and below showing the defect configuration within a 
simulation with 1.000 particles on an oblate spheroid with a/c = 6 (the four 1/2 disclinations are highlighted, the 
director field - black lines - is shown and the color coding corresponds to the nematic order parameter P, with 
minima in the defects). (b) Oscillations of the angle measuring the rotation around the umbilical points (top 
and bottom) and (c) frequency of the oscillation as a function of activity for two different aspect ratios. A video 
for case a/c = 6 is provided in the SI.

Figure 5.  Phase diagram: Phase diagram for patterns and oscillations on spheroidal ellipsoids for 1/2 
disclinations and self-propelled particles. The results for the coarse-grained description by self-propelled 
particles are independent of the activity in the corresponding regime to the considered velocities v0. From left to 
right we have (blue) the situation for prolate shapes with location of two defects at the poles, leading to η > .0 5, 
(green) spherical like shapes with no clear location of the defects, leading to η ≈ .0 5, (yellow) oblate shapes with 
location of the defects along the waist, leading to η < .0 5, for larger a/c we obtain a phase transition towards the 
rotating state, with the defects located around the poles, leading to η > .0 5. The transition towards this state 
depends on the activity.

http://SI
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variations in geometric properties it has even be found computationally that lower energy minima in passive sys-
tems can be formed by creating additional defects27, 31 for surface fluids and surface polar particles, respectively. 
Our work extends the understanding of the delicate relations between topology, geometry and defect dynam-
ics on non-spherical shapes for the system considered in ref. 7. We are concerned with ellipsoidal surfaces and 
identify crucial geometric features which influence collective motion patterns in active nematic films. We have 
shown that 1/2 disclinations are related to both, maxima in the Gaussian curvature and umbilical points of the 
surface. On prolate spheroids maxima in Gaussian curvature and umbilical points coincide, they are located at 
the two poles and attract the 1/2 disclinations. However, the repulsive defect-defect interaction allows only two 
of the defects to be located at the poles, the other two try to maximize their distance and are located around the 
waist, where they oscillate. Spherical like shapes lead to similar behavior as observed on a sphere, with no dis-
tinguished location of the defects and an oscillation between a tetrahedral and planar defect configuration. For 
oblate spheroids all 1/2 disclinations are located at the waist, the region of high Gaussian curvature. They again 
maximize their distance and oscillate. With increasing aspect ratio a/c the situation changes. The defects can no 
longer cross the waist, where the high Gaussian curvature leads to a distortion of the nematic order. As a conse-
quence pairs of 1/2 disclinations rotate around the umbilical points. The frequency of the rotation depends on 
the activity and can be tuned. This found rotating state is an other step towards a controllable transformation of 
chemical into mechanical energy in nanoscale active matter and asks for experimental validation. The results for 
non-spheroidal ellipsoids confirm these findings, even if the separation of the different states is not as distinct as 
in Fig. 5. A smooth transition of the dynamics between prolate-like and oblate-like shapes is identified in Figure, 
with a clear tendency of the 1/2 disclinations to locate at points of maximal Gaussian curvature. Only for extreme 
values of a/c and almost spheroidal shapes the situation changes and the rotating state around the umbilical points 
could be identified.

We further demonstrate that the proposed coarse-grained description of 1/2 disclinations in active nematic 
matter by self-propelled particles fails if geometric properties come into play. Already on spherical shapes the 
trajectories of the defects and the self-propelled particles differ significantly and on spheroidal ellipsoids both 
descriptions not even qualitatively agree.

In summary we explored the complex interaction of topology, geometry and defect dynamics in nematic 
films on ellipsoidal surfaces and demonstrated how topological constraints and geometric properties can 
be used to control the collective behavior in nanoscale active matter. The non-linear coupling between 
non-constant Gaussian curvature and defect-defect interactions leads to tunable spatiotemporal patterns. 
Among these findings is a stable rotating state on strongly oblate-like ellipsoids, which suggests an other path-
way towards a controllable generation of mechanical work in nanoscale active matter. The richness of physics 
observed in our work will further increase if the underlying shape is deformable. First experimental results of 
such an interplay between activity-driven defect motion and deformability of the vesicle are already shown in 
ref. 7 and discussed in ref. 32. However, for theoretical descriptions of these phenomena new methods will be 
required.

Figure 6.  Relation to geometric properties: Average geodesic distance of 1/2 disclinations to the umbilical 
points 〈DDU〉 (left) and to the points of maximal Gaussian curvature 〈DDG〉 (right) for non-spheroidal and 
spheroidal (first column - oblate and diagonal - prolate) ellipsoids of different aspect ratio. Only for the extreme 
case of a/c = 4, 6 and a/b = 1.1 the disclinations are closer to the umbilical points. Also in these cases a rotating 
state as in Fig. 4 can be observed, which however is not as regular, see SI. In all other situations the disclinations 
are closer to the points of maximal Gaussian curvature. A video for case a/b = 1.1 and a/c = 6 is provided in 
the SI.

http://SI
http://SI
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Materials and Methods
We consider a more general approach than the Viscek-like models confined on a sphere or an ellipsoids in refs 
23 and 24.

Equations of motion.  We consider N active particles of mass mi = 1, which are constrained to move on a 
surface algebraically described by g(q) = 0, with particle positions = …q q q( , , )N1 . Newton’s equations of motion 
(EOM) with holomonic constraint g(q) read:

λ= = − =
t t

G gq v v F q q 0d
d

, d
d

( ) , ( ) (1)
T

with forces = …F F F( , , )N1  and velocities = …v v v( , , )N1 . λ λ λ= …( , , )N1  are the Lagrange multipliers and 
= ∇G gq q( ) ( )q  is the Jacobian of g(q). The force Fi can be written as:

∑γ= − + +
=

F v F F
(2)

i i
j

N

ij i
ac

1

where γ is the translational friction coefficient, Fi
ac the active force acting on particle i and Fij the pair-interaction 

force between particle i and particle j. Additionally every particle has an internal degree of freedom, its orienta-
tion ni. Denoting by ωi the angular velocity we have the following EOM for the orientational dynamics:

ω ω γ ω= × = − +
t t

n n T q nd
d

, d
d

( , ) (3)i i i i a i i

where γa is the rotational friction coefficient and Ti(q, n) is the torque acting on particle i, with = …n n n( , , )N1 . 
Depending on the specific form for the active force Fi

ac, the pair-interaction force Fij, the torque Ti(q, n) and the 
holomonic constraint g(q) we will be able to describe polar and nematic active systems on various surfaces.

Active polar particles.  For active polar particles on a sphere of radius R we would specify23 = vF ni
ac

i0  with 
a constant self-propulsion velocity v0, σ= −

−
k qF (2 )ij ij

g
q

q qi j

ij

 for σ<q 2ij
g  and Fij = 0 otherwise, a short-range 

repulsion between spheres of radius σ, with elastic constant k, euclidean distance = | − |q q qij i j  and geodesic 
distance = | − |q q qij

g
i j g . Parallel orientations between neighboring particles are favored and therefore we use the 

aligning torque = − ∑ ×∈JT q n n n( , ) ( )i j U i i j( ) , with J > 0 the strength and U(i) the first shell of neighbors of 
particle i, identified as all the particles within a cutoff radius of 2.4σ from ri. The holomonic constraint for a sphere 
of radius R reads = + + −g q q q Rq( )i i i i,1

2
,2
2

,3
2 2, with = ∈q q qq ( , , )i i i i,1 ,2 ,3

3 . This approach can be used to 
reproduce the results in ref. 23 in which the overdamped limit, the euclidean distance instead of the geodesic 
distance and an additional noise term are considered.

Active nematic particles.  To describe active nematic particles we use the tensor order parameter 
δ= −αβ α β αβQ n n(3 )j j j1

2
, where the upper index corresponds to the particles and the lower indices represent the 

components x, y, z. The active force does not distinguish ‘head from tail’ and it thus has the form:

∑= −
−

.
∈

v
q

F Q
q q

(4)
i
ac

j U i

j i j

ij
0

( )
2

The torque reflects the fact that both parallel and anti-parallel configurations are favored. It has the form:

∑= ⋅ × .
∈

JT n n n n(( ) ( ))
(5)

i
j U i

i j i j
( )

The pair-interaction force Fij and the holomonic constraint g(q) are the same as in the active polar particles case. 
The simulation parameters for this case are σ γ γ = . . .J k v( , , , , , ) (10, 3, 2, 0 1, 2 5, 0 7)a 0  unless otherwise 
specified.

Coarse-grained defect description.  In the coarse-grained defects description by active polar particles refs 
5 and 7 the elastic energy between defects is ∼E qlog( )ij

g , where qij
g  is the geodesic distance between the defects. 

The pair-interaction force is therefore =
−

Fij
k

q q

q q

ij
g

i j

ij

, which is no longer short-ranged. Defects align anti-parallel 

to each other and the restoring torque strength is ref. 7 = ∑
θ

∈T J cot( )i j U i( ) 2
ij , where θij is the angle between ni and 

nj. The vector form for the torque can be written in terms of the orientations as:

∑= + ⋅
×

| × |∈
JT n n

n n

n n
(1 )

(6)
i

j U i
i j

i j

i j( )
2

Finally the defects are treated as self-propelled particles and the active force is = vF ni
ac

i0 . The simulation param-
eters for this case are γ γ = . . .J k v( , , , , ) (3, 4, 0 1, 2 5, 0 11)a 0  unless otherwise specified. A similar model can also 
be derived33 by rigorous perturbation exapansion. It differsin 2D from ref. 5 by a velocity-dependent factor. 
Computational studies on curved surfaces indicate that also with this model the complex defect dynamics on 
surfaces of non-constant Gaussian curvature can not be obtained.
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Geometric properties.  Besides a sphere we consider two classes of ellipsoidal surfaces: (i) spheroidal 
and (ii) non-spheroidal. These ellipsoids are characterized by their major axis a, b and c and have non-constant 
Gaussian curvature

=
+ − + −

.K a b c
c b c a b y b a c z( ( ) ( ) ) (7)

2 6 6

4 4 4 2 2 2 4 2 2 2 2

For spheroidal ellipsoids two of these values are equal. The algebraic description reads = +g q( )i
q

a
i,1
2

2  

+ − =1 0
q

b

q

c
i i,2
2

2
,3
2

2 . An umbilic point is a point where the maximum and minimum curvatures coincide. At an 
umbilical point, the surface is “locally spherical”. These points are found at






±

−
−

±
−
−






a a b

a c
c b c

a c
,0,

(8)

T
2 2

2 2

2 2

2 2

In Fig. 7 we show three different ellipsoids, where umbilical points are highlighted and the color coding corre-
sponds to the Gaussian curvature K.

Numerical methods.  Eq. 1 have been numerically solved using RATTLE discretization34. The equation for 
the orientational dynamic eq. 3 have been first solved unconstrained with the torque Ti projected on to the nor-
mal plane of the surface at point ri. Afterwards the orientation ni has been projected on to the tangent plane of the 
surface at point ri and the angular velocity ωi takes the direction of the normal to the surface at point ri.

We fix the number of particles N = 1000 and the volume fraction ϕ  1 (defined as the ratio of the area occu-
pied by the particles and the total surface area, i.e. φ = Nπσ2/A). The surface area for the sphere is equal to 
A = 4πR2, with R = 31.6. The ellipsoid parameters a, b, c have been chosen such that the surface area is equivalent 
to the surface area of the sphere and the aspect ratio is respected.

The nematic order parameter P is defined as the weighted local average of the tensor order parameter Q with 
respect to the weight = −w qij ij

1.
Defects are calculated as the local center of mass for regions where the local order parameter Pi is smaller 

then 0.45 (some corrections were required for regions of high Gaussian curvature, due to strong distortion of the 
director field).

The simulation code is implemented in C++, using the GeographicLib library35 for the calculation of the geo-
desic distances. However, for non-spheroidal ellipsoids the euclidean distance has been used. This approximation 
can be justified by the short-range interactions. Data have been analyzed using Python, Ovito36 and Paraview.
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