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SUMMARY

Themembrane-bound EssB is an integral and essen-
tial component of the bacterial type VII secretion
system that can contribute to pathogenicity. The
architecture of Geobacillus thermodenitrificans
EssB has been investigated by combining crystallo-
graphic and EPR spectroscopic methods. The
protein forms a dimer that straddles the cytoplasmic
membrane. A helical fold is observed for the
C-terminal segment, which is positioned on the exte-
rior of themembrane. This segment contributesmost
to dimer formation. The N-terminal segment displays
a structure related to the pseudokinase fold and may
contribute to function by recognizing substrates or
secretion system partners. The remaining part of
EssB may serve as an anchor point for the secretion
apparatus, which is embedded in the cytoplasmic
membrane with the C-terminal domain protruding
out to interact with partner proteins or components
of peptidoglycan.

INTRODUCTION

The Type VII or ESX1 secretion system (T7SS, ess) is key to the

virulence of important pathogens and to general aspects of

gram-positive bacterial fitness (Abdallah et al., 2007). Regarding

Mycobacterium tuberculosis, the loss of T7SS genes contributes

to the attenuated phenotype of the vaccine strain M. bovis

Bacille Calmette-Guérin (Lewis et al., 2003). Staphylococcus

aureus also depends on the T7SS to establish persistent infec-

tions in amurine pathogenicity model (Burts et al., 2005). Despite

the recognized importance of this secretion system to pathogen-

esis and recent studies to elucidate composition (Houben et al.,

2012), there is a paucity of data on the architecture and structure

of the T7SS.

T7SS gene clusters are widely distributed in gram-positive

bacteria of the phyla Actinobacteria and Firmicutes (Pallen,

2002). These clusters all share the presence of genes encoding

ESAT-6 (early secreted antigenic target of 6 kDa) family proteins,

the prototypic substrate for the T7SS, and an integral membrane

protein called EssC, which possesses FtsK/SpoIIIE-type ATPase

domains. All other genes in T7SS genomic loci, inclusive of those

reportedly essential for a functional secretion system (Abdallah

et al., 2007; Burts et al., 2005), appear to be phylum-specific.
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At least four genes encode proteins essential for the secretion

of the ESAT-6-family proteins in S. aureus (Chen et al., 2012).

One of these is EssB, a 50-kDa bitopic integral membrane

protein that is conserved among T7SS gene clusters in

Firmicutes.

We targeted EssB from the thermophilic gram-positive bacte-

rium Geobacillus thermodenitrificans for characterization. Our

bioinformatics analyses predict two similar sized segments on

either side of the membrane (Zoltner et al., 2013). Membrane-

bound EssB and isolated soluble fragments were expressed,

purified, and crystallized (Figure 1A). The crystals of detergent-

solubilized dimeric EssBD were poorly ordered, but structures

of the N- and C-terminal soluble fragments, 25 kDa EssB-N

and 19 kDa EssB-CD, were determined by single-wavelength

anomalous diffraction (SAD) and refined to 1.7 Å and 2.4 Å reso-

lution, respectively. EssB-N is dimeric in solution but crystallizes

as amonomer. It displays a fold related to that of protein kinases,

which is composed of two globular domains separated by a

cleft (Zoltner et al., 2013). The dimeric EssB-CD displays a helical

fold that extends over the cytoplasmicmembrane, and the struc-

ture suggests that this segment contributes significantly to the

dimerization of EssB. The topside surface of EssB-CD, with

a cradle-like structure, exhibits large grooves, formed between

helical bundles, well matched to interact with helical features

of binding partners.

We exploited pulsed electron double resonance (PELDOR)

spectroscopy (Milov et al., 1981; Pannier et al., 2000) to obtain

distances between pairs of single nitroxide paramagnetic spin

labels (Jeschke et al., 2002; Schiemann and Prisner, 2007) in

the detergent-solubilized EssB dimer. The crystal structures

provided information on positions for label placement, and the

PELDOR data, in combination with the X-ray structures, guided

construction of a model depicting the overall architecture of this

key, membrane-bound component of the T7SS.

RESULTS AND DISCUSSION

Overview
A recent study of recombinant S. aureus EssB reported that

the full-length protein was membrane bound but that soluble

aggregates formed in the cytoplasm (Chen et al., 2012). The

soluble material was investigated; surprisingly, no effort to

characterize the membrane-bound protein is described.

We prepared five different constructs and analyzed the

encoded polypeptides (Figure 1A). The two membrane-bound

polypeptides, EssB and EssBD, were purified with yields of

approximately 1–1.5 mg/l of bacterial culture. The truncation
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Figure 1. Structures of the Soluble N- and C-Terminal Fragments of EssB

(A) Schematic of EssB, predicted domain borders. EssB is a 50-kDa integral membrane protein with a single predicted transmembrane segment (TM, gray

cylinder) spanning Ile219 to Phe240. The constructs and the nomenclature used in this study are given.

(B) Cartoon representation of EssB-N. Helices are green, and b strands are yellow. A sodium ion (bronze) and a chloride ion (gray) are shown as spheres. The loop

connecting the N- and C-terminal domains is identified.

(C) Cartoon representation of the extracellular fragment EssB-CD. Malonate and glycerol are drawn as gray sticks and sodium ions as bronze spheres.

Also see Figure S1.
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of 31 residues to provide EssBD was designed to circumvent

disorder at the C terminus that might compromise crystal order

(growth). A determined crystallization effort produced crystals

of EssBD, which although of good appearance and size up

to 80 mm, only diffracted to 9 Å resolution at a synchrotron

microfocus beamline (European Synchrotron Radiation Facility

[ESRF], ID23-2). We were unable to index the poor quality

diffraction.

Three constructs encoding isolated fragments were prepared.

These are EssB-N, the N-terminal fragment with predicted

cytoplasmic localization; the C-terminal fragment EssB-C, pre-

dicted to reside on the trans-side of the membrane; and the

C-terminally truncated version EssB-CD. The yields for each of

these were around 10 mg/l of bacterial culture.

We determined the crystal structure of EssB-N using a

construct comprising the entire predicted cytoplasmic fragment

(Ser2 to Asp214). For the extracytosolic fragment, two structures

were determined. First, a low-resolution structure of EssB-C

comprising residues Ala241 to Lys428 was obtained and re-

vealed that the C terminus is inherently flexible because it is

not resolved in the electron density (discussed later). This polar

C-terminal region is divergent, variable in length, or completely

absent in orthologs. A higher resolution structure of EssB-CD,

residues Ala241 to Gln397, resulted when the flexible C terminus

was omitted from the recombinant polypeptide.
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Structure of EssB-N
The structure of EssB-N was determined at 1.7 Å resolution (Fig-

ure 1B; Table 1; Figure S1A available online). Initial phases were

derived from a SAD experiment using SeMet-substituted

protein. The asymmetric unit consists of a single polypeptide

folded into an elongated structure, approximately 55 Å long

and 35 Å wide, which consists of two domains. The N-terminal

domain is dominated by a four-stranded antiparallel b sheet.

The strand b4 leads into a loop connecting the domains. The

C-terminal domain consists of a helical bundle formed by two

antiparallel helix pairs, a4/a5 and a7/a8. A cleft, approximately

30 Å deep, is formed between the two domains, blocked at

one side by the interdomain connecting loop that links b4 to

b5. A further interdomain contact is made by a loop interspersed

between a2 and b3.

The EssB-N segment resembles the bilobal structure of

ATP-dependent protein kinases, i.e., an N-terminal domain or

N-lobe with a b sheet packed against an intersecting a-helix,

and a predominantly a-helical C-terminal domain (C-lobe;

Zoltner et al., 2013). In protein kinases, the cleft formed between

the two lobes contains the catalytic machinery and is where

ATP and protein substrates bind. The most similar structural

EssB-N ortholog identified is the catalytic domain of the

mammalian Tyr kinase Abl in an inactive conformation (Protein

Data Bank [PDB] code 2G1T; Levinson et al., 2006), which
reserved



Table 1. Crystallographic Statistics for EssB-N

Data Set SeMet (peak) Native

Spacegroup P41212 P41212

Wavelength (Å) 0.9793 0.9801

Resolution (Å) 44.74–1.85

(1.95–1.85)a
44.61–1.70

(1.79–1.70)

Unit cell (Å) 74.7 74.7 84.3 74.6 74.6 83.5

Unique reflections 20,759 (2,661) 26,751(3,814)

Completeness (%) 97.7 (84.8) 100 (100)

<I/s(I) > 22.7 (1.6) 24.4 (4.3)

Multiplicity 13.3 (7.8) 9.6 (7.1)

Rmerge
b 0.066 (1.077) 0.053 (0.416)

Refined Model

Resolution range (Å) 44.61–1.70

Rwork
c 20.3

Rfree
d 25.8

Protein residues 209

Other components 300 waters,

1 Na+, 1 Cl�

Rmsd from Ideal Geometry

Bond lengths (Å) 0.009

Bond angles (
�
) 1.211

Thermal Parameter (B) Values (Å2)

From Wilson plot 29.9

Mean B over all atoms 24.1

Ramachandran favored/allowed/outliers (%) 97.1/2.9/0
aValues in parentheses refer to the highest resolution bin.
bRmerge =

P
h
P

ijj(h,i) � < I(h) >
P

h
P

i I(h,i).
cRwork =

P
hkljjFoj�jFcjj/

PjFoj,where Fo is the observed structure-factor

amplitude and the Fc is the structure-factor amplitude calculated from the

model.
dRfree is the same as Rwork except only calculated using a subset, 5%, of

the data that are not included in any refinement calculations.
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exhibits 9% sequence identity. An overlay provides a Z-score of

10.4 and a root-mean-square deviation (rmsd) of 4.4 Å for an

alignment of 173 Ca-atoms. These values suggest a distant

evolutionary relationship but the catalytic residues are absent

from EssB-N. However, at the C-terminal inner surface of the

EssB cleft, as well as at the domain contact area, a remarkable

degree of structural similarity is evident (Zoltner et al., 2013).

This region of the protein kinase structures is key for substrate

recognition and binding (Levinson et al., 2006) and suggests

a function for EssB-N as a protein-protein interaction module

using the stable modular entity of the protein kinase fold.

EssB-N of G. thermodenitrificans and S. aureus (Zoltner et al.,

2013) share a sequence identity of approximately 20%. A struc-

tural alignment (Figure S1C) of 170 Ca-atoms has a Z-score of

16.7 and an rmsd of 2.5 Å. The G. thermodenitrificans EssB-N

structure is more complete with 209 residues, in contrast to

176 residues in the S. aureus protein. The extended model

serves to identify an additional strand, b1 of the N-terminal

domain b sheet, which is preceded by a short helix, and also

to extend the C-terminal helix toward the membrane. These or-

thologous fragments crystallize as a monomer despite forming
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stable dimers in solution (discussed later). In both structures,

the contacts formed with symmetry-related molecules appear

unlikely to support the existence of thermodynamically stable

dimers in solution. In addition, there is no combination of mole-

cules with an orientation relevant to membrane association,

i.e., with the C-terminal sections directed in a similar way.

To analyze the influence of external conditions on the quater-

nary structure of EssB-N, we subjected the protein to size

exclusion chromatography in different buffer systems. EssB-N

elutes as a single species with a molecular weight that corre-

sponds to a dimer in various buffers (see Experimental Proce-

dures), which is consistent with its migration with an apparent

mass of 45 kDa in BN-PAGE (Figure S2A). However, in 0.1 M

citrate buffer pH 5.5, the buffer used in crystallization, more

than 10% of the eluted EssB-N is monomeric (Figure S2B). The

transition to a monomeric state appears to be influenced by

a combination of low pH and high ionic strength, which matches

the crystallization conditions used for EssB-N where we may

have been selecting out the monomer. The observed stability

of the EssB-N dimer suggests biological relevance. However,

conditions in the bacterial cytosol, in terms of ionic strength for

example, might allow a conditional association of the cyto-

plasmic domains in the EssB dimer responsive to the binding

of other factors.

The Extracellular EssB-C
The EssB-C polypeptide gave poorly ordered, highly anisotropic

tetragonal crystals. Nevertheless, a low-resolution crystal struc-

ture was obtained by SAD methods. The structure indicated

that the C terminus was disordered; hence, a truncated protein,

EssB-CD, was targeted with the aim of improving diffraction

quality. This proved successful; more ordered monoclinic

crystals were obtained. SeMet SAD phasing was repeated and

the native structure was refined to 2.4 Å resolution (Table 2).

Structure of EssB-CD

EssB-CD displays an all-helical architecture not previously

described and there is no example of this topology in the PDB.

Approximately 75% of residues are in a helices arranged into

a series of coiled-coil motifs that are predicted to extend across

the cytoplasmic membrane (Figures 1C and S1B). The structure

starts at a1, with Ala241 at the transmembrane border, poten-

tially the continuation of the helix that transcends the membrane

(Figures 1C and S1B). The antiparallel coiled-coil of a1 and a2 is

followed by a loop facing the membrane surface. This loop,

carrying a turn of 310-helix, connects to the next antiparallel

side-by-side helix pair (a3, a4). At the lower end of a4, a sodium:

malonate ion pair is bound. The four remaining helices, a5–a8,

form two sets of antiparallel coiled-coils.

Size exclusion chromatography indicated that EssB, EssB-C,

and EssB-CD form dimers. The asymmetric unit of EssB-CD

consists of four molecules, which are labeled A to D. An average

rmsd value of 1.38 Å is obtained from the least-squares fit of the

Ca positions of individual subunits with each other. This relatively

high value is strongly influenced by a few large differences, in

excess of 10 Å, at the C-terminal segments but overall the

molecules are similar. To identify the relevant dimer, we sought

an interface common to each of the four molecules with the

important consideration that the dimeric association should be
, 595–603, April 2, 2013 ª2013 Elsevier Ltd All rights reserved 597



Table 2. Crystallographic Statistics for EssB-C and EssB-CD

Data Set EssB-C SeMet (Peak) EssB-C (Native) EssB-CD SeMet (Peak) EssB-CD (Native)

Construct Ala241-Lys428 Ala241-Lys428 Ala243-Gln397 Ala243-Gln397

Spacegroup P43212 P43212 C2 C2

Wavelength (Å) 0.9792 1.0070 0.9794 0.9801

Resolution (Å) 48.06–3.80 (4.01–3.80)a 48.17–3.20 (3.27–3.20) 29.46–2.87 (3.03–2.87) 64.65–2.40 (2.53–2.40)

Unit cell (Å) 94.9 94.9 206.7 95.6 95.6 206.0 133.7 110.4 97.3 b = 103.3� 132.9 110.6 97.4 b = 103.3�

Unique reflections 9,901 (1,399) 16,402 (2,334) 31,181 (4,220) 52,114 (7,558)

Completeness (%) 99.9 (100) 99.4 (100) 98.8 (92.5) 97.4 (97.4)

<I/s(I) > 20.5 (3.5) 26.6 (2.2) 14.3 (2.8) 11.7 (3.0)

Redundancy 8.9 (9.3) 8.2 (8.5) 5.5 (4.6) 4.6 (4.7)

Rmerge
b 0.051 (0.525) 0.048 (0.698) 0.070 (0.470) 0.069 (0.438)

Refined Model

Resolution range (Å) 55.31–2.40

No. reflections 49,452

Rwork
c 18.6

Rfree
d 22.1

Protein residues (chain) 148 (A), 150 (B), 148 (C), 150 (D)

Other components 275 waters, 5 Na+, 3 Cl�, 3 malonates, 1 glycerol

Rmsd from Ideal Geometry

Bond lengths (Å) 0.011

Bond angles (
�
) 1.20

B Values (Å2)

From Wilson plot 56.6

Mean B over all atoms 43.9

Ramachandran favored/allowed/outliers (%) 98.3/1.5/0.2
aValues in parentheses refer to the highest resolution bin.
bRmerge =

P
h
P

ijj(h,i) � < I(h) >
P

h
P

i I(h,i).
cRwork =

P
hkljjFoj�jFcjj/

PjFoj, where Fo is the observed structure-factor amplitude and the Fc is the structure-factor amplitude calculated from the

model.
dRfree is the same as Rwork except calculated using a subset, 5%, of the data that are not included in any refinement calculations.
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compatible with each molecule having the same orientation with

respect to the membrane. The relevant dimer is generated by

crystallographic symmetry operations �x+1/2, y�1/2, �z+1

and �x, y, �z (AB and DC pairings), respectively. The dimer is

primarily formed by interacting residues on a1, a2, and the

loop linking a4 to a5. The interaction surface uses only about

7% of the solvent-accessible surface, a low value compared

with dimers of similar sized polypeptides. However, with a solva-

tion free energy gain of �14 kcal/M (estimated using PISA;

Krissinel andHenrick, 2007), the dimer is predicted to be thermo-

dynamically stable. Moreover, in the full-length protein, the

transmembrane helices would be expected to also contribute

to dimerization. One of the interface regions formed between

molecules in the asymmetric unit has a larger interaction surface

area of approximately 12%. However, with a solvation free

energy gain of only �5.1 kcal/M, it is predicted to be less stable

than the dimer depicted in Figures 1C, S1B, and S2C. The same

dimer identified in the monoclinic crystal structure is also evident

in the low-resolution tetragonal structure that contains two

EssB-C molecules in the asymmetric unit. It is generated by

the crystallographic symmetry operation �y�1/2, x�1/2, z�1/4.

The assignment of this as the physiologic dimer is further

corroborated by PELDOR spectroscopy (see below).
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PELDOR Spectroscopy
We applied PELDOR spectroscopy to measure intermolecular

distances in the dimeric, membrane-bound EssBD to obtain

information about the overall architecture (Table 3; Figure S2D).

The structures were inspected for surface-exposed, non-

conserved residues within secondary structure elements at

which cysteines labeled with MTSSL might be placed without

disruption of the structures and that might usefully provide

information on orientation. Eight such positions were identified

and tested.

The three endogenous cysteines were first mutated to serine

to prevent labeling at those sites, then eight single-sitemutations

were constructed, the encoded proteins purified and labeled.

One position was in the extracellular domain (Glu273) and the

rest in the intracellular domain (Asp54, Glu59, Arg86, Ser93,

Asn115, Glu139, and Glu197; Figure 2; Movie S1). These

mutated proteins eluted as a single species identical to the

wild-type dimer during size exclusion chromatography.

The extracytosolic E273C showed a major distance distribu-

tion of 44 Å, compared to the value of 43 Å derived from the

EssB-CD crystal structure (Figure S3A), essentially confirming

the assigned dimer structure (Figures 1C and S1B) and ruling

out the physiologic relevance of the crystallographic dimer
reserved



Figure 2. Predicted Architecture of EssB with Spin-Labeling

Positions
(A) Schematic EssB model in cartoon representation showing positions of

MTSSL-labels (see also Movie S1). Ensembles of possible MTSSL nitrogen

positions on the five mutant positions are shown as color-coded mesh for

clarity (D54C in red, E59C in green, E139C in dark blue, E197C in orange,

and E273C in light blue). The model is assembled with the EssB-C dimer

and modeled TM-segment (yellow) extended down through the membrane

toward the docked cytoplasmic EssB-N fragments. The gray box denotes the

cytoplasmic membrane. See also Movie S1.

(B) Topview of the EssB-N model. Three additional label positions, producing

oscillation free data, are shown in sticks with the paramagnetic amine oxide

drawn as color-coded sphere (R86C in blue, S93C in red, and N115C in black).

Also see Figure S2.

Table 3. Summary of PELDOR Results

Spin Label

Site

Simulated Distance

Distributions from

Final Model

Experimental Distance

Distributions

Modal

Distances

Width at

Half-Height

Modal

Distances

Width at

Half-Height

D54C 53 8.3 55 4.4

E59C 66 3.8 65 4.6

E139C 58 5.9 58 7.0

E197C 39 6.0 38 6.2

E273C 43 6.1 44 6.2

Comparison of distances and distributions (Å) using the EssB-N dimer

model and, for E273C, the EssB-CD X-ray structure.
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contained in the asymmetric unit (AD pairing) with a theoretical

interspin distance of 49 Å.

The remaining positions were investigated in the context

of the whole, detergent-solubilized, EssBD dimer (Figure S3B)

and two (D54C and S93C) were additionally investigated as

the isolated intracellular fragment EssB-N. These two mutants

were analyzed by size exclusion chromatography before and

after MTSSL-labeling. While D54C eluted solely as a dimer,

for S93C a small fraction of EssB-N monomer could be de-

tected after labeling (data not shown). The large MTSSL-group

at position 93 appears to destabilize the dimer, a strong indica-

tion that Ser93 is indeed located on or near the dimer interface

(Figure 2B).

Of the seven intracellular positions investigated, four (D54C,

E59C, E139C, and E197C) provided PELDORdata showing clear

oscillations (Figure S3C). Position E139C, on a5, exhibits an in-

terspin distance of 58 Å (Figure S3B). The data are comparable

to those obtained for the E273C mutant but with a significantly

smaller oscillation depth that might indicate partial dimerization,

yet under the conditions used in SEC, this sample appeared only

to be a dimer. The D54C label, localized on b3, was investigated

in both solubilized EssBD and EssB-N. The distance distributions

are virtually identical with an interspin distance of 55 Å (Fig-

ure S3B). PELDOR data from EssB-N show oscillations with

a much smaller oscillation depth than the solubilized EssB sug-

gesting that, under these conditions, not all the sample is in

a dimeric form. Such an observation is consistent with other

data on this isolated fragment. The mutant E59C provided

a separation of 66 Å, and E197C, located on the C-terminal a8,

provided a distance of 38 Å (Figure S3B).

The PELDOR data derived on the remaining three positions

(R86C, S93C, and N115C) were devoid of oscillations (Fig-

ure S3D), and Tikhonov regularization did not resolve clear

distance distributions. This may have been a consequence of

steric restrictions on the spin labels because they occur at

the interface (Figure 2B). The PELDOR data are consistent

with the dimerization of the membrane-bound protein, and

the extra- and intracellular domains. Well-defined distances

(Table 3; Figures S2D and S3E) informed the generation of

an EssB dimer model by docking the intracellular monomers

with restrained, rigid body, molecular dynamics in conjunction

with the fixed structure of the extracellular segment EssB-CD

(Figure 2; Movie S1).
Structure 21, 595–603, April 2, 2013 ª2013 Elsevier Ltd All rights reserved 599



Figure 3. A van der Waals Surface Repre-

sentation of the EssB-CD Dimer

Topview of the EssB-CD dimer. One subunit is

depicted with ribbon format and the other has the

van der Waals surface shown and colored

according to chemical properties: red, acidic;

blue, basic; white, nonpolar. The arrows mark

entrances to grooves on the surface of the protein.

Also see Figure S3.
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The Architecture of EssB and Functional Implications
EssBD and the extracellular segment, EssB-CD are stable homo-

dimers. The PELDOR distance measurements unambiguously

confirmed this for the intracellular domain both in the intact,

detergent-solubilized and isolated forms. EssB-N appears to

be a conditional dimer. Modeling, based on the structures and

incorporating PELDOR distance restraints, generated an EssB

dimer model consistent with the distance information and with

data from labels that appear to disrupt the dimer (Figure 2; Movie

S1). To emphasize this last point, the labeling at positions 86, 93,

and 115 did not provide distance information to assist with

modeling of the dimer. All three mutant/labels appear to destabi-

lize the dimer, and the model locates them at the interface,

perfectly positioned to disrupt the association (Figure 2B).

The extracellular segment dimer observed in the structure of

EssB-CD is retained, as previously detailed, and embedded in

the membrane by a predicted transmembrane helix. Based on

secondary structure predictions and sequence conservation

(Zoltner et al., 2013; Figure S3F), a similar topology and dimer

are predicted for orthologs. On the other side of the membrane,

a weaker dimeric association is formed by EssB-N. Here, the

contact interface uses a2, a4, a8, and three loop regions

(Asn115-Pro120, Val95-Leu103, and Glu44-Ile49; Figure S3G).

The interaction surface is primarily polar and composed of

alternating acidic and basic patches that exhibit a charge

complementarity between monomers. The middle section of

the EssB-N interface is more hydrophobic in nature and a basic

patch is positioned near b6, recessed in a groove.

The N-terminal segment of EssB may not be a major contrib-

utor to the stability of the dimeric, intact protein. Interactions

involving the transmembrane helices and the C-terminal

segment appear to be more important in this context. Neverthe-

less, sequence alignments and secondary structure prediction

indicate that the helical regions and loops that appear to partic-

ipate in the dimerization of EssB-N are conserved (Figure S3H).

Our model and characterization of EssB offers clues to the

mode of action as part of the T7SS complex. The C-terminal

portion is directed out from the cytoplasmic membrane. If we

consider the flexible C-terminal tail, then this may extend

approximately 50 Å above the membrane. EssB is then posi-

tioned to interact with components of the T7SS, and/or with
600 Structure 21, 595–603, April 2, 2013 ª2013 Elsevier Ltd All rights reserved
components of the cell wall. The topside

surface exhibits two large grooves, one

formed between a4 and a8 and one

between the helix pair a3-a4, above the

dimer interface (Figure 3). A mixture of

polar and nonpolar groups lines the

grooves and might facilitate interactions
with partners. The C-terminal segment could therefore function

like a toggle-bolt to tether and localize EssB and relevant T7SS

complexes to the membrane.

The structural similarity of the cytoplasmic segment to Ser/Thr

protein kinases, fluxional behavior, and overall topology of

EssB is reminiscent of receptor protein kinases such as the

eukaryote-like Ser-Thr kinases found in M. tuberculosis, PknB,

and PknG (Pereira et al., 2011). Ligand binding to an extracellular

domain promotes conformational changes resulting in receptor

dimerization or stabilization of a loose dimer, which in turn allows

trans-activation of the cytoplasmic kinase domainswith the over-

all result that a signal transduces the membrane. The fluxional

behavior of EssB-N appears to be an intrinsic property that might

be exploited by a molecular partner, which could be a substrate

of T7SS or a component of the secretion apparatus itself.

It is intriguing that encoded on the T7SS gene cluster is EssC,

a large, membrane-bound ATPase. The ATPase activity resides

on the C-terminal part of the protein and can provide the motive

force for the T7SS. The N-terminal domain of EssC, predicted

to reside in the cytoplasm and for which a structure has been

determined (Tanaka et al., 2007), displays a combination of

two forkhead-associated (FHA) domains. FHA domains are

phosphopeptide, in particular phosphothreonine, recognition

motifs. They are widely dispersed from prokaryotes to higher

eukaryotes and are implicated in intracellular signal transduc-

tion, protein transport, and protein degradation (Liang and Van

Doren, 2008). Most recently, they have also been implicated in

the function of the type III secretion system (McDowell et al.,

2011). The FHAdomains of EssCmay interact with other proteins

in the ESX-1 secretion system, with substrates or regulators for

example. It is intriguing to find a phosphothreonine-type peptide

recognition module in one component of the T7SS and a Ser/Thr

kinase protein recognition fold on another component, with both

being membrane localized. It will be of interest to confirm if and

how these domains interact.
EXPERIMENTAL PROCEDURES

Cloning and Mutagenesis

The full-length G. thermodenitrificans NG80-2 EssB (Uniprot: A4IKE6) coding

sequence (codon optimized for Escherichia coli K12 (Genscript)) and
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EssBD, a construct encoding a product truncated by 31 C-terminal residues,

were cloned into the Sal1/Xho1 site of a modified pET27b vector (Novagen).

Constructs to produce the predicted cytoplasmic fragment EssB-N

(Figure 1A) and the two fragments predicted to reside trans of the cyto-

plasmic membrane (Figure 1A), EssB-C (residues 241–428) and EssB-CD

(residues 241–397), were generated accordingly. All primers are listed in

Table S1A. The plasmids produce an N-terminal hexahistidine-tagged

protein with a tobacco etch virus (TEV) protease cleavage site. Site-directed

mutants D54C, E59C, R86C, S93C, N115C, E139C, E197C, and E273C

were generated using the Quikchange protocol (Stratagene) after first

preparing a template where three endogenous cysteine residues (at posi-

tions 48, 108, and 171) were changed to serines. Mutagenesis primers

are detailed in Table S1B. The integrity of all constructs was verified by

sequencing.

Recombinant Protein Production

For isolation of EssB-N, EssB-C, and EssB-CD, freshly transformed E. coli

BL21(DE3) pLysS cells were cultivated at 37�C in 10ml Luria-Bertani (LB) broth

containing 50 mg/ml kanamycin and 15 mg/ml chloramphenicol, which was

used as inoculum of the 1 l main culture (grown at 37�C in selective LB contain-

ing 1 mM MgCl2 and 0.5 mM CaCl2 in baffled 5 l Erlenmeyer flasks). The

temperature was lowered to 25�C when the cells had reached an optical

density of 0.6 at l = 600 nm and expression was induced with 1 mM iso-

propyl-b-D-thiogalactopyranoside (IPTG).

Cells were harvested after 14 hr, resuspended in buffer A (50 mM sodium

phosphate pH 8.0, 300 mM NaCl, 1 mM dithiothreitol, 10% [w/v] glycerol)

with the addition of protease inhibitors (Roche), and the homogenates

were centrifuged at 150,000 g for 60 min at 4�C. The resulting supernatants

were passed through a 0.45-mm filter, imidazole was added to a concentra-

tion of 25 mM, and the sample was loaded on a 5-ml HisTrap HP column

(GE Healthcare). After a four-column volume (CV) washing step in the

same buffer, the recombinant proteins were eluted applying a linear imid-

azole gradient (25–250 mM over 18 CV). The buffer was exchanged using

a spin concentrator (Sartorius) to buffer B (50 mM Tris-HCl pH 7.8, 2 mM

dithiothreitol, 10% [w/v] glycerol). After a 14-hr incubation with His-tagged

TEV protease (4�C, molar ratio of 1:20 TEV:recombinant proteins), the

samples were passed through a HisTrap HP column equilibrated with buffer

A to remove the protease, cleaved peptide, and noncleaved material. The

cleaved products retain a Gly-Ala-Ser sequence at the N terminus. Fractions

containing the target protein were collected, concentrated, and passed

through a size exclusion chromatography column (HR 16/60, Superdex75

prep grade, GE Healthcare, CV = 120 ml) equilibrated with buffer C

(10 mM sodium phosphate pH 7.8, 20 mM NaCl, 0.5 mM tris[2-carbox-

yethyl]phosphine hydrochloride). The size exclusion chromatography

columns had previously been calibrated with molecular mass standards

(thyroglobulin, 670 kDa; g-globulin, 158 kDa; serum albumin, 67 kDa; oval-

bumin, 44 kDa; myoglobin, 17 kDa; vitamin B12, 1 kDa). SeMet-substituted

proteins were obtained using a metabolic inhibition protocol and purified

following the protocols just outlined. The mass of the recombinant proteins

and the incorporation of SeMet were monitored by matrix-assisted laser-

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)

analysis performed at the University of Dundee ‘‘Fingerprints’’ Proteomics

Facility using an Applied Biosystems Voyager DE-STR spectrometer.

Preparation of the membrane-bound EssB and EssBD followed the same

protocol except that LEMO21(DE3) cells (Wagner et al., 2008) were used,

the culture medium contained 100 mM L-rhamnose, and gene expression

was induced with 400 mM IPTG. Membranes were isolated by centrifuga-

tion at 150,000 g for 60 min at 4�C, resuspended in buffer A, and solubi-

lized with n-dodecyl-b-D-maltoside (DDM) at a protein-to-detergent mass

ratio of 1:3 for 2 hr at 20�C. Nonsolubilized material was removed by

centrifugation and the resulting supernatant was purified essentially as

described above except that all buffers were supplemented with 0.02%

(w/V) DDM and 1 mg/ml 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC;

a kind gift from Lipoid AG, Steinhausen, Switzerland), and an HR 30/100

GL Superdex200 column (CV = 24 ml, GE Healthcare) was used for size

exclusion chromatography. Where applicable, DDM was exchanged for

0.1% (w/V) DHPC (1,2-diheptanoyl-sn-glycero-3-phosphocholine) during

gel filtration.
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Blue Native Gel Electrophoresis and Analytical Size Exclusion

Chromatography of EssB-N

Linear 4%–16% gradient Native Bis-Tris gels (Novex, Life Technologies) were

run and destained according to the manufacturer’s protocol. Samples

comprising 3 mg of purified EssB-N were loaded. Apoferritin (480 kDa), B-

phycoerythrin (242 kDa), lactate dehydrogenase (146 kDa), BSA (66 kDa),

and soya bean trypsin inhibitor (20 kDa) were used as standard proteins.

To analyze the stability of the EssB-N dimer by size exclusion chromatog-

raphy in different buffer systems, EssB-N (2 mg) was buffer exchanged to

the test buffer containing 0.5% TCEP and 10% (w/v) glycerol ([a] 10 mM

Tris-HCl pH 7.8, 20 mM NaCl; [b] 10 mM Tris-HCl pH 7.8, 20 mM NaCl,

5 mM ethylenediaminetetraacetic acid (EDTA); [c] 100 mM citrate pH 5.5,

300 mM NaCl; [d] 100 mM phosphate pH 7.8, 300 mM NaCl; and [e] 50 mM

Bis-Tris pH 5.5, 300 mM NaCl) using a spin concentrator. After incubating

the samples for 30 min at room temperature, they were loaded onto a size

exclusion chromatography column (HR 30/100 GL, Superdex75 prep grade,

GE Healthcare) equilibrated with the same buffer.

Crystallization and Structure Determination

Crystals of EssB-N were grown by hanging-drop vapor diffusion at 20�C in 3 ml

drops of a 1:1 ratio of protein solution (25 mg/ml EssB-N in 20 mM sodium

phosphate pH 7.8, 50 mM NaCl, 0.5 mM TCEP) with the reservoir (0.1 M tri-

sodium citrate pH 5.5, 20% [w/v] PEG 3000). Bipyramidal crystals of maximum

dimensions 100–200 mmappeared after 4 days. The crystals were picked up in

LV-oil (MiTeGen, NY, USA), cooled in a stream of gaseous nitrogen at�173�C,
then characterized in-house using a Rigaku 007HF rotating anode X-ray

generator coupled to a RAXIS IV2+ image plate detector. The crystals display

space group P41212 with a single molecule in the asymmetric unit.

EssB-C crystals grew in sitting drops of a vapor diffusion setup at 20�C
with 1-ml protein stock solution (20mg/ml EssB-C in 20mM sodium phosphate

pH 7.8, 50 mM NaCl, 0.5 mM TCEP) and 1-ml reservoir (2.1 M malate pH 7.0).

The crystals are tetragonal bipyramidal prisms, of maximum dimensions

300 mM, and diffracted to about 3.2 Å resolution. Two molecules constitute

the asymmetric unit with a solvent content of approximately 80%. The combi-

nation of a large tetragonal unit cell (Table 1), high solvent content, and a flex-

ible C terminus likely explains the poor order. EssB-CD produced crystals

using sitting drop vapor diffusion at 20�C with 1 ml protein stock solution

(20 mg/ml EssB-CD in 20 mM sodium phosphate pH 7.8, 50 mM NaCl,

0.5 mM TCEP), and 1 ml reservoir (3.0 M malonate pH 7.0, 10 mM ZnCl2).

The crystals formed clusters of diamond-like plates. Single fragments were

isolated using microtools, plunged in liquid nitrogen, then tested in-house.

They belong to space group C2 with four molecules in the asymmetric unit

and a solvent content of approximately 75%.

EssB-N and EssB-C X-ray data were collected on ID29 at the European

Synchrotron Radiation Facility (ESRF, Grenoble, France) and EssB-CD data

at beam line I02 at Diamond Light Source (DLS, Didcot, UK), all with an

ADSC Q315r Charged Couple Device detector. The data were processed

using XDS (Kabsch, 2010) except for EssB-N native data, which were pro-

cessed using Mosflm (Battye et al., 2011).

The crystal structures were solved by SAD using CRANK (Ness et al., 2004),

as implemented in the CCP4 suite of programs (Winn et al., 2011). EssB-N

presents a single molecule per asymmetric unit and the three expected Se

sites were located. Later examination revealed a distinct anomalous signal

from a chloride ion (interacting with Arg203 and His207) that was not used

for phasing. The initial figure-of-merit (FOM) of 0.34–1.85 Å increased to

0.79 after density modification. A model consisting of residues 36–96 and

110–142 was built using ARP/wARP (Perrakis et al., 1999) and resulted in Rwork

and Rfree of 0.249 and 0.293, respectively. This model was extended to

residues 2–210 in the graphics program COOT (Emsley and Cowtan, 2004)

and refined with Refmac5 (Murshudov et al., 2011).

High- and low-resolution data sets, collected using different translations

of a single native crystal, were merged using SCALA (Evans, 2006). The

SeMet model was positioned in the native unit cell using PHASER (McCoy

et al., 2007) then refined in Refmac5 with iterative rounds of electron and

difference density map inspection, model manipulation in COOT, and the

inclusion of water molecules, chloride, sodium ions, and multiple conformers.

The positions of all six Se atoms in the asymmetric unit of EssB-C were

identified and provided phases to 3.8 Å using the SAD approach with an
, 595–603, April 2, 2013 ª2013 Elsevier Ltd All rights reserved 601
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overall FOM of 0.57 (after density modification). A model (chain A residues

251–379, chain B residues 258–382) was built into the electron density map

followed by several rounds of refinement. This provided a model to establish

the phases of a native data set to 3.2 Å by molecular replacement. Refinement

following inspection in COOT gave Rwork and Rfree values of 0.443 and 0.466,

respectively; however, although the core of the structure was well defined, it

was not possible to extend the model. However, the lack of ordered structure

at the C terminus of this EssB-C model suggested that a truncation might

improve the diffraction order; hence, EssB-CD was prepared. This change

did indeed result in improved diffraction and a Se-SAD phasing experiment

produced an excellent electron density map to 2.9 Å based on 12 Se positions

with a FOM of 0.47 (that increased to 0.66 after density modification). All four

polypeptides in the asymmetric unit were constructed using BUCCANEER

(Cowtan, 2006) and served as a search model to phase native data to 2.4 Å

by molecular replacement with PHASER. Rounds of model adjustment using

COOT, interspersed with Refmac5 calculations, the addition and refinement

of water molecules and components of the crystallization mixture (sodium

ions, malonate and glycerol), and inclusion of multiple conformers completed

the refinement.

MOLPROBITY (Lovell et al., 2003) was used to monitor model geometry and

included a Ramachandran plot analysis during refinements along with the vali-

dation tools within COOT. Figures were prepared using PyMOL (Delano, 2002).

The DALI server was used to search the PDB for structural homologs and

structural superpositions were performed using DALILITE (Holm and Park,

2000). Multiple sequence alignments were calculated using CLUSTALW2

(Larkin et al., 2007) and edited using ALINE (Bond and Schüttelkopf, 2009).

The conservation of amino acid sequence was investigated using CONSURF

(Landau et al., 2005), noting that EssB-ortholog sequences with identities

less than 20% were excluded.

Computational Structure Prediction

The EssB TM-segment was predicted using TMHMM v2.0 (Krogh et al., 2001).

Constructs were generated, in part guided by the Phyre fold recognition server

(Kelley and Sternberg, 2009).

Spin-Labeling and EPR Sample Preparation

The cysteine EssB-N and EssBD mutant proteins were purified as described

above, but with the omission of the thiol-reducing agent TCEP in buffer

C. Samples were spectrophotometrically quantified at l = 280 nm and

immediately mixed with a 10-fold molar excess of (1-oxyl-2,2,5,5-tetramethyl-

pyrroline-3-methyl) methanethiosulfonate (MTSSL) from a 10 mg/ml stock

solution in dimethylformamide and incubated for 14 hr at 8�C. Labeling was

verified by monitoring the 186-Da mass-shift by MALDI-TOF MS analysis.

The spin-labeled samples were buffer exchanged into 20 mM Tris-HCl

pH 7.8, 100 mM NaCl (for EssBD supplemented with 0.04% DDM and

2 mg/ml DOPC) in D2O, and then were diluted with an equal volume of D8

glycerol to generate a 100-ml PELDOR sample at a concentration of 200 mM.

The samples were transferred into clear, fused quartz EPR tubes and stored

at �20�C, and cooled in liquid nitrogen immediately prior to use.

EPR Data Collection and Data Analysis

PELDOR experiments were carried out using a Bruker ELEXSYS E580 spec-

trometer operating at X-band with a dielectric ring resonator and a Bruker

400U second microwave source unit. Measurements were made on samples

at �233�C with an overcoupled resonator giving a Q-factor of approximately

100. The video bandwidth was set to 20 MHz. A four pulse, dead-time free

PELDOR sequence was used, with the pump pulse frequency positioned at

the center of the nitroxide spectrum. The frequency of the observer pulses

was increased by 80 MHz relative to the pump position. The observer

sequence used a 32-ns p-pulse; the pump p-pulse was typically 16 ns.

The experiment shot repetition time was 4 ms, and the shots per point were

50. The number of data points and scans used varied for each sample to

provide a suitable signal-to-noise ratio. PELDOR data were analyzed using

the DeerAnalysis 2011 package (Jeschke et al., 2006). In brief, the time traces

of the dipolar coupling evolution data were corrected for background echo

decay using a homogeneous three-dimensional spin distribution. The starting

time (which corresponds to the zero time of the dipolar evolution data) was

optimized to give the best-fit Pake pattern in the Fourier transformed data
602 Structure 21, 595–603, April 2, 2013 ª2013 Elsevier Ltd All rights
and the lowest rmsd background fit. Tikhonov regularization was then used

to simulate time trace data that gave rise to distance distributions, P(r), of

peak width depending on the regularization factor, alpha. The alpha term

used was judged by reference to a calculated L-curve. The L-curve is a para-

metric plot that compares smoothness of the distance distribution to the

mean-square-deviation.

Docking Using Restrained Molecular Dynamics

Spin label positions and conformer distributions were calculated using

MtsslWizard (Hagelueken et al., 2012). Multiple nitroxide positions and distri-

butions were incorporated into the monomer structure and the dimer models

were refined by rigid body dynamics using Xplor-NIH (Schwieters et al.,

2003) at 227�C, with restraints taken from PELDOR-derived distance distribu-

tions. Multiple rounds of refinement were carried out with starting structures

in which pairs of monomers, with random orientations, were separated by

approximately 50 Å. Final structures were selected at the lowest distance

violation. Distance distributions for the final model were calculated using

MtsslWizard running within PyMOL.
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