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ABSTRACT

Homologous recombination functions universally in
the maintenance of genome stability through
the repair of DNA breaks and in ensuring the
completion of replication. In some organisms,
homologous recombination can perform more spe-
cific functions. One example of this is in antigenic
variation, a widely conserved mechanism for the
evasion of host immunity. Trypanosoma brucei, the
causative agent of sleeping sickness in Africa,
undergoes antigenic variation by periodic changes
in its variant surface glycoprotein (VSG) coat. VSG
switches involve the activation of VSG genes, from
an enormous silent archive, by recombination into
specialized expression sites. These reactions
involve homologous recombination, though they
are characterized by an unusually high rate of
switching and by atypical substrate requirements.
Here, we have examined the substrate parameters
of T. brucei homologous recombination. We show,
first, that the reaction is strictly dependent on
substrate length and that it is impeded by base
mismatches, features shared by homologous
recombination in all organisms characterized.
Second, we identify a pathway of homologous
recombination that acts preferentially on short
substrates and is impeded to a lesser extent
by base mismatches and the mismatch repair
machinery. Finally, we show that mismatches
during T. brucei recombination may be repaired by
short-patch mismatch repair.

INTRODUCTION

Homologous recombination is a universal process in living
organisms. The central enzyme of this reaction appears to
have been conserved in all kingdoms of life (1) and in
viruses: RecA in bacteria, Rad51 in eukaryotes, RadA in
archaea and UvsX in phageT4 (2). In each case, the
enzyme functions by catalysing the exchange of single-
stranded DNA into intact DNA duplex, generating
homologous pairing and promoting recombination (3).
Furthermore, each orthologous protein binds single-
stranded DNA in the form of a nucleoprotein filament,
which has a highly similar structure in Escherichia coli (4),
Saccharomyces cerevisiae (5) and Archeoglobus fulgidus
(6). The purpose of homologous recombination is to
repair DNA double-strand breaks (3) and to restart stalled
or collapsed replication forks (7). In eukaryotes, it is also
used in meiotic recombination (8) and, in some circum-
stances, telomere maintenance (9). Beyond these general-
ized functions, homologous recombination has been co-
opted into specific functions in a diverse set of organisms.
One example is mating type switching in yeast, where
homologous recombination is induced by site-directed
DNA lesions (10). In many pathogenic organisms,
including bacteria, fungi and protists, homologous
recombination can play a similarly specialized role in
host immune evasion (11–13).

One way pathogens evade immunity is by antigenic
variation, the periodic switching of surface antigens.
In Trypanosoma brucei, a protistan parasite of mammals
in Africa, antigenic variation involves switches in the
variant surface glycoprotein (VSG) coat. The success of
this strategy relies upon a T. brucei cell expressing a single
VSG coat type at any one time, and the ability to switch
to an antigenically distinct version, selected from an
enormous archive of 41000 silent VSG genes (14); for
recent reviews see (15–19). Singular VSG expression has
involved the evolution of telomeric VSG transcription
units, termed expression sites (ES), and transcriptional
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control mechanisms that act upon them. VSG switching is
dependent on recombination of the silent VSGs into the
ES, and a number of such reactions have been described.
The most commonly observed, at least early in T. brucei
infections, are gene conversions that generate a copy of a
silent VSG and transfer it to the ES. Such gene
conversions encompass the VSG ORF and extend to
regions of homology upstream and downstream.
VSG-associated 70-bp repeats frequently demarcate the
upstream conversion boundary (20,21), whilst the reaction
can extend downstream to short blocks of homology in
the VSG 30 ends (22) or to the telomeric repeats (23).
Crossover exchanges between chromosome ends, termed
reciprocal VSG switches, are also seen (24). Finally,
segmental gene conversions are found where multiple VSG
pseudogenes are recombined together to form novel,
mosaic VSGs (25,26). These have been considered rare
events, found late in infections. However, sequencing the
T. brucei genome has revealed that VSG pseudogenes
represent the substantial majority of the VSG archive (14),
arguing that this is likely to be a significant mechanism of
VSG switching (26,27).

Growing evidence suggests that VSG switching is
closely linked to homologous recombination, since muta-
tions in several key factors of homology-directed strand
exchange, including RAD51 (28), a RAD51-related
protein called RAD51-3 (29) and BRCA2 (C.Hartley
and R.McCulloch, unpublished data), impair the immune
evasion process. However, T. brucei VSG switching
presents several unusual characteristics. First, the reaction
can occur at very high rates (up to 1� 10�2 switches/cell/
generation)(30,31), significantly more frequent than the
rates of general homologous recombination, which are
more typical of random mutation (32). Second, recombi-
nation of VSGs frequently relies on flanking sequences,
such as the 70 bp repeats, that are rather short and share
limited homology (33,34), despite the fact that the
T. brucei mismatch repair (MMR) machinery regulates
homologous recombination to favour well-matched
sequences, and estimates suggest that around 100 bp of
homology are needed for efficient RAD51-mediated
recombination (35). Finally, there appears to be a
hierarchy in the substrates that are used by general
homologous recombination in other organisms: sister
chromatids appear to be the favoured substrate in both
yeast (36) and mammals (32), while allelic sequences on
chromosome homologues and homologous sequences at
ectopic locations are progressively disfavoured (37,38).
Recombinational activation of allelic VSG sequence on
the sister chromatid would not result in a coat switch,
compelling the reaction to search for silent VSGs
throughout the genome. It has been argued that this is
why the VSG archive is predominantly sub-telomeric, as
these locations appear to escape such substrate constraints
(39). Beyond that, it is unclear how the other character-
istics of VSG switching are accommodated by homo-
logous recombination. One study has suggested that the
T. brucei homologous recombination is distinct from that
of S. cerevisiae and its relatively close cousin Leishmania,
in that the reaction can act on short stretches of homology
and may have an elevated rate of strand exchange (40),

perhaps indicating modifications of the recombination
machinery. Another study has suggested that it may be
necessary for T. brucei to suppress MMR to allow
homologous recombination to act during VSG switching
(33). Here, we have sought to examine the parameters of
homologous recombination in T. brucei in order to
address these questions further. To do this we have used
a transformation assay that allows us to measure the
efficiency of T. brucei recombination, and to assess the
pathways that operate.
In previous work, we characterized the T. brucei MMR

machinery (41), which plays a critical role in maintaining
genome stability and is conserved throughout evolution.
The function of MMR is to recognize and excise base
mismatches, which arise through replication errors, by
chemical damage or during recombination between
incompletely sequence-matched DNA molecules (42,43).
Eukaryotic MMR is catalysed by homologues of bacterial
MutS and MutL proteins, though the machinery has
been elaborated, since most eukaryotes encode 3-7 MutS-
related proteins (termed MSH 1-7) and 2-4 MutL-related
proteins (MLH1-3 and PMS1-2). Mutation of either
MSH2 or MLH1 in T. brucei demonstrates that MMR
functions in correcting errors in the nuclear genome (41).
Furthermore, MSH2, and by implication MMR, plays a
role in constraining T. brucei homologous recombination
to occur between well-matched sequences (35). A similar
anti-recombination role for MMR has long been appre-
ciated in other organisms, where it contributes to the
suppression of excessive genome rearrangements and to
speciation (44), though how it occurs remains to be
determined fully. In this work, we extend the above
analysis to show that T. brucei homologous recombination
is strictly dependent on substrate length, in keeping with
findings in other organisms. In addition, by comparing
the recombination of diverged substrates of different
lengths in wild-type cells and in MSH2 mutants, we
have identified an MMR-independent homologous recom-
bination pathway and find that a short-patch MMR
pathway can correct base mismatches during T. brucei
recombination.

MATERIALS AND METHODS

T. brucei strains, growth and transformation

Trypanosoma brucei bloodstream form cells were used and
grown at 378C in HMI-9 medium (45). The cells were of
strain HTUB (35), which was derived from the MITat1.2
cell line by insertion of the hygromycin phosphotransfer-
ase (HYG) ORF into the tubulin array; MSH2 hetero-
zygous (þ/�) and homozygous (�/�) mutants in this
strain have been described before (35). Transformations to
assay recombination efficiency were carried out by
electroporation with 3 mg of DNA that had been PCR-
amplified using Herculase (Stratagene) high-fidelity DNA
polymerase (see below). Electroporation conditions were a
single pulse at 1.4 kV, 25 mF using a Bio-Rad Gene Pulser
II, and at least three transformations were performed
for most constructs. For the transformations, T. brucei
cells were grown maximally to 3� 106 cells�ml�1,
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and minimally to 1.5� 106 cells�ml�1, harvested by cen-
trifugation at 600g for 10min at room temperature, and
then re-suspended in Zimmerman post-fusion medium
supplemented with 1% D-Glucose (46) to a concentration
of 5� 107 cells�ml�1. A total of 2.5� 107 cells were used
per transformation and were allowed to recover following
electroporation by growth in 10ml of non-selective
medium for 18 h before antibiotic selection. For this, the
cells were harvested as before and then resuspended in
HMI-9 containing 2.5mg.ml�1 phleomycin (Cayla) and
spread in 1.0ml aliquots over a 24-well dish. Between 2
and 10� 106 cells were plated out in this way, depending
on the construct being used (see Supplementary Figure 1).
Transformation rates were measured by the number of
wells containing phleomycin-resistant cells after 8–14 days
growth. We have assumed that the cell population in each
well is clonal, arising from a single transformant, though
this underestimates the true number of transformants.
However, calculating the likely correct number of
transformants in each plate using the number of negative
wells, and assuming a Poisson distribution of clones (40),
does not alter the nature of the relationship between
transformation rate and substrate length or homology
(data not shown). In addition, such analysis does not alter

significantly the calculated minimum efficient processing
segment, which was determined as described by Shen and
Huang (1986).

Generation ofHYG targeting constructs

For each transformation construct, 24 PCRs were
performed, the products pooled and purified using a
Qiagen PCR purification kit according to manufacturer’s
instructions; 1 QIAquick column was used per six PCRs,
and the pooled PCR products resuspended in distilled
H2O. Each of the different sized PCR products
were PCR-amplified either from pHYGwt::BLE,
pHYG05::BLE or pHYG11::BLE (35), generating con-
structs with 0, 5 or 11% base mismatches relative to the
HTUB (HYGwt) sequence. The oligonucleotide primers
used to generate each construct were size-purified prior
to the PCR and are named in Supplementary Figure 1
(sequences can be provided on request); the precise length
of each targeting flank in the different PCR products, as
well as the number of mismatched bases relative to
HYGwt, is also detailed. For reasons that are unclear, a
125 bp construct with 11% sequence divergence could not
be PCR-amplified and was omitted from the study. All the
purified PCR products were examined by agarose gel
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Figure 1. Assaying the length and sequence homology requirements of T. brucei recombination. (A) HYG (black box), encoding hygromycin
resistance, was integrated into the tubulin array of bloodstream stage T. brucei cells, replacing an a-tubulin ORF (white box). HYG-transformed cells
were then transformed with constructs containing a bleomycin resistance gene (BLE; dark grey box) and recombination flanks which target
integration to HYG. (B) The HYG recombination flanks of the different constructs used in this study are diagrammed. In each, the 50 and 30 flanks
are shown as boxes of decreasing size, depicting the different lengths (indicated) of the homology with HYG. The constructs were of three classes: the
flanks had 100% sequence homology with HYG (indicated as 0% divergence), or had base mismatches (depicted by vertical lines) that reduced the
homology to 95% (5% divergence) or 89% (11% divergence).
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electrophoresis to ensure the lack of visible contaminating
DNA molecules, and their concentration was determined
spectrophotometrically.

Analysis of transformants

The hygromycin sensitivity or resistance of the T. brucei
cells was determined by replica passaging 100 ml of the
phleomycin-resistant transformants into 1.5ml of either
non-selective HMI-9, or media containing 5 mg.ml�1

hygromycin (Roche). Growth was assessed microscopi-
cally 48 h later. For Southern analysis of the transfor-
mants, a 15ml culture was grown to a density of
�4� 106 cells�ml�1, harvested by centrifugation as
before, resuspended in 500 ml of 1mM EDTA, 100mM
NaCl, 50mM Tris-HCl pH 8.0 and lysed overnight at
378C following the addition of SDS to 1% and proteinase
K to 100 mg.ml�1. DNA was recovered by phenol/chloro-
form extraction and ethanol precipitation, and then
resuspended in distilled H2O. The genomic DNA samples
were digested by restriction enzymes as described by the
manufacturers and separated by electrophoresis, typically
at �30V overnight, on 0.8% agarose gels (Seakem LE
agarose, BioWhittaker Molecular Applications) made
with 1� TAE buffer (40mM Tris, 19mM acetic acid,
1mM EDTA) containing 0.2mg.ml�1 ethidium bromide
(Sigma). DNA was blotted by capillary transfer onto
hybond-XL membrane (Amersham), probed with a32-P
labelled DNA generated by random priming and washed
to 0.2� SSC, 0.1% SDS at 658C. Separation of intact
T. brucei chromosomes was carried out on a Bio-Rad
CHEF-DRIII apparatus. For this, each agarose plug
contained �4� 107T. brucei cells, which had been grown
in HMI-9 to a density of �2� 106 cells�ml�1, centrifuged
as before, washed by resuspending the pelleted cells in
10ml PSG (1�PBS, 1% w/v glucose), re-centrifuged and
then resuspended in PSG at a concentration of 1.6� 106

cells�ml�1. The cells were then warmed at 378C for 1min
and an equal volume of 1.4%Microsieve low-melt agarose
(Flowgen) in H2O added and mixed. Disposable plug
moulds (BioRad) were filled with �50 ml agarose and
placed at 48C for �4 h to set. The agarose plugs were then
removed from the moulds, incubated in NDS buffer
(0.5M EDTA, 1mM Tris base and 34.1mM lauroyl
sarcosine) pH 9.0 containing 1mg.ml�1 proteinase K at
508C for �24 h, transferred into NDS buffer pH 8.0
containing 1mg.ml�1 proteinase K at 508C for �24 h, and
finally transferred into NDS buffer pH 8.0 for storage at
48C. For electrophoresis, the plugs were washed four times
at room temperature in 1ml of 1� TB(0.1)E (0.089M
Tris-borate pH 8.0,).2mM EDTA) for 1 h each, then
placed in the wells of a 1.2% agarose (Seakem LE,
BioWhittaker Molecular Applications) gel. The gel was
electrophoresed at 158C at 2.5V.cm�1 for 144 h with a
1400–700 s switch time and visualized by staining with
0.5 mg.ml�1 ethidium bromide and UV illumination.
Sequences of the integrated DNA constructs were
determined by performing PCR amplifications using
oligonucleotide primers corresponding to the first and
last 20 nt of the HYG ORF and Taq DNA polymerase
(ABgene). The resulting PCR products were purified and

sequenced using oligonucleotides primers that read
upstream and downstream from the bleomycin resistance
cassette common to each construct.

RESULTS

Assaying T. brucei homologous recombination by targeted
gene replacement

Previously, we described an assay to examine homologous
recombination efficiency in T. brucei (35); this is summa-
rized in Figure 1A. The assay relies upon a hygromycin
phosphotransferase ORF (HYG) integrated into the
tubulin array (47) on chromosome 1, providing a unique
site for recombination. Recombination efficiency is
determined by measuring the transformation rate of
linear constructs containing a bleomycin resistance
cassette (BLE) flanked by sequences derived from HYG.
The advantage of this approach is that a single, defined
site for recombination is analysed from which a number of
parameters can be varied (see below). In addition, using a
foreign sequence as a target reduces the potential for
recombination into related sequences elsewhere in the
genome, an issue that has influenced other studies where
endogenous T. brucei sequences are used both as a
genomic target and recombination substrate; e.g.
(40,46,48). Although transformation of any organism is
likely to be affected by a number of factors, including
DNA concentration, transformation conditions and
growth of the cells, this appears to be a reliable measure
of recombination in T. brucei. The same assay has
demonstrated the importance of T. brucei MMR in
controlling homologous recombination between sequences
containing base mismatches (35)(see below). Moreover,
related transformation assays have quantified the role in
recombination of a number of T. brucei genes, including
RAD51 (28,46), MRE11 (48), DMC1 (49) and two
RAD51-related genes (RAD51-3 and RAD51-5) (29), and
have looked at the importance of target copy number (40).
Most likely, this approach succeeds because virtually all
stable transformants in T. brucei integrate linear DNA by
homologous recombination, rather than by end-joining
processes, and the formation of extra-chromosomal
episomes following such transformation has not been
described (50).
Using this assay we have shown previously that

T. brucei homologous recombination, acting on substrates
with targeting flanks of 450 bp, becomes increasingly less
efficient as the level of sequence homology between the
flanks and the genomic HYG target decreases (35). One
percent of sequence divergence resulted in a 2.8-fold
reduction in transformation efficiency, and 11% diver-
gence caused a near 100-fold reduction. By mutating the
T. brucei gene encoding MSH2, we showed that transfor-
mation efficiencies of substrates with 2–11% sequence
divergence increased by around 9-fold, indicating that
MMR is an important regulator of homologous recombi-
nation. Nevertheless, it is not the sole factor that
determines the success or failure of recombination on
such substrates, as the same decline in transformation
efficiency with increasing divergence was seen in both
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MSH2-/- and wild-type cells. In this study, we have
examined two further features of T. brucei homologous
recombination. First, we tested the relationship between
substrate length and recombination efficiency. Second, we
asked if MMR has the same influence on homologous
recombination between diverged substrates when the
length of homology becomes short. To do this, a series
of constructs with targeting flanks varying in size from 25
to 200 bp were generated (Figure 1B). These were derived
by high-fidelity PCR from the previously described
constructs with 450 bp flanks (35) that are either perfectly
homologous to the genomic HYG sequence (0% sequence
divergence), or that contain base mismatches resulting in
either 5 or 11% divergence. Linear DNA was prepared by
PCR amplification, rather than by restriction digestion,
because non-homologous overhangs at the DNA ends,
while insignificant for an integration flank of 450 bp, could
have larger effects on recombination efficiencies mediated
by the shorter substrates. The transformation efficiency of
each construct was determined in msh2�/�, MSH2þ/�
and wild-type bloodstream stage T. brucei strains (35,41).
The results of this analysis are graphed in Figures 2 and 3,
and summarized in Tables 1 and 2.

T. brucei homologous recombination displays a strict
dependence on substrate length

Comparing the transformation efficiencies of constructs
with 100% sequence identity with the genomic HYG
target indicates that T. brucei homologous recombination
efficiency is dependent on substrate length. Over the range
200–50 bp, a linear relationship was found between
transformation efficiency and substrate length (Figure 2).
The average transformation rate for the 50 bp construct in
the MMR-proficient cells (MMRþ; either wild type or
MSH2 þ/�) was 0.80 � 0.45 transformants � 10�6 cells,
corresponding to a near 13-fold reduction in efficiency
compared with the 200 bp construct (10.16 � 0.38� 10�6).
Beyond this range the linear relationship broke down. It
appears that around 50 bp of sequence homology repre-
sents a lower threshold for T. brucei recombination, at
which point the reaction becomes extremely inefficient: the
25-bp substrate displayed an average transformation
rate in MMRþ cells (0.02 � 0.06� 10�6) that was
around 500-fold lower than the 200 bp substrate and
40-fold lower than the 50 bp substrate. It is notable,
however, that transformants can be generated with 25 bp
flanks, and that these can integrate by homologous
recombination (Figure 4)(46). By comparing the transfor-
mation rate of the 200 bp construct with the restriction-
digested plasmid containing 450 bp of homologous flank
used previously (35), it appears that the rate of transfor-
mation reaches a plateau around 200 bp. This may
indicate that T. brucei recombination becomes no more
efficient with substrates longer than 200 bp, though it is
also possible that this is not a reflection of recombination
but represents the maximum transformation efficiency
achievable in bloodstream stage cells under these in vitro
conditions.
Mutation of MSH2, resulting in T. brucei cells

with impaired MMR (MMR�), had no discernible

effect on recombination for any of 100% homologous
constructs in the range 25–200 bp. This contrasts with
the 450 bp parental construct, which showed a small
(1.6-fold; Figure 3, Table 1) but significant increase in
recombination in msh2�/� cells relative to MMRþ cells
(35). Elevation of recombination between similar-sized
(350 bp), sequence-matched substrates is seen also in
S. cerevisiae MMR mutants (51,52). The basis for this
is unknown, but its absence on shorter substrates
may indicate that MMR acts to suppress recombination
on sequence-matched substrates only when they are
of a significant length, perhaps because they are
more prone to secondary structure during strand
exchange.

Recombination of short substrates inT. brucei can occur by an
MMR-independent pathway

On 450 bp substrates containing base mismatches relative
to the genomic HYG sequence, increasing levels of
sequence divergence had an exponentially deleterious
effect on T. brucei homologous recombination (35).
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Furthermore, mutation of MSH2 resulted in a mean
9-fold elevation in the rate of transformation when
sequence divergence was 42% (Figure 3, Table 1). The
transformation measurements in this study show that
base mismatches and MMR regulation do not have a
uniform effect on recombination over the range of
substrate length analysed. This can be seen by examining
the data in two ways. First, we examined the effect
that mutating MSH2 had on recombination of the 5 and
11% diverged substrates (Figures 2 and 3, Table 1).
On the 5% diverged substrates, a statistically significant
elevation in transformation efficiency in the MMR� cells
relative to the MMRþ cells was observed only on the
450 and 200 bp substrates. In contrast, though the
5% diverged substrates smaller than 200 bp appeared
to show a trend towards a slight increase in transfor-
mation in MMR� cells, this was not significant.

Comparing the average transformation rates of
these constructs confirms this (Table 1): the 450 and
200 bp substrates displayed 9.3- and 5.3-fold increases,
respectively, in transformation rate in the MMR�

cells relative to MMRþ cells, whereas averaging the
data from all substrates below 200 bp revealed a
mean 3.4-fold increase (range 1.3–6.7). On the 11%
diverged substrates, impairment of MMR caused no
significant elevation in transformation efficiency relative
to the MMRþ cells on any substrate other than the
longest (450 bp).
The second way we examined these data was

to compare the transformation rates of the 5 and
11% diverged constructs, in both the MMRþ and
MMR� cells, relative to the perfectly matched substrates.
This is quantified in Table 2 by determining the extent of
the reduction in average transformation rate of each 5 or
11% diverged substrate relative to the sequence-matched
substrate of cognate length. In both the MMRþ and
MMR� cells, at virtually all substrate lengths, increasing
sequence divergence caused a progressively more severe
impairment in transformation rate. However, in MMRþ

cells this effect was more pronounced on 450 and 200 bp
substrates than on any substrate shorter than 200 bp.
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Table 1. The values shown are the fold ‘increase’ in the average

transformation rate in msh2�/� cells relative to MMR-proficient cells

(wild type and MSH2þ/�) measured using constructs with different

lengths of targeting flanks, and with 0, 5 or 11% sequence divergence

(100, 95 and 89 homology, respectively) from the genomic HYG target;

ND indicates not determined

Length (bp) 100% 95% 89%

450 1.57 9.29 9.4
200 0.97 5.3 4.4
175 0.81 1.73 1.68
150 1.06 5.22 0.64
125 0.78 1.63 ND
100 0.78 1.33 3.5
75 0.62 6.69 0.1
50 1.77 1.83 3
25 3.5 2.5 1.5

Table 2. The values show the fold ‘decrease’ in transformation rate of

5 and 11% diverged substrates relative to sequence-matched

(0% divergence) substrates; data are shown from MMR-proficient

(MMRþ; wild type and MSH2þ/�) and MMR-deficient (MMR�;

msh2�/�) cells over a range of different substrate lengths

Length (bp) MMRþ MMR�

5% 11% 5% 11%

450 33.4 93.4 5.6 15.6
200 15.4 203.2 2.8 66.8
175 7.1 29.6 3.3 14.2
150 14.6 16.2 3 26.8
125 3.9 ND 1.9 ND
100 2.8 38.9 1.6 8.6
75 13.8 8.5 1.3 55.5
50 6.7 40 6.5 23.7
25 1 1 1.4 2.3
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In contrast, in MMR� cells the extent to which sequence
divergence impaired transformation was more uniform
across all lengths. The average level of reduction in
transformation of 5% diverged substrates smaller than
200 bp in MMRþ cells was 8.1-fold, compared with a
3-fold reduction of all substrates in MMR� cells. For
11% diverged substrates, the reduction in transformation
rate for substrates smaller than 200 bp was the same as all
substrates in MMR� cells (26.6- and 26.7-fold, respec-
tively). Taken together, these data argue that T. brucei
MMR has an important role in regulating recombination
between diverged sequences when the substrates are long
(around 200 bp or longer), but MMR has a less significant
role on shorter substrates. Higher levels of sequence
divergence presumably exacerbate this because the
lengths of uninterrupted homology stretches in such
substrates are reduced.

Most T. brucei integrative recombination occurs by
homologous recombination

An important consideration in the above analysis, and in
previous work using the same assay (35), is whether or not
the experimental approach measures T. brucei homolo-
gous recombination on all substrates. For instance, it may
be that MMR has less influence on recombination of
short substrates because primarily non-homologous
pathways of recombination act upon such sequences.

Indeed, we have shown that some DNA integration in T.
brucei can occur by a pathway mediated by sequence
microhomology (46). Homologous recombination of the
constructs into the genomic HYG locus should lead to loss
of hygromycin resistance (HygS) due to disruption of the
gene by BLE. We therefore tested the antibiotic resistances
of a large number of transformants (Figure 4), revealing
that a significant proportion of transformants in wild
type, MSH2þ/� (data not shown) and msh2�/� cells
retained hygromycin resistance (HygR). There was, how-
ever, no clear relationship between the retention of
functional HYG and either substrate size or level of
sequence homology. Although the numbers of HygR

transformants appeared to increase in wild-type cells as
substrate length decreased from 200 to 50 bp at 0%
divergence, the same trend was not apparent in msh2�/�
cells (Figure 4) or in MSH2þ/� cells (data not shown).
Determining the average level at which HygR cells
arose, using the accumulated data for all substrate
lengths, showed that this is not influenced by the extent
of divergence: 15.1, 9.2 and 16.7 of transformants
were HygR for the 0, 5 or 11% diverged substrates in
wild-type cells, respectively, compared with 28, 20.5 and
26.9% of transformants in msh2�/� cells. These latter
data do, however, indicate that HygR transformants
appeared to be slightly more prevalent (around 2-fold)
when MSH2 was mutated, perhaps indicating that
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MMR has an influence on the process that leads to their
formation.

To examine the recombination pathway(s) that gives
rise to HygR transformants, a number of clones were
examined by Southern analysis. The large majority of
HygR transformants had integrated the constructs by
homologous recombination. In msh2�/� cells, 20 of the
24 clones examined had maps indicative of HYG disrup-
tion by homologous integration of BLE (Figure 5). Re-
probing the blot with a portion of the HYG ORF revealed
that the antibiotic marker had been duplicated (based on
the equivalent signal intensity of the two HYG bands) in
these clones, explaining why they retained resistance to
hygromycin. The four other HygR msh2�/� transfor-
mants had not integrated BLE into the tubulin HYG
target, but instead into unmapped genomic locations, and
the HYG marker was unaltered. A broadly similar pattern
of BLE integration was seen for HygR transformants in
wild-type cells (data not shown). Here, 24 clones were
examined, and 23 had disrupted HYG by homologous

recombination but retained a functional copy, whilst 1 had
integrated BLE into an aberrant genomic location. The
greater number of aberrant integrations in the msh2�/�
cells may indicate that this minor recombination pathway
gains prominence in the absence of MMR. Furthermore,
most aberrant integrations were seen using relatively short
or diverged substrates: Three of the msh2�/� clones had
arisen from 11% diverged substrates of 100 bp (Figure 5,
lanes 12, 13 and 23) and one had arisen from a 50 bp,
100% homologous substrate (Figure 5, lane 3); the wild
type aberrant integrant arose from a 100 bp, 100%
homologous substrate.
The above data suggest that two putatively distinct

pathways operate in the context of this T. brucei
recombination assay to generate hygromycin-resistant
transformants. A minor pathway is integration events
that do not target the tubulin locus, as directed by the
terminal targeting flanks, but into other genomic loci.
Although we have not mapped these integrations, the
background rate at which they occur is very reminiscent of
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Figure 5. Genomic analysis of hygromycin-resistant transformants in msh2�/� mutants. (A) A Southern blot of genomic DNA from MSH2
homozygous mutant transformant clones digested with HindIII and probed with the bleomycin resistance gene ORF (BLE). The same blot was
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the microhomology-mediated reactions we have described
before (46). The prevalent pathway, in contrast, is a
homologous recombination reaction associated with
retention of a functional HYG gene. A number of
processes could account for this. First, it is possible that
duplication (or amplification) of HYG occurs at a
relatively high rate in the growth of these clonal
T. brucei lines, perhaps due to recombination within the
multigenic tubulin locus. Second, larger scale changes in
chromosome copy number (for instance, trisomy arising
from replication errors) could be rather common in
T. brucei. Finally, it is possible that a form of recombina-
tion, termed break-induced replication (53), could be
commonly induced by such construct integrations, leading
to the duplication of large stretches of chromosome 1, or
even the complete chromosome. To examine this, we
characterized a selection of HygS and HygR transformants
from wild-type cells by pulsed field gel electrophoresis
(Figure 6). One HygR transformant (HygR5), which arose
as a result of an aberrant integration, contained a novel
chromosome, 370 kb in size, that contained BLE and
HYG sequence (data not shown). Such alterations in
chromosome structure have been seen previously in
microhomology-mediated reactions (46), providing
further indirect evidence as to the recombination pathway
involved in these integrations. In contrast, no differences
in karyotype were seen in the other HygR transformants
(that had utilized homologous recombination; HygR1-4)
when compared with the HygS cells or the parental strain,
suggesting that large changes in chromosome structure are
not associated with these events. Furthermore, probing of
a Southern blot of these transformants (Supplementary
Figure 3) indicated that there was no difference in the

relative amount of chromosomes 1 and 2. Since the
tubulin array in which HYG is inserted is located on
chromosome 1, this suggests that integration of BLE did
not result in the generation of a new copy of the
chromosome. Taken together, it seems likely that HygR

in some transformants is not a consequence of targeted
integration by BLE, but results from events that amplify
HYG in the tubulin locus and are a constant background
process in the HTUB cell lines.

Construct integration occurs by independent invasion of the
DNAends, andmismatches are repaired by short-patch repair

To examine the mechanisms that contribute to the
recombination and processing of the constructs during
integration, we sequenced the DNA surrounding the
homologously integrated BLE marker in a number of
transformants clones generated in both wt and msh2�/�
cells using constructs with 50, 100, 150 or 200 bp flanks of
5 or 11% sequence divergence. We did not examine any
clones that had integrated BLE aberrantly. The results in
Figure 7 depict the pattern of residues in the transformant
DNA that are mismatched between the constructs and wt
HYG target. Most of the transformants had a trans
pattern of sequences, in which the majority of mismatched
residues corresponded to the sequence of the construct
DNA on one side of BLE and the genomic HYG target on
the other; no difference in this pattern was observed if the
transformants were HygR or HygS (data not shown). Only
clone 9 (from wt cells using a 100 bp, 5% diverged
construct) was substantially different, with HYG sequence
in both directions. Clone 23 (msh2�/� cells with 200 bp,
5% construct) was somewhat different also, with pre-
dominantly HYG-derived residues. Such a trans pattern is
consistent with a model for targeted gene replacement in
yeast (54) and mammals (55) involving independent strand
invasions by both arms of the construct (Figure 9). Such a
model predicts that heteroduplex DNA can form by
strand invasion of each construct end, which can result in
‘sectored’ or mixed sequence at the mismatched residue
positions following replication of the heteroduplex (see
Figure 9). However, no such mixed sequence was observed
in this study: at each position where a base mismatch
might from during strand invasion, the sequences were
clearly either construct-derived or HYG- derived. This
infers either that heteroduplex does not form or that
repair of such mismatches is normally rapid and occurs
before replication. The distribution of construct and
HYG-derived sequences was very similar in the msh2�/�
and wt transformants, indicating that if mismatch repair
occurs it can proceed independently of MSH2. In each
transformant in which construct-derived residues were
present in the transformed DNA, this was not continuous
along the length of the flank, but was combined with
HYG-derived residues. Most likely, HYG-derived residues
that are distal to BLE in the flanks of transformants with
an otherwise continuous tract of construct-derived
sequence (clones 6, 22, 35, 30, 24, 37, 38) result from
nucleolytic degradation of the ends of the linear molecules
following transformation and before integration. This was
most extensive in clone 30 (maximally 76 bp), whereas in a
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number of other clones mismatched residues close to the
ends of the construct molecules had been integrated (e.g.
within 15 bp in clones 41 and 15, and 32 bp in clones 37
and 38), arguing that such degradation need not be
substantial. In a number of other transformants, the
flanks contained a discontinuous pattern of construct and
HYG-derived sequence tracts (clones 1, 15, 41, 23), and
some of the residues that were patterned in this way were
positioned in close proximity (e.g. separated by only 2 and
8 bpin clones 15 and 23, respectively). This patterning is
most simply explained by the formation of heteroduplex
DNA during homologous integration and the repair of
base mismatches prior to replication by short-patch
mismatch repair.

DISCUSSION

The primary conclusion from this work is that T. brucei
homologous recombination has substrate characteristics
that are typical of those described in other organisms.
The significance of this lies in our understanding of the
relationship between homologous recombination and the
critical immune evasion process of antigenic variation,
which involves switches in VSG expression. Genetic
evidence points to antigenic variation being closely
linked to homologous recombination, despite the fact
that VSG gene switching occurs at high rates (30,31), often
acts upon rather short, diverged sequences (22,33,34) and
frequently recombines VSGs on different chromosomes to
the VSG ES (14,34), characteristics that are unusual for
stochastic homologous recombination. We have shown
previously that the efficiency of T. brucei homologous

recombination is dependent on substrate homology, which
is at least partially controlled by the T. brucei MMR
machinery (35). We now show here that recombination
efficiency is also dependent on substrate length, at least
over the range 25–200 bp. This indicates that specific
features of VSG switching have not arisen through
modifications of the T. brucei recombination machinery
in these two key features. This conclusion is perhaps not
surprising, as the primary function of homologous
recombination is to repair DNA damage (3) and ensure
the completion of replication (7), and therefore funda-
mental reaction changes could have far-reaching effects on
genome integrity. Any specificity of homologous recom-
bination during VSG switching must therefore involve
elements or factors that have not yet been uncovered and
may be unique to T. brucei. Similar conclusions have been
reached regarding antigenic variation in pathogenic
Neisseria sp., where convergent evolution has produced
a related immune evasion reaction that is also closely
linked to homologous recombination (13).
The relationship we describe in T. brucei between

substrate length and recombination rate (measured
indirectly as transformation rate) appears to be conserved
throughout evolution. In E. coli, three studies have
recorded reductions in recombination efficiency over the
range 74–20 bp (56), 405–27 bp (57) and 200–25 bp (58).
In eukaryotes, S. cerevisiae recombination rate appears to
decrease over 960-80 bp (59) or 2 kb–26 bp (60), and in
mammalian cells a similar relationship has been recorded
between an upper length of around 6.8 (61) to 10 kb (62)
and a lower length between �160 (63) and 330 bp (64).
Variations in whether the relationship between

Wildtype

1.   50bp   5%

6.   100bp 5%

9.   100bp 5%

15. 150bp 11%

35.  100bp 5%

22.  150bp 5%

30.  150bp 5%

41.  150bp 11%

23.  200bp 5%

24.  200bp 5%

37.  200bp 5%

38.  200bp 5%

msh2−/−

Figure 7. Mismatched base patterns in the DNA of integrated constructs. Circles denote the positions of bases that are mismatched between
transformation constructs and the genomic HYG gene that is targeted by homologous recombination; filled circles denote that the sequence of a base
matches the construct sequence, while open circles denote genomic HYG base sequence. The targeting flanks of the constructs are shown as lines, and
the grey box indicates the central BLE resistance marker used for selection of transformants. Clone numbers for each DNA sequence are shown to
the right, as well as the length of the flanks, the extent of sequence divergence relative to HYG, and whether the transformants were generated in wild
type or msh2�/� T. brucei cells.
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recombination rate and substrate length is linear or
exponential and in the range of substrate sizes involved,
both within and between organisms, presumably reflect
differences in the assays used, meaning that it is difficult to
compare the absolute sequence requirements of the
recombination machineries between each organism.
Nevertheless, a sharp drop in recombination efficiency
below a lower threshold, referred to as the minimal
efficient processing segment (MEPS)(57), has been
described in E. coli (57), S. cerevisiae (59) and mammalian
cells (63). We observed the same phenomenon in T. brucei,
reinforcing our view that the recombination machinery in
the parasite operates in the same manner. Despite this
broad evolutionary conservation, previous reports have
suggested that T. brucei recombination efficiency is not
affected by substrate length over the range 50–400 bp
(40,65), which is difficult to reconcile with the findings
detailed here. One of these reports compared constructs
that target distinct genomic locations (40), and it may be
that differences in target accessibility (for instance,
through chromatin structure or transcription level) affect
recombination efficiency and confounded the analysis.
Another explanation may be revealed by linear regression
analysis (Figure 8), which suggests that the MEPS for T.
brucei on sequence-matched substrates is around 31 bp,
shorter than the estimates in either S. cerevisiae or
mammals (�250 bp) (59), and closer to E. coli (around
25 bp). Intriguingly, transformation data from
Leishmania, a related kinetoplastid parasite, failed to
recover any integrants when DNA constructs with less
than around 220 bp of targeting flank were used (66).
Though this dichotomy with T. brucei may reflect the
limitations of transformation in the two parasites rather
than recombination, linear regression analysis of the
(albeit limited) data set from Papadopoulou and Dumas
(1997) is consistent with a MEPS of 190 bp in Leishmania
(Supplementary Figure 2), closer to the size predicted in
the two other eukaryotes. Perhaps, therefore, T. brucei has
evolved to allow homologous recombination to operate,
with reduced efficiency, on shorter substrates. More
analysis will be needed to examine this, but it could be
the result of differences in the activity of RAD51,
differences in the factors that mediate RAD51 function,
or a more active short-sequence recombination pathway.
The second conclusion from this work is that T. brucei

contains an MMR-independent, or at least an MSH2-
independent, pathway for homologous recombination
that has not previously been described. On 5% diverged
substrates in the size range 50–175 bp, and on 11%
diverged substrates in the range 50–200 bp, this pathway
appears to assume considerable significance, but is
subordinate to MMR-dependent recombination on
longer substrates (450 bp) containing these levels of
sequence divergence. This argues that the reaction
assumes a greater role during T. brucei homologous
recombination as substrate length decreases.
Characterization of transformants by antibiotic resistance
and Southern analysis suggests that the considerable
majority of T. brucei recombination, at all sequence
lengths, occurs by homology, suggesting that the
MMR-independent reaction is capable of precise

integration. We have described a DNA repair process in
T. brucei based on the joining of DNAmolecules using very
short stretches of homology, typically 5–15 bp in length
(46), and similar reactions have been described in other
eukaryotes (67,68) and potentially in bacteria (69–71).
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We suspect that this is not the pathway responsible formost
T. brucei MMR-independent recombination, for two
reasons. First, examination of the transformation rates of
the 5% diverged substrates 175 bp or smaller, and of the
11% diverged substrates 200 bp or smaller, suggests that
transformation by the MMR-independent pathway can be
as efficient as 1� 10�6 transformants �cells�1, since these
are conditions in which it is likely that most integrations
occur by this route. This is considerably higher than the
maximum transformation rate (0.1 x 10�6) described for
the microhomology reaction in RAD51 wild-type T. brucei
(46). Second, in most reactions where we have demon-
strated that microhomology guides construct integration,
this is associated with visible karyotype changes (46),
suggesting that the reaction may be an end-joining process
that exploits random DNA breaks, leading to genomic
rearrangements. In contrast, such rearrangements are very
rare in the extensive numbers of transformation events we
have characterized here, including the conditions in which
MMR-independent recombination would be expected to
be prominent.

The presence of a putative MMR-independent recom-
bination reaction in T. brucei is reminiscent of pathways
described in S. cerevisiae, at least superficially. Although
Rad51 is a central factor in DNA strand exchange during
homologous recombination, some reactions in S. cerevi-
siae can occur in its absence; reviewed in (72). Rad52
appears to be essential for nearly all recombination in
yeast, suggesting it contributes to both Rad51-dependent
and -independent recombination. A relative of Rad52,
termed Rad59, was identified in a search for factors
required for recombination in S. cerevisiae rad51 mutants
(73), and the suggestion that both proteins contribute to
Rad51-independent reactions is supported by findings that
each can catalyse strand annealing (74). Rad59-dependent
recombination requires less sequence homology than the
Rad51-dependent reaction (53), and displays a lower
degree of regulation by Msh2, and hence MMR, during
recombination of diverged DNA sequences (75). A
prediction, therefore, is that that the MMR-independent
recombination we see in T. brucei is RAD51-independent.
We have not tested this directly, but some data appear
consistent with this hypothesis. Linear regression analysis
of the data presented here on substrate length and T.
brucei transformation rate is best accounted for by two
lines of best fit, consistent with two pathways operating
(Figure 8). Above around �150 bp a pathway predomi-
nates that has a MEPS of �100 bp, whereas below
�150 bp a distinct pathway with a MEPS of �31 bp.
Interestingly, the longer MEPS is consistent with previous
estimates of RAD51-dependent T. brucei recombination
acting on long (450 bp) substrates (35). Despite the
considerable inefficiency of homologous recombination
on substrates shorter than the MEPS, the assay we have
used here shows that such recombination can occur, as has
been found in yeast (76), mammalian cells (64) and E. coli
(where recombination of 25 bp substrates is predomi-
nantly RecA-independent)(58). Indeed, 80% of the
transformants that arose from the constructs with only
25 bp of homology were HygS (Figure 3), demonstrating
that they had integrated by homologous recombination.

In S. cerevisiae, recombination of short substrates around
29–40 bp is not only Rad51-independent, but mutation of
Rad51 increases the reaction efficiency (53). In T. brucei,
transformation of constructs with very similar-sized
regions of homology (24 bp) occurs at essentially the
same frequency in rad51�/� and wild-type cells, suggest-
ing the action of a RAD51-independent pathway (46).
Despite these similarities, it is unclear what factors would
catalyse RAD51-independent homologous recombination
in T. brucei. Rad52 and Rad59 belong to a superfamily
that is not conserved universally (77), and homologues of
both proteins are either absent from the T. brucei genome
(78), or are sufficiently diverged in sequence to have
escaped detection. It is therefore possible that T. brucei
contains recombination factors, thus far unidentified and
distinct from RAD51, that can perform the functions
equivalent to the pathway in which Rad59 and Rad52 act
in S. cerevisiae.
Identification of an MMR-independent pathway of

homologous recombination could be important in under-
standing antigenic variation and genetic variability in
T. brucei. Although antigenic variation is impaired in
RAD51 mutants, VSG gene conversion reactions can still
be catalysed (28). It is plausible that the MMR-
independent pathway, if it is RAD51-independent, could
explain these residual VSG switching events. There is also
no evidence that VSG switching is influenced by MMR
(35), which appears to be at odds with the requirement for
RAD51, since this pathway should be suppressed by
MMR. However, although assays for recombination in
yeast rad51 mutants reveal functions for Rad59 in defined
recombination pathways, it is very likely that in wild-type
cells Rad51, Rad59 and Rad52 actually act together
(53,75). Trypanosoma brucei VSG switching may therefore
occur by a specific recombination pathway that requires
RAD51, but is directed towards an MMR-independent
route by unidentified factors that act like Rad59. Indeed,
this could explain the ability of VSG switching to use
rather short and dissimilar DNA sequences as substrates,
such as the 70 bp repeats upstream of VSG genes.
Furthermore, although nothing is known about the
genetic requirements of segmental gene conversion involv-
ing the VSG pseudogenes, it is clear that VSG genes share
very little primary sequence homology (525% identity
between encoded amino acids in 495% of the VSG
repertoire; L.Marcello and J.D.Barry, personal commu-
nication). It is therefore possible that an MMR-indepen-
dent reaction, active on short stretches of homology,
would be involved. It is important to note that to date we
have only assayed T. brucei homologous recombination at
one interstitial site. Although some work has suggested
that T. brucei recombination occurs at equivalent efficien-
cies in different genomic locations (40), it is important to
examine this systematically and to assess the pathways
used. For instance, it is clear in other organisms that other
factors, such as transcription (79), can influence recombi-
nation, and some work has suggested that different
pathways of recombination are active in interstitial
relative to subtelomeric environments (80). Moreover,
recombination can contribute to the maintenance of
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telomeres (9), and the pathway(s) that acts in this regard in
T. brucei is unknown (81).
In any model in which MMR triggers the rejection of

recombination between mismatched DNA substrates,
heteroduplex DNA must form during the strand exchange
step. In MMRþ cells in which recombinants escape
rejection, such heteroduplex is likely to be repaired,
whereas it should be visible in MMR� cells. An MMR-
independent pathway may or may not generate hetero-
duplex, since it could avoid MMR surveillance by using
short, perfectly matched sequences or because the strand
exchange mechanism between mismatched molecules
avoids triggering MMR. We cannot readily distinguish
these possibilities through sequencing the integrated DNA
in these experiments. In no transformant, even in MMR�

cells, did we find evidence for the DNA having a mixture
of construct and genomic HYG sequence at the mis-
matched residues, which would arise if heteroduplex
formed and was not repaired prior to replication, as
illustrated in Figure 9. Instead, we saw a predominant
trans pattern of construct sequence to one side of the
integrated marker and HYG sequence on the other. This is
most readily explained by independent strand invasion
and annealing between a 30 single strand on each side of
the BLE marker and the genomic HYG target, suggesting
that the mechanism of homologous recombination during
targeted gene replacement in T. brucei is equivalent to that
in yeast and mammals (54,55). The one exception we
found, where all the sequence is HYG-derived, occurred in
wild-type cells (clone 9, Figure 7). This could result from
MMR of the heteroduplex in favour of the recipient, HYG
DNA. Alternatively, it could indicate that construct
integration occasionally occurs by annealing of a single
strand encompassing both arms of the construct, followed
by mismatch repair; such a mechanism has been seen in
yeast (82), though appears to be rare (54). One distinction
between targeted gene replacement in T. brucei and S.
cerevisiae is revealed here: mutation of MSH2 in T. brucei
either increased the frequency of transformation or had no
effect, depending on substrate length, whereas the same
mutation in S. cerevisiae results in reduced integration
rates (83). This may indicate that the parasite MSH2
protein does not promote recombination in the ways it has
been found to do elsewhere (84).
The lack of clear evidence for heteroduplex DNA is

perplexing. In wild-type cells, the lack of mixed sequence
at mismatched residues could be explained by MMR that
acts following construct integration and is directed
towards one or other DNA strand by, for instance, the
direction of replication (Figure 9). However, the same
pattern was seen in the msh2�/� transformants. In
addition, we did not see any striking difference in this
pattern as construct length changes, which could arise
through a shift in the substrate requirements of the
recombination pathways being used. It is conceivable that
in all these conditions most strand exchange is limited to
perfectly matched sequences between the construct and
HYG target, and crossovers then occur on these inter-
mediates to incorporate both strands of the construct
DNA. However, a number of findings argue against this.
First, we did not observe construct sequence on both sides

of BLE, and it is not clear how crossover integration could
be directional in this way. Second, it is difficult to explain
by this model the rather common appearance of trans-
formants in which tracts of construct sequence were
interrupted by patches of HYG sequence in the ‘left’ arms
(clones 1, 15, 41, 23; Figure 7). Finally, the length of
homology that mediates strand pairing would have to
have been very short in some cases (e.g. 15 bp in clone 41,
and 12 bp in clones 6, 35 and 30; Figure 7). For these
reasons, we suggest that heteroduplex does form during
homologous integration and that it is repaired by short-
patch MMR. This would explain the predominant pattern
of sequence we see in the integrated DNA (Figure 9).
Furthermore, it most readily explains transformants in
which construct-derived and HYG-derived residues were
found in close proximity. Such a situation is consistent
with repair of two putative mismatches in different
directions (in favour of the invading and recipient
strands), which is distinct from long-patch MMR, where
a mismatch triggers excision of extensive regions of DNA
to allow repair (43). However, given that the trans pattern
of sequence in the transformants was predominantly with
construct sequence to the ‘left’ of BLE and HYG sequence
to the ‘right’, and that many tracts were continuous
stretches of either construct or HYG residues, it seems
likely that some feature(s) biases the direction of short-
patch repair. The nicks that are present during strand
invasion cannot explain this, as repair would then be in
the same direction for each end of the construct.
Replication or transcription seems like a reasonable
alternative, though this cannot be absolute, since we see
discontinuous tracts in a number of transformants, and
one clone has reversed the predominant pattern (clone 23;
Figure 7). Short-patch MMR has not been described in T.
brucei, but has been found in other organisms (including
during recombination), though the molecular machinery is
still being described (85,86). A consequence of the lack of
identifiable heteroduplex DNA in this study is that we
cannot determine how extensive the lengths of strand
exchange intermediates are in these experiments, nor
whether this differs in wild-type and msh2�/� cells, as has
been reported in yeast (87,88). In addition, this approach
does not allow us to test our hypothesis that the putative
MMR-independent pathway we propose utilizes shorter
substrates. However, given the existence of mixed tracts of
construct and HYG sequence at all substrate lengths, it is
likely that heteroduplex is formed in all conditions.

A footnote in this study, which was not appreciated in
our previous analyses (35), is that we find significant levels
of duplication of the HYG locus in this assay. The
available evidence suggests that this is due to the
generation of additional copies of HYG in the tubulin
array during growth of the clonal HTUB T. brucei cell
lines, rather than being a consequence of the targeted gene
replacement. This ‘spread’ of a resistance marker in
tubulin has been described previously (89), and shown to
be due to unequal sister chromatid exchange. At least in
our experiments this appears to be rather frequent.
Though this may be a result of the antibiotic exerting a
selective pressure for increased gene product, it is notable
that high frequencies of allelic gene conversion have been
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described in T. brucei (90) and that considerable variation
in repetitive sequences has been described between
T. brucei strains (91). Our data also hint that impairment
in MMR may enhance HYG amplification, perhaps
because MMR-mediated suppression of recombination
between divergent sequences is alleviated, leading to
greater rearrangements in the T. brucei genome.
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