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Abstract

This study identifies and applies methods for evaluating the human response to pedestrian

lighting applications intended for future use by the municipality of Malmö, Sweden. The

methods employed provide a supplementary perspective to that given by the photometric

properties of the lighting applications. The study involved 89 participants from two age

groups (Young: N: 43, 19–31 yrs.; Elderly: N: 46, 62–77 yrs.). Data were collected in a full-

scale laboratory using a mock-up pedestrian pathway. Three lighting applications (one

ceramic metal halide and two LED) were presented and the participants’ behavior (walking

speed), perception (ability to perform visual tasks–recognize facial expressions, detect

obstacles, read street signpost), affective response, and evaluation of the lighting quality

were assessed.

The three lighting applications significantly differed with regard to the human response.

The facial expression recognition distance, sign reading distance and the obstacle detection

task, along with the evaluation of lighting quality and level of arousal, distinguished one of

the LEDs (Correlated Color Temperature: 3810, Color Rendering Index: 75, Scotopic/Phot-

opic ratio: 1.48) from the other two lighting applications–the participants performed better on

the visual tasks, and the lighting was perceived as brighter, more arousing and less pleas-

ant. Methods to capture human perception, evaluation and behavior in relation to outdoor

lighting, provide a valuable perspective that should be systematically applied when munici-

palities consider different pedestrian lighting applications.

1. Introduction

In the Nordic countries, daylight hours are very limited in winter. This makes pedestrians

dependent on outdoor lighting for ensuring functional levels of visual accessibility and per-

ceived safety when getting to and from work and while going about their everyday activities.

Several studies support the importance of outdoor lighting for the walkability of a neighbor-

hood [1–4] and it has been found to increase the level of walking after dark among all age

groups [5–11].

However, the advantages of artificial lighting come at a cost, both environmental and finan-

cial. There is potential for reducing this cost through saving between 30–50% of the total
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annual lighting energy use [12] by updating existing outdoor lighting installations in terms of

design and more energy-efficient light sources [13, 14]. When updating existing lighting appli-

cations, both technical and human aspects should be considered, to find pedestrian-friendly

lighting solutions that are adapted to user needs while minimizing energy use. Special consid-

eration must be taken to users from vulnerable groups, such as the elderly and the visually

impaired [15].

In Sweden, many municipalities are on the verge of updating their outdoor lighting infra-

structure, due to the age and state of existing installations, as well as for energy-conservation

reasons [16]. In view of the sheer scale of the investments, much is won if the human perspec-

tive is applied early in the decision-making process.

The technical aspects of lighting have a set of standard measures stipulated in national and

international standards [17–19]. However, there is to date no consensus on measures to cap-

ture pedestrians’ response to outdoor lighting. This study, part of the EU project Lighting

Metropolis [20] and a collaboration with the City of Malmö, evaluates the human response to

three different outdoor lighting applications proposed by the city authority for future use in

pedestrian environments in Malmö. In order to employ a within-subjects design with a wide

variety of measures and in order to reduce confounding factors (such as traffic, other pedestri-

ans and weather), a mock-up in a laboratory was used.

1.1 Previous research

Using a systematic literature review of the research on the human response to outdoor lighting

[21] as a starting point, the study set out to assess differences between lighting applications in

terms of the human response.

The systematic review suggested that three major themes of human responses were relevant

for the design of new energy-efficient pedestrian-friendly lighting installations. The first

theme, ‘Perception of the lit environment’, concerns how light is perceived differently depend-

ing on individual factors, such as age and eyesight, and on the various characteristics of the

light source, especially at mesopic vision. The second and third themes concern how the indi-

vidual responds to the perceived environment, either psychologically, ‘Evaluation of the lit

environment’, or physically, ‘Behavior in the lit environment’ [21] (Fig 1). Methods associated

with each theme proposed in the literature and considered potentially feasible for evaluating

outdoor lighting are described below.

Within the theme human perception of the lit environment the proposed tasks related to

facial recognition and obstacle detection were deemed feasible for use in a practical setting, so

were included in the laboratory study. Facial recognition is considered to be an important

visual task for pedestrians after dark, since judging the intent of oncoming pedestrians from a

safe distance is deemed important for the perception of safety [22]. This has been investigated

both in laboratory settings [23–28] and in the field [14, 15, 29–33], using photographs, dum-

mies or assistants as targets that should be recognized by the respondents. A common tech-

nique has been to measure the distance at which the respondents are certain of the gender, can

guess the identity, or make out facial features. It is suggested, however, that recognition of

facial expressions may be a more relevant task for evaluating lighting quality, and more ecolog-

ically valid due to its greater relevance for judging the intent of oncoming strangers [34].

The second task, obstacle detection, has been explored in the laboratory using apparatus

with adjustable obstacle heights [35, 36] and by using a mock-up path with a false floor display-

ing obstacles at various heights [37, 38]. An inverse relationship has been found between illu-

minance level and the obstacle height needed for it to be detected, and at low light levels (0.2

lx) younger participants detect significantly lower obstacles than older participants [35, 37].
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Also, at equally low light levels, lighting applications with higher scotopic/photopic (S/P) ratios

consistently assisted detection of lower obstacles. At higher illuminance levels (2 & 20 lx) the

differences due to age and Spectral Power Distribution (SPD) were non-significant [35, 37].

Within the second overarching theme, the evaluation of the lit environment, perceived

lighting quality and the impact of lighting on the emotional state were selected for use in the

laboratory. Perceived lighting quality adds the human evaluation component to the assessment

of lighting quality and complements the technical environmental assessment measures. It has

been conceptualized in different ways [14, 15, 39–43]. In a recent effort to assess the perceived

outdoor lighting quality, Johansson et al. [15] and Kuhn et al. [14] used the dimensions bright-

ness and hedonic tone, previously used by Küller and Wetterberg [44, 45] to describe subjec-

tive impressions. Their concept has since been further developed by the development of the

Perceived Outdoor Lighting Quality scale (POLQ) [39], which distinguishes between lighting

applications on two indices, the Perceived Strength Quality (PSQ) and the Perceived Comfort

Quality (PCQ) index. In addition to the more readily accessible qualitative evaluation of light-

ing properties, it has also been found that lighting may affect the emotional state of the individ-

ual, regarding the level of arousal and pleasure [43, 46, 47].

Within the third overarching theme, behavior in the lit environment, walking speed was

deemed to be a measure with potential to differentiate between the three lighting applications.

Studies indicate that illuminance level may have tangible effects on pedestrian behavior. Insuf-

ficient lighting is suggested to decrease walking speed [48, 49] and make people look at the

ground more, compared to brighter conditions [50].

1.2 Aim and hypotheses

The aim of this study was to assess differences between three lighting applications fulfilling

requirements for current Swedish standards on illuminance levels at pedestrian paths but dif-

fering in photometric qualities with regard to light distribution, Correlated Color Temperature

(CCT), SPD and glare. The lighting applications were chosen on the basis of being considered

for future use at pedestrian paths in the city of Malmö, Sweden.

Fig 1. Overarching themes and corresponding categories identified through the systematic literature review. Categories included in the study are marked in bold.

https://doi.org/10.1371/journal.pone.0204638.g001
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The three overarching themes of human perception, evaluation and behavior in response to

artificial outdoor lighting were addressed, focusing on the previously researched aspects that

were feasible to use in an outdoor setting and that would be relevant and of practical use in the

decision-making processes of municipalities. Perception involved obstacle detection, facial

recognition, sign reading; Evaluation involved perceived quality of lighting, emotional state;

and for Behavior, walking speed was measured.

To identify lighting applications suitable for all age groups, a further aim was to test whether

people from different age groups responded differently to the three lighting applications.

2. Method

2.1 Participants

The study comprised 89 participants divided into two age groups: one group of young people

(N: 43, aged 19–31 years, mean age: 22, 47% female) and one group of elderly (N: 46, aged 62–

77, mean age: 69, 54% female). The participants were recruited through information meetings

at organizations for the elderly, in public places, on the university campus and through per-

sonal networks. The participants’ visual acuity and contrast vision were tested using Sloan

optotypes on a visual acuity board (by Precision Vision) at a distance of 3 m. When applicable,

participants wore the same glasses as normally worn outdoors. Color vision was tested with

the Ishihara Color Vision Test (Young: Acuity both eyes: min = 0.77 max = 1.25, mean = 1.21;

Contrast: min = 0.0 max = 0.5, mean = 0.46; Full color vision 98%; Elderly: Acuity both eyes

min = 0.46, max = 1.25, mean = 1.00; Contrast min = 0.0 max = 0.5, mean = 0.30, Full color

vision 85%).

2.2 Ethics statement

This study was carried out in accordance with the rules and regulations laid down by the Ethics

Committee for the Swedish Research Council [51] after consultation with the Regional Ethical

Review Board. The Board concluded that approval according to the Swedish Ethical Review

Act was not needed for this study. Information about the aim of the study was given and writ-

ten informed consent was obtained from all participants in accordance with the Declaration of

Helsinki. The participants were informed of their right to withdraw at any time without giving

an explanation. Personal information was anonymized to retain the privacy of the participants,

who received approximately 52 EUR after participation as remuneration.

2.3 Setting and lighting applications

The study was carried out in a laboratory (14.5 x 18.5 x 4.5 m) where a 23-meter long and

2.5-meter wide pedestrian path was constructed along the diagonal axis, with two lampposts

with the height of 4 meters placed 16 meters apart (1.5 and 17.5 meters from the starting

point) (Fig 2). The lampposts were of the same height as the standard for Malmö municipality,

but were placed closer together than the normal 21 meters. The walls were covered in black

cloth and the floor had a graphite-grey carpet with a reflection factor of 5%. Adjacent to the

laboratory was a waiting room with a lighting design resembling that of an apartment in Swe-

den (�EH : 292 lx). The participants were thus not dark-adapted when they entered the labora-

tory. The scenario was designed to imitate the process of going outside from a brightly lit

home in the evening.

The three lamps were one ceramic metal halide (Lighting application A) and two LEDs

(Lighting applications B & C) (Table 1, for SPD see Fig 3). The differences in light distribution

are manifested in the horizontal illuminance gradient maps (Fig 4). The horizontal
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illuminance (EH) on the path varied between 7 and 86 lx (Lighting application A, EH: 7–45 lx,

�EH : 24 lx; Lighting application B, EH: 17–86 lx, �EH : 46 lx; Lighting application C, EH: 14–67 lx,

�EH : 41 lx). The discomfort glare de Boer rating was calculated for each lighting application

based upon the vertical illuminance at the eye provided by the glare source (Eg), the vertical

illuminance at the eye provided by ambient light (Eb),and the horizontal viewing angle

between the viewing direction and the luminaire (Ɵ), following the model proposed by Lin et.

al. [52] (Eq 1, Fig 5). Eg was measured every meter, in the middle of the path, at a height of 1.5

meters. Eb was estimated by calculating the average of three measures of the vertical illumi-

nance reflected from the walls of the laboratory.

de Boer rating ¼ 7:09 � log10

E2:21
g

E1:02
b x Ɵ1:62

� �

ð1Þ

2.4 Measurements

2.4.1 Perception. Three tasks were used to evaluate visual accessibility: obstacle detection,

facial expression recognition, and sign reading.

Fig 2. Photograph of the mock-up pathway (placed diagonally in the full-scale laboratory) under lit conditions.

https://doi.org/10.1371/journal.pone.0204638.g002

Table 1. Technical specifications for the lighting applications.

Lighting application A B C

Light source CMH LED LED

Power (W) 68 36 93

Luminous efficacy (lm/W) 50 94 64

Path mean horizontal illuminance (lx) 24 46 41

Laboratory mean horizontal illuminance (lx) 18 28 32

S/P 1.25 1.22 1.48

CCT (K) 2890 2912 3810

Color rendering index, CRI 81 75 75

Face luminance (cd/m2) 0.28 0.36 0.55

Sign luminance (cd/m2) 0.13 0.13 0.35

Obstacle illuminance range (lx) 4–8 2–15 10–21

https://doi.org/10.1371/journal.pone.0204638.t001
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The obstacle detection task was inspired by the laboratory studies by Fotios and Cheal [35,

36]. The participants were placed at a specific viewing point and instructed to focus straight

ahead while simultaneously stating the number of obstacles (10 x 10 x 2.5 cm, made of the

same carpet as was covering the floor) they could discern on the ground on their right-hand

side. The size and height of the obstacles were chosen to try to emulate a raised cobblestone

[36]. The obstacle detection area was shielded by the researcher’s body while the participants

walked towards the viewing point. To help prevent participants from glancing at the obstacles,

Fig 3. Normalized SPD for the three lighting applications. Relative power is depicted on the y-axis and wavelength

on the x-axis.

https://doi.org/10.1371/journal.pone.0204638.g003

Fig 4. Gradient maps illustrating the horizontal illuminance for lighting applications A, B and C, border of the path, location of lampposts, starting point, obstacle

detection area and locations of the photograph and street signpost. Illuminance was measured using a grid of 1x1 m. The grid followed the contours of the irregularly

shaped laboratory.

https://doi.org/10.1371/journal.pone.0204638.g004
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the researcher maintained eye contact with the participants while giving instructions for the

task.

For each presentation the number of obstacles was chosen randomly and varied between 4

and 7. The position of the obstacles was also chosen randomly from a pool of 15 positions cre-

ated by using a 25, 35 and 45 degree angle from the viewing direction and at distances repre-

senting 2, 4, 6, 8 and 10 paces from the participants (corresponding to 1.2, 2.4, 3.6, 4.8 & 6

meters [36], see Fig 6). The size of the obstacles, given as visual angle subtended at the eye, ran-

ged from 4.77˚ at 1.2 meters to 0.95˚ at 6 meters distance.

The illumination measurements of the obstacle area (4 x 5 meters, located on the right-

hand side of the path, centered on the midpoint of the distance between the lampposts, see Fig

4.) were conducted as part of the overall illumination measurement, using a 1x1-meter grid.

The horizontal illuminance measurements for the obstacle detection area varied between 2

and 33 lx (Lighting application A, EH: 3–10 lx, �EH : 6 lx; Lighting application B, EH: 2–17 lx, �EH :

5 lx; Lighting application C, EH: 11–33 lx, �EH : 17 lx) with the corresponding uniformities UA:

.59, UB: .28 and UC: .63. Horizontal illuminance was also measured at the center of each obsta-

cle, with measurements ranging from 2 to 15 lx (Lighting application A, EH: 4–8 lx, �EH : 5 lx;

Lighting application B, EH: 2–15 lx, �EH : 6 lx; Lighting application C, EH: 10–21 lx, �EH : 15 lx).

Fig 5. Discomfort glare de Boer rating calculations based on vertical illuminance by the light source, vertical illuminance by ambient light and the horizontal

viewing angle. (de Boer scale: 1 = unbearable, 3 = disturbing, 5 = just permissible, 7 = satisfactory, 9 = just noticeable).

https://doi.org/10.1371/journal.pone.0204638.g005
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In the facial expression recognition task, the participants were instructed to walk towards a

photograph of a woman´s face (175x200 mm; positioned at a height of 1.65 m; printed on

non-glossy paper), placed on the right-hand side of the path 12 meters from the first lamppost

Fig 6. The 15 possible positions for the obstacles in the obstacle detection task.

https://doi.org/10.1371/journal.pone.0204638.g006
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(13.5 meters from the starting point). The participants were instructed to stop when they

could discern the facial expression of the woman’s face. The facial photographs belong to the

standardized P. Ekman’s Emotions Revealed photo set, and the photos used were fear (p. 165),

surprise (p. 166) and anger (p. 127) [53].The distance was measured, and the correctness of the

evaluation was assessed on 11 items (Interest, Enjoyment, Surprise, Anger, Disgust, Contempt,

Fear, Shyness, Shame, Guilt & Hostility) from the Differential Emotions Scale, DES [54],

graded using a 5-point Likert scale. Since the presentation order of the lighting applications

was counterbalanced, not all participants experienced the same facial expression/lighting

application combination. To overcome this difference the mean value for the three DES items

that corresponded with the facial expressions of the photographs (fear, surprise and anger) was

calculated and subtracted with the overall mean rating for all DES items. This was done for

each lighting application, and the resulting variable was then used as a proxy for the ability to

identify the relevant facial expressions.

In the sign reading task, the participants were asked to walk along the path towards a street

signpost placed 4 meters to the right of the path and 4.5 meters before the second lamppost

(13.6 meters from the starting point), positioned at a height of 2.10 meters. Three versions of

the street signpost were used, each showing street names of similar type and equivalent num-

ber of syllables (Gullbackegatan, Almedalsgatan & Hagalundsgatan; Tratex font; Size: 212).

The task of the participants was to stop when the text on the street signpost became legible.

The distance was measured and the participants were asked to read the street name aloud in

order to validate the legibility.

2.4.2 Evaluation. In order to assess the emotional state of the participants when they had

just finished walking down the path, the affect grid [55, 56], an instrument in which the partic-

ipants rate their degree of arousal and valence in a two-dimensional grid (consisting of 5 x 5

cells with the labels Active placed above, Passive below, Negative to the left and Positive to the

right), was used. Two other scales, asking the participants to rate their valence (1 = sad,

depressed, displeased to 5 = glad, happy, pleased) and arousal-level (1 = dull, passive, sleepy to

5 = peppy, active, awake), were administered. The mean score for the arousal measures (αA =

.874; αB = .900; αC = .859) and valence measures (αA = .904; αB = .846; αC = .690) was then

calculated.

To capture how the participants experienced the lighting and the lit environment, the

POLQ scale [39] was used, which consists of ten items (subdued-brilliant; strong-weak; dark-

light; unfocused-focused; clear-drab; hard-soft; warm-cool; natural-unnatural, glaring- shaded;

mild-sharp) rated on a 7-point scale, constituting two indices, PSQ and PCQ. The participants

were also asked to rate how well they could see under the present lighting application using a

7-point Likert scale (1 = very poorly, to 7 = very well).

2.4.3 Behavior. Behavior was, in line with Pedersen and Johansson [48], assessed in terms

of walking speed. Before entering the laboratory, the baseline walking speed of the participants

was measured on a 33.3-meter distance in a corridor under well-lit conditions (�EH ¼ 195 lx).

Then, in the laboratory, at the start and end of the path, motion sensors connected to a stop-

watch measured the time it took the participants to walk the path, and walking speed was cal-

culated. The impact of lighting on walking speed was then calculated for each lighting

application by subtracting the walking speeds from the laboratory from the baseline walking

speed.

2.5 Design and procedure

The study employed a mixed design, with a within-subjects repeated measures design for eval-

uating differences due to the different lighting applications, and a between-groups design for
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exploring differences due to age. Each participant performed the test procedure three times, once

for each lighting application (Table 2). The luminaires were shifted by rotating the top of the

lamppost and the presentation order was counterbalanced. The participants arrived in groups of

five and, before entering the lab, they gathered in a waiting room, where they were informed

about the procedure and asked to fill in questionnaires surveying background data and individual

Table 2. Flowchart for the test procedure.

Process Location

Introductory meeting Waiting room

Measurement of baseline walking speed Corridor

Vision tests

Lighting presentation #1 Laboratory

Measurement of walking speed

Affect grid

Valence & arousal scales

POLQ

Waiting / self-report of background data Waiting room

Laboratory

Obstacle detection

Facial recognition

Sign reading

Waiting Waiting room

Lighting presentation #2 Laboratory

Measurement of walking speed

Affect grid

Valence & arousal scales

POLQ

Waiting Waiting room

Laboratory

Obstacle detection

Facial recognition

Sign reading

Waiting Waiting room

Lighting presentation #3 Laboratory

Measurement of walking speed

Affect grid

Valence & arousal scales

POLQ

Waiting Waiting room

Laboratory

Obstacle detection

Facial recognition

Sign reading

Debriefing and conclusion Waiting room

https://doi.org/10.1371/journal.pone.0204638.t002
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characteristics. In an adjacent room their vision was tested individually and then they walked a

33-meter distance in a corridor where their baseline walking speed was measured.

The participants entered the laboratory one at a time, while the rest of the group remained

in the waiting room. The participants were asked to walk down the path past the second lamp-

post, after which a podium was placed where the participants rated their emotional state. The

participants then returned to the first lamppost, looked out over the path and rated the per-

ceived lighting quality [39].

When all participants had completed the task, they waited in the adjoining waiting room

while the visual performance tasks were prepared. Next, the participants individually entered

the laboratory a second time and walked to the obstacle detection point 5.5 meters down the

path from the first lamppost and performed the obstacle detection task. The participants

returned to the starting point before starting the facial expression recognition task, after which

they returned to the starting point. Lastly, the participants performed the sign reading task.

Data collection took approximately two hours for each group of participants.

The data was analyzed with IBM SPSS 22, using Repeated Measures ANOVA with age as

between-subjects factor. To avoid potential problems with violations of assumptions underly-

ing the use of ANOVA, parallel analyses were conducted using a two-way between-within sub-

jects ANOVA on the trimmed means (20%) using the bwtrim function of R. The results from

the trimmed means ANOVA corroborated the findings from the Repeated Measures ANOVA.

3. Results

3.1 Perception

There were statistically significant differences between the different lighting applications for

obstacle detection, facial expression distance, and sign reading distance (Table 3, Fig 7). For

obstacle detection, participants were most successful in detecting obstacles under lighting

application C, on average detecting 42% of the obstacles, followed by lighting application A

(26%), and then lighting application B (19%) (F (2, 174) = 38.021, p = .000, ηp
2 = .304). Similar

results were found for the distances needed to recognize a facial expression (F (2, 174) = 8.115,

p = .000, ηp
2 = .085) and the distance to read the street signpost (F (2, 174) = 31.906, p = .000,

ηp
2 = .268). Lighting application C enabled the participants to identify facial expressions and

read a street signpost at significantly greater distances (mean distance, �d: 4.6 & 11.3 meters)

than lighting applications A (�d : 4.0 & 10.1 meters) and B (�d : 4.2 & 9.9 meters) (Table 4).

For obstacle detection, there were significant differences between the two age groups,

where the younger group performed significantly better on average (36%) than the older

group (24%) (F (1, 87) = 10.234, p = .002, ηp
2 = .105). Also, the younger group could both iden-

tify facial expressions (�d : 4.7 meters) and read the street signpost (�d : 12.1 meters) at greater

distances than the older group (Table 3). For facial expression distance there was also a weak

interaction effect, indicating that the older group needed to be closest for lighting application

B (F(2, 174) = 3.257, p = .041, ηp
2 = .036), whereas the younger group had their shortest dis-

tance for lighting application A. The younger participants were also more accurate in their

assessment of facial expressions (F (1, 87) = 7.437, p = .008, ηp
2 = .079).

3.2 Evaluation

Instruments used for evaluating the lighting and the lit environment also showed significant

differences. For the perceived lighting quality indices, PSQ and PCQ, there were significant

differences between the three lighting applications (PSQ, F (2, 174) = 44.148, p = .000, ηp
2 =

.337; PCQ, F (2, 174) = 33.617, p = .000, ηp
2 = .279). Lighting application C was rated highest
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on perceived strength quality (mean PSQ: 5.6) and lowest on perceived comfort quality (mean

PCQ: 3.2). For the emotional state measurement, the different lighting applications differed on

level of arousal (F (2, 174) = 10.084, p = .000, ηp
2 = .104), where lighting application C was

experienced as more arousing than lighting application A, but not significantly different from

B. When it came to judging how well they could see under the different lighting applications,

lighting application C was deemed to give significantly better seeing conditions (F(2, 174) =

12.892, p = .000, ηp
2 = .129) (Table 3).

There were significant differences between the age groups for PCQ (F (1, 87) = 20.693, p =

.000, ηp
2 = .192), where the younger group had lower average ratings (3.59 compared to 4.9),

but not for PSQ F (1, 87) = .089, p = .766). However, for both indices there were interaction

effects (PSQ, F (2, 174) = 4.827, p = .009, ηp
2 = .053; PCQ, F (2, 174) = 4.074, p = .019, ηp

2 =

.045). For PSQ, lighting application C was rated higher by the younger group. For PCQ, light-

ing application B got higher ratings in the younger group, but still less than for the older

group. Differences between the age groups were also found for emotional state. The older

group was both more aroused (F (1, 87) = 12.793, p = .001, ηp
2 = .128) and felt more positive

(F (1, 87) = 27.695, p = .000, ηp
2 = .241) than the younger group.

3.3 Behavior

Relative walking speed did not differ between the three lighting applications (F (2, 174) =

1.427, p = .243), and there were no significant differences between the different age groups (F

(1, 87) = 1.606, p = .208).

Table 3. Results from the repeated measures ANOVA.

Response Within subject Between groups Interaction Post hoc�

Perception

Obstacle detection F(2, 174) = 38.021, F(1, 87) = 10.234, F(2, 174) = 1.164, C > A > B

p = .000, ηp
2 = .304 p = .002, ηp

2 = .105 p = .315

Facial expression distance F(2, 174) = 8.115, F(1, 87) = 7.291, F(2, 174) = 3.257, C > A & B

p = .000, ηp
2 = .085 p = .008, ηp

2 = .077 p = .041, ηp
2 = .036

Facial expression recognition F(2,174) = .791, F(1, 87) = 7.437, F(2, 174) = .788, —

p = .455 p = .008, ηp
2 = .079 p = .456

Sign reading distance F(2, 174) = 31.906, F(1, 87) = 74.308, F(2, 174) = 1.292, C > A & B

p = .000, ηp
2 = .268 p = .000, ηp

2 = .461 p = .277

Evaluation

Arousal F(2, 174) = 10.084, F(1, 87) = 12.793, F(2, 174) = 2.437, C > A

p = .000, ηp
2 = .104 p = .001, ηp

2 = .128 p = .090

Valence F(2, 174) = 1.903, F(1, 87) = 27.695, F(2, 174) = .927, —

p = .152 p = .000, ηp
2 = .241 p = .398

PSQ F(2, 174) = 44.148, F(1, 87) = .089, F(2, 174) = 4.827, C > A & B

p = .000, ηp
2 = .337 p = .766 p = .009, ηp

2 = .053

PCQ F(2, 174) = 33.617, F(1, 87) = 20.693, F(2, 174) = 4.074, A & B > C

p = .000, ηp
2 = .279 p = .000, ηp

2 = .192 p = .019, ηp
2 = .045

Seeing condition F(2, 174) = 12.892, F(1, 87) = .330, F(2, 174) = 1.656, C > A & B

p = .000, ηp
2 = .129 p = .567 p = .194

Behavior

Walking speed difference F(2, 174) = 1.427, F(1, 87) = 1.606, F(2, 174) = .131, —

p = .243 p = .208 p = .877

� Bonferroni, p < .017

https://doi.org/10.1371/journal.pone.0204638.t003
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Fig 7. Overview of significant results in Table 3 (each measure rescaled by division by its greatest value).

https://doi.org/10.1371/journal.pone.0204638.g007

Table 4. Mean scores and standard deviations for all measures, by lighting application and age group.

Mean (SD)

Lighting A Lighting B Lighting C

Response Young Old Young Old Young Old

Perception

Obstacle detection .33 (.23) .20 (.23) .24 (.22) .16 (.21) .51 (.21) .35 (.30)

Facial expression distance 4.28 (1.40) 3.73 (2.10) 4.81 (1.75) 3.53 (2.04) 5.08 (1.72) 4.07 (1.87)

Facial expression recognition .37 (.50) .06 (.48) .38 (.62) .20 (.33) .33 (.63) .16 (.39)

Sign reading distance 11.83 (1.90) 8.47 (2.24) 11.66 (1.91) 8.29 (2.16) 12.80 (1.40) 9.08 (2.37)

Evaluation

Arousal 3.40 (.94) 4.08 (.91) 3.73 (.92) 4.16 (.72) 4.05 (.73) 4.31 (.57)

Valence 3.52 (.84) 4.10 (.83) 3.70 (.98) 4.28 (.59) 3.53 (.80) 4.34 (.59)

PSQ 4.28 (1.08) 4.50 (1.27) 4.66 (1.01) 4.80 (1.19) 5.86 (.70) 5.33 (.97)

PCQ 4.09 (1.25) 4.77 (1.09) 4.13 (1.35) 4.37 (1.25) 2.55 (.81) 3.75 (1.23)

Seeing condition 5.07 (1.44) 5.51 (1.38) 5.58 (1.12) 5.46 (1.24) 6.10 (.95) 6.09 (1.09)

Behavior

Walking speed difference .17 (.13) .20 (.15) .15 (12) .19 (.15) .15 (.12) .19 (.18)

https://doi.org/10.1371/journal.pone.0204638.t004

Pedestrian response to urban outdoor lighting

PLOS ONE | https://doi.org/10.1371/journal.pone.0204638 October 4, 2018 13 / 20

https://doi.org/10.1371/journal.pone.0204638.g007
https://doi.org/10.1371/journal.pone.0204638.t004
https://doi.org/10.1371/journal.pone.0204638


4. Discussion

This study employed a set of methods for evaluating the human response to outdoor lighting

and assessing differences between three lighting applications selected by the city of Malmö.

The main finding is that the set of methods could differentiate between the three lighting appli-

cations with regard to the human response and thereby provide a complementary perspective

to photometric properties. Most methods capturing perception and evaluation differentiated

between lighting application C and the other two lighting applications (obstacle detection,

facial recognition distance, sign reading distance, arousal, PSQ, PCQ and seeing condition).

However, the behavior measure, walking speed, failed to capture any differences between the

lighting applications.

The lighting applications differed in terms of the underlying technology and consequently

also on several photometric measures, including light distribution, illuminance levels, SPD,

CCT, CRI, and glare.

There were also differences in power and luminous efficacy between the lighting applica-

tions. Lighting application C used more than 2.5 times the power than lighting application B,

which used the least power (PA:68 W PB: 36 W; PC:93 W). Lighting application B was also

most efficient, having a luminous efficacy well above the other lighting applications (A: 50 lm/

W; B: 94 lm/W; C: 64 lm/W).

This complexity regarding photometry, energy efficiency and, as result, the cost of operat-

ing the lighting applications is characteristic for the situation municipalities will face in any

given procurement process. In addition to energy efficiency and road lighting standards, it is

relevant to consider the human response in the choice of outdoor lighting applications for

pedestrians. The methods used in this study could be applied during such a process as a way to

differentiate between different lighting applications based on the human response to the

lighting.

Most differences concerned lighting application C in relation to lighting applications A and

B. The question remains why the measures did not substantially differentiate between lighting

application A and B, except for on the obstacle detection task. A few parameters clearly set

lighting application C apart: Spectral Power Distribution (S/P) (A: 1.25; B: 1.22; C: 1.48), CCT

(A: 2890; B: 2912; C: 3810) and the light distribution. These parameters will be discussed in

relation to the results.

For the perceptual tasks there were significant differences between the lighting applications

in the distance needed to identify a facial expression, for reading a street signpost, and the

probability of detecting obstacles on the ground. Lighting application C created superior con-

ditions for the perceptual tasks. For obstacle detection, participants were most successful in

detecting obstacles under lighting application C, followed by lighting application A, and then

lighting application B. For lighting application C, this was in line with both the higher horizon-

tal illuminance level of the targets (EH A: 4–8 lx; EH B: 2–15; EH C: 10–21) stemming from light-

ing application C’s wider light distribution and with its greater S/P ratio (S/PA: 1.25; S/PB: 1.22;

S/PC: 1.48). The peripheral vision used for the task is dependent on the rods, which are most

sensitive to light with shorter wavelengths. A light source with a higher S/P-ratio emits a rela-

tively greater amount of light with short wavelengths compared to light sources with a lower S/

P-ratio. Light sources with greater S/P-ratio would thus be expected to produce better perfor-

mance in peripheral tasks, particularly at lower light levels. However, even though lighting

applications A and B had similar S/P ratios and similar average horizontal illuminance levels

in the obstacle detection area (�EH;A: 6 lx;, �EH;B: 5 lx), the participants were more successful in

detecting obstacles under lighting application A. A possible reason for this is the markedly

lower illumination values at some of the obstacles for lighting application B, as reflected in
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uniformity in the obstacle area (UA: .59; UB: .28). There was also a difference between the two

age groups, where the younger group performed significantly better. This is to be expected due

to the decline in night vision associated with increased age [57].

Lighting application C enabled the participants to perform their tasks at a significantly

greater distance than lighting applications A and B. This could be an effect of the unequal light

distribution, which resulted in differences in how much light was reflected off the photograph/

sign respectively, with higher luminance levels for lighting application C (Face luminance:

LV A: .28; LV B: .36; LV C: .55; Sign luminance: LV A: .13; LV B: .13; LV C: .35). A limitation to this

study is that the facial recognition task and sign reading task were conducted in only one loca-

tion for each task. Had several locations been used, the impact of the different light distribu-

tions on the luminance levels of the photographs and the signs would most likely have been

clearer.

Once again, the younger group had better results than the older group. For facial expression

distance, however, there was also a weak interaction effect indicating that the older group

needed to be closest for lighting application B, whereas the shortest distance for the younger

group was for lighting application A. This might be due to the group of elderly being more sen-

sitive to glare [58], since lighting application B was more glaring than A, for the distances

where most participants recognized facial expressions (approximately 3–10 meters, see Fig 5).

For the sign reading test this was not the case. Possibly the location of the task made the partic-

ipants direct their gaze away from the path, thereby reducing the effect of glare. It is notewor-

thy, that even though the horizontal illuminance levels for all three lighting applications were

well above the recommended levels for pedestrian paths according to the national standards

[19], the distances for recognizing facial expressions were much shorter than what is suggested

to be the desirable fixation distance (15 meters) [59]. This may be due to the difficulty associ-

ated with identifying the facial expressions of black and white photographs, in comparison to

real faces.

Lighting application C was rated highest on PSQ and lowest on PCQ for the evaluation

aspect. The results on PSQ are not surprising, since lighting application C had the highest

mean illuminance (taking the entire laboratory into account) and the greatest S/P ratio. The

results for PCQ might stem from the differences in correlated color temperature, since two of

the five items constituting the index relate to color temperature (hard-soft and warm-cool).

There were also significant differences between the age groups for PCQ, but not for PSQ. The

lower ratings of the younger group may represent a greater sensitivity, or stricter standards in

the assessment of outdoor lighting. The older group may be more indulgent towards the light-

ing applications due to their experience of older technologies, such as low-pressure sodium

lighting.

The emotional state differed between the different lighting applications on level of arousal,

with lighting application C rated highest. This is in line with results from previous research

suggesting that lighting applications with a CCT around 5000 K will bring about a greater level

of arousal than those with a CCT of around 3000 K, while also being perceived as less pleasur-

able [47]. In this study, however, there were no significant differences on the valence ratings.

The participants appeared to be able to judge how well they could see under the different

lighting applications. Both age groups agreed on lighting application C as the one providing

the best seeing conditions. This was in line with their results on the visual tasks, which they

performed at a later stage of the experiment. However, the superior seeing conditions did not

result in a greater walking speed. It is plausible that the illuminance levels were sufficient for

all lighting applications to deliver the visual cues needed for walking at normal pace. The walk-

ing speed may also have been influenced by the study being conducted in a laboratory, where

participants walked towards the opposite wall and did not have to scan the ground for
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obstacles. However, another study using a similar setting but with only one lighting application

at different levels of dimming, did find significant differences, with walking speed declining

with lower illuminances [48].

In this study, lighting application C created superior conditions for the perceptual tasks and

was perceived to give the best seeing conditions, indicating that it would be a good choice for

pedestrian paths in Malmö. However, at the same time, it was rated as less pleasant on the

PCQ subscale of POLQ, and its luminous efficacy is about 68 percent of that of lighting appli-

cation B. This highlights the fact that there may be no lighting application that is preferable in

every given situation. Decision makers therefore need to take the context, as well as the pur-

pose of the lighting, into account and weigh the advantages and disadvantages of lighting

applications in order to find optimal solutions.

The study was designed with the intent to assess the human response to outdoor lighting

for actual lighting applications used by local municipalities. The aspiration to maximize eco-

logical validity made it difficult to systematically control variables related to the lighting, such

as CCT and illuminance level. Naturally, not keeping any variables equal makes it difficult to

discriminate which factors were most significant for the difference in perception and evalua-

tion for lighting application C compared to A and B. However, this was never the intention of

the study, as the focus was on evaluating three luminaires considered for future use and to col-

lect a set of methods with practical relevance for municipalities in their evaluation of outdoor

lighting solutions.

In order to address the three overarching themes of human perception, evaluation and

behavior in response to artificial outdoor lighting, this study adopted a broad approach. The

methods used were inspired by methods used in previous research and, in some cases, the orig-

inal method was utilized (POLQ and emotional state). The methods were chosen on the basis

of appearing to have high face validity and of being relevant for practice. Both the POLQ scale

and the emotional state measure have been shown to be important for the perception of safety,

which is a factor that has been frequently discussed in relation to artificial lighting in urban

environments.

That outdoor lighting is an important factor, contributing to the walkability of neighbor-

hoods [1–4] and supporting walking for young, adults and elderly [5–11], is well supported.

However, pedestrian behavior in the lit environment of real-world settings is less researched.

Existing studies have mainly focused on pedestrian flow and walking speed. Walking speed

has previously been shown to vary due to different levels of illuminance [48], but in this study

the three lighting conditions did not affect walking speed.

However, the use of pedestrian flow and walking speed in real-world settings might be

questioned, since the significance of, for example, an increase in walking speed is ambiguous.

Do people walk faster due to better seeing conditions or because that the environment is less

inviting and perceived as unsafe? Also, pedestrian flow, i.e. the number of pedestrians during a

set amount of time, is a crude measure that does not capture how pedestrians move in the lit

environment. A supplementary approach could be to simulate pedestrian dynamics based on

trajectory data collected from video recordings. This has, for example, been done with regard

to pedestrian crossings at signalized intersections [60, 61], but studies modelling the impact of

lighting applications on pedestrian behavior are still lacking.

Another approach taken in the study of behavior in the lit environment is to use eye-track-

ing equipment to capture where pedestrians fix their gaze while walking [24, 62–66]. This

might give important insights regarding the relative importance of different visual tasks, as

well as indications on how to design light distributions in a better way, but would still need fur-

ther development to be feasible for large-scale use by municipalities.
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There is great potential to cut lighting energy use by upgrading present outdoor lighting

installations to more energy-efficient luminaires. Pedestrian experience can be improved and

mobility facilitated by upgrading to technologies more adapted to user needs. This study

employed methods that differentiated between lighting applications and that could be used to

guide the decisions of municipalities before undertaking major upgrades of the outdoor light-

ing on urban pedestrian paths. We suggest that pilot studies assessing how pedestrians experi-

ence the lighting in a real setting can help avoid installing lighting applications with unwanted

characteristics, thereby finding a better solution early in the procurement process. We propose

that facial expression recognition distance, sign reading distance, the POLQ scale and emo-

tional state measure have potential for use by municipalities in a real-world context. However,

validation of these tests and identification of minimum performance thresholds would be

needed before considering them to be used as standardized tests.

The obstacle detection task and the motion sensors might be difficult to use outdoors and

would need further development, and other methods would be needed to assess pedestrian

behavior. One option might be video technology currently used for surveillance purposes. The

use of video technology, possibly in combination with eye-tracking, could cast light on where

pedestrians direct their gaze and which strategies are employed with regard to glare. Further

research is needed to evaluate the methods in the field and to discern the implications of per-

ception, evaluation and behavior for the perceived accessibility and safety, as well as for the

choice of walking to different destinations along urban pedestrian paths.
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19. Swedish Transport Administration. Krav för vägars och gators utformning, Version 2. Stockholm, Swe-

den: Swedish Transport Administration; 2015. Report No.: 2015:086.

20. Lighting Metropolis. www.lightingmetropolis.com [170405].

21. Rahm J, Johansson M. Walking after dark–A systematic literature review of pedestrians’ response to

outdoor lighting. Lund: Dept. of Architecture and Built Environment; 2016. Report No.: 26.

22. Caminada JF, Van Bommel WJM. New lighting considerations for residential areas. International Light-

ing Review. 1980(3):69–75.

23. Dong M, Fotios S, Lin Y. The influence of luminance, observation duration and procedure on the recog-

nition of pedestrians’ faces. Lighting Res Technol. 2015; 47(6):693–704.

24. Fotios S, Yang B, Cheal C. Effects of outdoor lighting on judgements of emotion and gaze direction.

Lighting Res Technol. 2015; 47(3):301–15.

25. Iwata M, Uchida S. Experiment to evaluate visibility with street luminaires with different upward light out-

put ratios and the use of calculated veiling luminance to determine contrast performance. J Light Vis

Env. 2011; 35(1):42–54.

26. Kohko S, Kawakami K, Nakamura Y. A study on affects of veiling luminance on pedestrian visibility. J

Light Vis Env. 2008; 32(3):315–21.

Pedestrian response to urban outdoor lighting

PLOS ONE | https://doi.org/10.1371/journal.pone.0204638 October 4, 2018 18 / 20

https://doi.org/10.1016/j.amepre.2005.04.002
http://www.ncbi.nlm.nih.gov/pubmed/16005805
https://doi.org/10.1300/J013v36n02_01
http://www.ncbi.nlm.nih.gov/pubmed/12487137
http://www.ncbi.nlm.nih.gov/pubmed/14998810
https://doi.org/10.1016/j.ypmed.2011.07.016
http://www.ncbi.nlm.nih.gov/pubmed/21820007
https://doi.org/10.1093/geront/gns119
http://www.ncbi.nlm.nih.gov/pubmed/23010096
http://www.lightingmetropolis.com
https://doi.org/10.1371/journal.pone.0204638


27. Fotios S, Castleton H, Cheal C, Yang B. Investigating the chromatic contribution to recognition of facial

expression. Lighting Res Technol. 2017; 49(2):243–58.

28. Yang B, Fotios S. Lighting and recognition of emotion conveyed by facial expressions. Lighting Res

Technol. 2015; 47(8):964–75.

29. Knight C. Field surveys of the effect of lamp spectrum on the perception of safety and comfort at night.

Lighting Res Technol. 2010; 42(3):313–29.

30. Lin Y, Fotios S. Investigating methods for measuring face recognition under lamps of different spectral

power distribution. Lighting Res Technol. 2015; 47(2):221–35.

31. Rea MS, Bullough J, Akashi Y. Several views of metal halide and high-pressure sodium lighting for out-

door applications. Lighting Res Technol. 2009; 41(4):297–320.

32. Yao Q, Sun Y, Lin Y. Research on facial recognition and color identification under CMH and HPS lamps

for road lighting. Leukos. 2009; 6(2):169–78.

33. Fotios S, Uttley J, Fox S. Exploring the nature of visual fixations on other pedestrians. Lighting Res

Technol. 2016(OnlineFirst).

34. Raynham P, Fotios S. Is facial recognition what matters. Lighting Res Technol. 2011; 43:129–30.

35. Fotios S, Cheal C. Obstacle detection: A pilot study investigating the effects of lamp type, illuminance

and age. Lighting Res Technol. 2009; 41(4):321–42.

36. Fotios S, Cheal C. Using obstacle detection to identify appropriate illuminances for lighting in residential

roads. Lighting Res Technol. 2013; 45(3):362–76.

37. Uttley J, Fotios S, Cheal C. Effect of illuminance and spectrum on peripheral obstacle detection by

pedestrians. Lighting Res Technol. 2017; 49(2):211–27.

38. Fotios S, Uttley J. Illuminance required to detect a pavement obstacle of critical size. Lighting Res Tech-

nol. 2018; 50(3):390–404.

39. Johansson M, Pedersen E, Maleetipwan-Mattsson P, Kuhn L, Laike T. Perceived outdoor lighting qual-

ity (POLQ): A lighting assessment tool. J Environ Psychol. 2014; 39:14–21.

40. Shikakura T, Kikuchi S, Tanaka T, Furuta Y. Psychological evaluation of outdoor pedestrian lighting

based on rendered images by computer graphics. J Illum Eng Inst Japan. 1992; 74(10):648–53.

41. Boyce PR, Eklund NH, Hamilton BJ, Bruno LD. Perceptions of safety at night in different lighting condi-

tions. Lighting Res Technol. 2000; 32(2):79–91.

42. Viliūnas V, Vaitkevičius H, Stanikūnas R, Vitta P, Bliumas R, Auškalnytė A, et al. Subjective evaluation
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