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a b s t r a c t 

The findings based on whole transcriptome sequencing suggest that alternative splicing occurs 

in approximately 95% of human multi-exon genes, thus, playing a crucial role in promoting pro- 

teome diversity. According to the latest GENCODE annotations, most genes have less than four 

transcripts, positively correlating with the number of exons. Thus, it is more accurate to measure 

the splice variant efficiency of a gene with respect to the number of exons, which is a measure of 

Transcript Complexity (TC). In addition to that, the theoretical number of transcripts is substan- 

tially higher than the actual number of transcripts produced by Alternative Splicing Events, and 

the features restricting this phenomenon need to be explored. 

In this method, we have extracted the data of various features contributing to TC from different 

databases. Linear regression is used to identify the determinant features and to train and test the 

model of TC. The results indicate that exon length is the determining feature of TC, followed by 

coding potential, presence of chromatin signature, and 5 ′ splice site dinucleotide, all of which 

negatively affect a gene’s TC, except exon length. To further classify the genes based on TC, 

random forest is used to identify the determinant features. 

• The splicing efficiency of a gene can be inferred by the transcript complexity, which is the 

number of transcripts per exon. 

• CaTCH is a linear regression-based model to calculate the transcript complexity of human 

genes, which can be calculated from the exon length, coding potentiality, presence of chro- 

matin signature/s, and 5’ splice site dinucleotide. 
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Background 

The DNA sequence of a gene is converted to pre-RNA through transcription, which is further processed into mature RNA, also

called transcript. During post-transcriptional regulation, transcripts are processed by splicing to include only exonic sequences [1] . 

Some exons can be excluded or retained alternatively during the splicing process, resulting in distinct mature RNAs from the same

pre-RNA by a process known as alternative splicing [2] . Thus, alternative splicing events have an indispensable role in increasing

transcriptomic diversity. The errors in alternative splicing, including genetic changes and altered expression of trans-acting factors 

and pre-RNAs, lead to various diseases and syndromes such as cancer [3–5] . 

Few studies also mention structural and organizational differences in genes, such as the average length of the intronic region or

the average number of exons, which may explain the lower number of splice variants [6–8] . However, whether a low/high number

of exons or shorter/longer intronic length explains the lower efficiency of splice variants is unclear. Furthermore, different intron-

specific features such as 5’ and 3’ splice sites dinucleotides and their strength, count of the consensus sequence of branch points

and their distance from the 3’ splice site, or interaction with certain splicing factors reduce the rate of alternative splicing [9 , 10] .

Again, which 5’ (AT, GC, or GT) and 3’ (AC or AG) splice site dinucleotides and which branch points explain the lower efficiency of

splice variants is yet to be clarified. In this study, it is investigated how different features regulate alternative splicing of a gene and

contribute to its Transcript Complexity (TC). TC measures the number of alternative spliced product of a gene with respect to the

number of exons. Recently, the number of RNA-seq reads mapped to spliced versus unspliced transcripts has been used to measure

splicing efficiency [11] . Few studies have also found that high coding potential, high epigenetic regulation (e.g., H3K9me3 histone

modification), lower interaction with splicing factors (such as U2AF65 binding), fewer SR protein binding sites, and the lack of RNA

polymerase II phosphorylation at the 5’ splice site reduce alternative splicing efficiency [8 , 11–15] . 

The method proposed in the present study uses gene annotation from the GENCODE [13] project to find the determinant features

of Transcript Complexity (TC). The linear regression equation is derived to calculate the TC of genes, and the random forest is used to

classify any gene based on TC. In addition, the model is validated on other annotation data. In this study, the TC of a gene is explored

with different genomic and splicing features. It is observed that genes with high TC are associated with (i) longer exons and shorter

introns, (ii) introns having GC as a 5’ splice site dinucleotide, (iii) lower splice site strength, (iv) long distance between the 3’ splice

site and branch point, (v) less fraction of transcripts having chromatin signature and (vi) low conservation scores. 

Rationale 

Alternative splicing is thought to affect more than half of all human genes, and recent studies are exploring its biological impact on

a large scale [16] . Aside from having a role in generating proteome diversity, alternative splicing can also regulate gene expression

by splicing RNAs into unproductive transcripts, which are targeted for degradation. From the annotation data extracted from the 

GENCODE dataset and plotting the distribution of the number of transcripts for each gene, it is observed that most of the genes have

less than 4 transcripts, and no study has been reported to date on how many exons contribute to this number of transcripts ( Fig. 1A ).
Fig. 1. (A) Distribution of number of transcripts in genes (B) Correlation between the number of transcripts and the number of exons in all genes 

[ 𝜌 = 0.762 & p-value < 2.2e-16] (C) Distribution of theoretical and real number of transcripts produced by a particular number of exons. 
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Furthermore, there is a positive correlation between the number of exons and the number of transcripts [ 𝜌 = 0.762 & p-value <

2.2e-16]; thus, assessing a gene’s splice variant efficiency in relation to the number of exons is critical ( Fig. 1B ). Another gap in the

literature is the large difference between the theoretical number of transcripts produced by Skipping Exon (SE) and the actual number

of transcripts produced by either SE or considering all the Alternative Splicing Events ( Fig. 1C ). And there must be some undiscovered

gene-related attributes that limit alternative splicing. Despite numerous studies mentioning various regulatory mechanisms that limit 

the number of alternatively spliced transcripts of each expressed gene, no model has been reported to predict the TC of a gene. 

Material and methods 

Data collection 

For model building, the data from the release v41 annotated on the human genome sequence GRCh38.p13 is 

downloaded from GENCODE (gencode.v41.basic.annotation.gtf.gz) [17] . Additionally, for testing the model, various an- 

notation data are downloaded from the GENCODE [17] (version 38 - gencode.v38.basic.annotation.gtf.gz), the Ensembl 

database [18] (version 38 - Homo_sapiens.GRCh38.109.gtf), and the RefSeq database at NCBI [19] (T2T consortia data –

GCF_009914755.1_T2T_CHM13v2.0_genomic.gtf). The exon lengths are extracted from exon sequences, and intron lengths, 5’/3’ 

splice site dinucleotide, splice site strength, and the distance between branchpoint and 3’ splice site are retrieved from the intron

sequences from the UCSC table browser. For coding potential calculation, the FASTA sequences of transcripts are downloaded from

GENCODE (gencode.v38.transcripts.fa). The chromatin signature data is downloaded from the ENCODE project GEO database [20] . 

Transcript complexity calculation 

As mentioned previously [21] , the number of transcripts per exon is used to compute the TC of a gene. The number of transcripts

and exons for each gene is obtained from basic annotation datasets in order to calculate the TC for each gene. 

𝑇 𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ( 𝑇 𝐶 ) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇 𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑜𝑛𝑠 

Alternative splicing events analysis 

The GTF files of basic annotations from the GENCODE database and the SUPPA tool [22] are used to characterize the alternative

splicing event for each gene. The SUPPA tool is used to identify alternative splicing events involving the GT-AG and GC-AG introns.

Different types of alternative splicing events are categorized as follows: SE, alternative 5’/3’ splice site (A5/A3 or SS if both are

considered together), retained intron (RI), mutually exclusive exons (MX), and alternative first/last exon (AF/AL or FL if both are

considered together). 

Coding potential calculation 

From GENCODE, the FASTA sequence of transcripts (gencode.v38.transcripts.fa) is downloaded and used as the input file of the 

Coding Potential Calculator (CPC2), and the coding potential of each transcript is calculated [23] . CPC2 is the upgraded version of

CPC and, like CPC, uses SVM to construct classifiers without alignment. The main four features are the longest ORF length, Fickett

score, ORF integrity, and pI value. The pI’s characteristic is obtained by translating the longest ORF into an amino acid sequence

and then computing the physicochemical property of the pI of amino acids. Consequently, the pI feature performed well in the CPC2

model. 

Exon and intron analysis 

Human GRCh38 sequences are used to obtain exon and intron sequences from the Table Browser tool at UCSC [24] . Since single-

exon genes do not undergo splicing, they are all excluded from this analysis. The total exon length and intron length for each transcript

are determined by counting the number of bases. The 5’ and 3’ splice site dinucleotides are also extracted from each intron sequence.

The splice site strength, which refers to the efficiency with which a particular sequence motif is recognized as a splice site during

the process of pre-mRNA splicing, is calculated using the MaxEntScan web tool based on the “Maximum Entropy Principle’’ and

generalizes most prior probabilistic models of sequence motifs [25] . The MaxEntScan web tool predicts the strength of the splicing

sequences by considering both adjacent and non-adjacent dependencies between positions. 

Each 5’ and 3’ splice site contains consensus sequences recognized by the spliceosome, a complex of RNA and protein molecules

facilitating the splicing process. Splice site strength is determined by how closely its sequence aligns with the consensus sequence.

In calculating splice site strength, the 9 and 23 nucleotide sequence motifs from the 5’ and 3’ splice sites, respectively are extracted

from exon and intron sequences. The 5’ splice site is scored by MaxEntScan::score5ss using the input FASTA file containing sequence

motifs of 9 nucleotides (3 bases in exon and 6 bases in intron). The 3’ splice site is scored similarly using MaxEntScan::score3ss, and

each sequence motif in the FASTA file is 23 nucleotides long (20 bases in intron and 3 bases in exon). The maximum entropy model

(MAXENT) is used to calculate the strength of the 5’ and 3’ splice sites. The “GencoDymo’’ R package version 0.2.1 is used to obtain

the FASTA file of the sequence motifs used as input for the MaxEntScan function [9] . 
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Also, from each intron sequence, the position of occurrence of the consensus sequence of branching point (yUnAy) [26] and the

position of the 3’ splice site are extracted. The distance between the positions of the 3’ splice site and branch points is calculated, and

the median value of the distance of all introns is mapped against the gene. 

Chromatin signature analysis 

The narrowPeak files from publicly available ChIP-seq data are downloaded from ENCODE [20] for Homo sapiens GM12878 cell 

lines, and each experiment’s all replicates are chosen. For each histone modification of GM12878 cell line - H3K4me3 (GSE95899),

H3K9me3 (GSM733664), and H3K36me3 (GSM733679), annotatePeaks.pl command of the HOMER package [27] is used to annotate 

each peak. 

Splice site conservation analysis 

Using phastCons data from UCSC [24] , the conservation score of the 5’ and 3’ splice sites for each intron is assessed. The PhastCons

score for 99 vertebrate genomes’ multiple sequence alignments to the human genome (hg38.phastCons100way.bw) is downloaded. 

The positions of the 5’ and 3’ splice sites are retrieved from the intron sequence data (from UCSC) for each intron sequence, and the

phastCons conservation score is assigned to each position. 

Statistical analysis 

R version 4.2.1 is used for statistical and data analysis. Spearman’s rank correlation test is used to calculate the correlation between

the number of transcripts and the number of exons of the gene. A p-value < 0.05 is considered significant for all statistical tests. 

Model building and testing 

Exon length, intron length, coding potential, 5’ and 3’ splice site dinucleotide, the strength of 5’ and 3’ splice site, the distance

between branchpoint and 3’ splice site, presence or absence of chromatin signature and conservation score of 5’ and 3’ splice sites

are included in the data for the model building. Since the PhastCons score data from UCSC [24] for most genes are missing, they

are omitted from the final dataset. 70% (4024) of the dataset is used for training, whereas the remaining 30% (1725) is reserved for

testing. 

The caret R package [28] and linear regression with the base R function lm are used to predict the equation for calculating TC.

A Random Forest classifier is also built using the randomForest R package [29] to predict the gene’s TC. Based on the median value

of TC (0.333), the genes are divided into two major categories/classes, that is, “high’’ and “low. ” The high TC corresponds to those

of which the TC value is greater than 0.333, and the low TC corresponds to those with a TC value less than or equal to 0.333. Each

feature and various combinations of features are tested against TC to calculate the area under the curve (AUC) values using the

Metrics R package [30] . The auc function is used to determine the model’s accuracy. The best model is trained and further evaluated

on the test dataset using AUC obtained with the auc function. For AUC, 1000 and 500 permutations of splitting the data into training

and testing datasets are performed for linear regression and random forest, respectively. The roc function of the pROC R package is

used to plot the Receiver Operating Characteristic (ROC) curve for each test dataset [31] . 

Method validation 

Positive correlation between the number of transcripts and the number of exons 

Any gene composed of exons produces multiple numbers of transcripts, and it is observed that the number of transcripts is positively

correlated to the number of exons (Spearman correlation test, 𝜌 = 0.769 and p-value < 2.2e-16) ( Fig. 1B ). Most reports have focused

on genes with 1–4 transcripts because most genes have 1 to 4 transcripts. However, given the number of exons, some genes might

generate more transcripts. Splice variant efficiency can be calculated by measuring the number of transcripts reported for a gene with

respect to the number of exons. This is called a “Transcript Complexity’’ (TC) score for the gene. 

Determinant features of transcript complexity 

To identify the determinant feature of TC for the dataset of all genes, 37 linear models are constructed and assessed. The model

accuracy of the first eight models corresponds to one of the single features. Utilizing exon length, coding potential, or presence or

absence of chromatin signature, an AUC of 0.6–0.7 is achieved. It is observed that the AUC of any linear model constructed by

combining different features increases if at least two of the features in the model are either exon length, coding potential, or presence

of chromatin signature. No significant increase is observed in AUC for the last few models, which had more than four features.

Eventually, data from exon length, coding potential, presence of chromatin signature, and 5’ splice site dinucleotide is combined

for all genes, which resulted in an AUC rise to 0.75 ( Fig. 2A ). In conclusion, exon length, coding potential, presence of chromatin

signature, and 5’ splice site dinucleotides are the features that can influence TC. 
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Fig. 2. Distribution of AUC for each model taking different features of transcript complexity for all genes (A) calculating TC of a gene using linear 

regression, (B) classifying a gene based on TC using Random Forest classifier (It is calculated based on 1000 [linear regression] and 500 [random 

forest] permutations of splitting data into training and testing sets. The red box shows the best model and the determinant features of TC for all 

genes). 

 

 

 

 

 

 

Validation of the transcript complexity model 

The best linear model for predicting TC with an AUC of 0.78 includes features such as exon length, coding potential, presence of

chromatin signature, and 5’ splice site dinucleotide. The model is trained on 70% of the GENCODE dataset. (release v41 annotated

on the human genome sequence GRCh38.p13). Additionally, the equation to predict TC is also derived. The equation is as follows: 

𝑇 𝐶 = 0 . 3455+ ( 0 . 0002 ∗ 𝐸𝑥𝑜𝑛 𝐿𝑒𝑛𝑔𝑡ℎ ) − ( 0 . 0853 ∗ 𝐶𝑜𝑑𝑖𝑛𝑔 𝑃 𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ) − ( 0 . 0283 ∗ 𝐶ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑛 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ) − 

(
0 . 0178 ∗ 5′𝑆 𝑝𝑙𝑖𝑐𝑒 𝑆 𝑖𝑡𝑒 

)

Thus, the TC of any gene can be calculated just from the exon length, coding potential, presence of chromatin signature, and 5’

splice site dinucleotide data. And from the equation, it is observed that longer exons tend to increase the TC where as high coding

potentiality, presence of chromatin signature and AT as 5’ splice site dinucleotide decreases the TC of a gene. The model is further

validated with 30% of the GENCODE dataset (release v41) and with other annotation data as well - the GENCODE project (version 38

- gencode.v38.basic.annotation.gtf.gz), the Ensembl database (version 38 - Homo_sapiens.GRCh38.109.gtf), and the RefSeq database 

at NCBI (T2T consortia data – GCF_009914755.1_T2T_CHM13v2.0_genomic.gtf). 
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Fig. 3. Plot of Receiver Operating Characteristic (ROC) curve of the best model for (A) calculating TC of a gene using linear regression, (B) classifying 

a gene based on TC using random forest classifier for different test datasets (release v41 GENCODE dataset, release v38 GENCODE dataset, release 

v38 Ensembl dataset, and T2T consortia data from the RefSeq database). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the median value of TC (0.333), genes are divided into two groups, i.e., high and low TC, and are denoted by 1 and 0,

respectively. Based on the observed and predicted TC, the area under the curve (AUC) is determined, and the ROC curve is plotted

( Fig. 3A ). The 30% of the GENCODE dataset (release v41) has a maximum AUC of 0.7764, followed by the AUCs of the release v38

GENCODE dataset (0.637), the release v38 Ensembl dataset (0.589), and the T2T consortia data from the RefSeq database (0.563).

The inference is that the model performance is adequate in different validation datasets. 

Random forest classifier based on transcript complexity 

Like linear regression, 37 random forest classifiers are constructed and assessed ( Fig. 2B ). The classifier consists of 11 features, out

of which “Exon Length, ” “Coding Potential, ” “presence of Chromatin Signatures, ” and “Intron Length ” turn out to be the discriminatory

ones from the first eight models. This suggests that permutation in the actual values of these features drops the model accuracy to

a great extent. An accuracy of 79.9% is obtained utilizing version 41 of the GENCODE data. As this dataset consists of 2937 “low ”

and 2812 “high ” TC, no oversampling/undersampling is carried out to balance the data further. Other datasets such as “GENCODE

(version 38) ”, “Ensembl, ” and “T2T consortium data from RefSeq database ” are employed for model validation. Accuracy of 65.4%,

59.9%, and 60.2% are respectively received for the above-mentioned datasets ( Fig. 3B ). The accuracy and predictive power of random

forest servers the purpose of selecting it against other classifiers. 

Conclusion and future works 

Although this study identifies discriminatory features, it raises new questions for unexplored features. Are there any other features

affecting TC besides the mentioned features, and what are they? Is the polypyrimidine tract, which promotes the binding of spliceo-

somes, responsible for a gene’s higher TC? Is the enrichment of transcripts affected by splice site recognition and the spliceosome

assembling proteins such as specific enhancers, silencers, or SRSFs? What is the mechanism in which the strength of the 5’ splice site

sequence affects alternative splicing of a gene, in turn affecting the TC? Does subcellular localization or GT as a 5’ splice site influence

the TC of a gene? 

Although there are many unanswered questions, this study is the first to report a model for predicting the TC of a gene. With the

help of this model, the possible number of transcripts can be calculated for any novel gene by just using the determinant features.

This study also, for the first time, reports the model that classifies the gene based on TC. Further studies on finding mechanisms and

linking splicing efficiency to TC would help to understand alternative splicing in different genes. 

The current work calculates a gene’s TC by considering its exon count. Most prior studies assessed the effectiveness of gene splicing

by counting transcripts or estimating the ratio of reads mapped to spliced to unspliced forms. TC refers to the efficiency of a gene’s

splice variants, measured based on the number of transcripts per exon. Previous research focused on the transcript’s splicing efficiency

and found that splicing kinetics strongly depended on the nature and position of 5’ splice site flanking sequences. According to our

findings, longer exons, less coding potential, absence of chromatin signature, and weak 5’ splice site lead to inefficient splicing, giving

higher TC. 

Ethics statements 

No animal or human subjects were used in the present work. 
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