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Abstract

Liver failure is a lethal condition with hepatocellular dysfunction, and liver transplantation is presently the only effective
treatment. However, due to the limited availability of donors and the potential immune rejection, novel therapeutic strategies
are actively sought to restore the normal hepatic architectures and functions, especially for livers with inherited metabolic
dysfunctions or chronic diseases. Although the conventional cell therapy has shown promising results, the direct infusion
of hepatocytes is hampered by limited hepatocyte sources, poor cell viability, and engraftment. Hence, this review mainly
highlights the role of stem cells and progenitors as the alternative cell source and summarizes the potential approaches based
on tissue engineering to improve the delivery efficiency of cells. Particularly, the underlying mechanisms for cell therapy
using stem cells and progenitors are discussed in two main aspects: paracrine effect and cell differentiation. Moreover,
tissue-engineering approaches using cell aggregates and decellularized liver scaffolds for bioengineering of functional hepatic
constructs are discussed and compared in terms of the potential to replicate liver physiological structures. In the end, a
potentially effective strategy combining the premium advantages of stem cell aggregates and decellularized liver scaffolds is
proposed as the future direction of liver tissue engineering and regeneration.
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Introduction

As one of the most important organs, liver participates in
various physiological activities, including the production
of bile and albumins, metabolism of toxins and drugs, and
maintenance of glucose and lipid balance.! Therefore, a
severe hepatic injury can cause serious consequences
despite the great regenerative capacity of a liver, particu-
larly for patients who have inherited metabolic disorders
or chronic liver diseases such as liver cirrhosis.? Basically,
transplantation of a living-donor-liver is a gold standard
for treatment of severe liver failure. However, the shortage
of suitable donors constitutes a major obstacle for prompt
treatment.’ Meanwhile, immune rejection is another poten-
tial issue after liver transplantation, which requires long-
term immunosuppressive management.*
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Figure |. A schematic illustrates the use of stem cell therapy, cell aggregate-based or decellularized liver scaffold-based tissue
engineering strategies for the rescue of liver failure. To reconstruct a normal liver, stem cells/differentiated cells/bioengineered cell
aggregates can be implanted into the abnormal liver or its decellularized counterpart.

Bioartificial liver (BAL) as a temporary liver support-
ing device can provide essential hepatic functions for the
patients who are waiting for the transplantation of living-
donor livers.> Conventional BALs work by the extracor-
poreal circulation of patients’ blood through the devices,
which have some limitations such as large and complex
equipment.® Therefore, there are urgent needs to enhance
the hepatic functions of BALs while simplifying and mini-
mizing their overall complexity and size, respectively.

Cell therapy is a novel approach for the treatment of liver
diseases by direct injection of functional cells.’> Hepatocyte
is the most important component of liver, which consists of
~60% of the total hepatic cell population and is responsible
for the majority of liver functions.! To retain at least 30% of
the minimal liver functions, approximately 8.4 X 10'° hepat-
ocytes are required, which poses a huge challenge for the
treatment of liver failure only using autogenous cells, due to
their few numbers of normal hepatocytes in vivo and limited
proliferation capacity in vitro, not to mention the need for
other non-parenchymal functional cells (liver sinusoidal
endothelial cells, Kupffer cells, hepatic stellate cells, and
cholangiocytes).” Furthermore, low cell survival rate and

poor cell engraftment are the common issues during infu-
sion of single-cell suspensions in a conventional cell ther-
apy.>!! Therefore, seeking an alternative cell source and
enhancing cell delivery efficiency are two potential solu-
tions for the effective treatment of liver failure.'?

Several excellent reviews describing biomaterials and
advanced techniques, such as 3D printing and microfluidics,
for liver disease modeling and treatment are already availa-
ble.!*!% For example, Morais et al.'> systematically summa-
rized a wide range of natural and synthetic biomaterials in
various forms such as hydrogels or solid scaffolds for liver
regeneration. Meanwhile, different 3D-printing strategies for
liver tissue engineering and regeneration have also been dis-
cussed in the review.'3 Herein, in this review, we mainly
focus on the stem cell therapy and tissue engineering strate-
gies using cell aggregates and decellularized scaffolds for
liver tissue engineering and regeneration (Figure 1). The role
of stem cells and progenitors in the rescue of liver failure is
revealed. The up-to-date cell aggregate-based (Table 1) and/
or decellularized liver scaffold-based approaches (Table 2) to
enhance the delivery efficiency of cells and bioengineer
functional liver constructs are also discussed. Finally, we
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propose perspectives on research directions for effective
treatment of severe liver failure based on liver tissue engi-
neering and regeneration.

Stem cell therapy

Stem cells and progenitors can not only self-renew through
cell proliferation but also differentiate into terminal func-
tional cells."*> Theoretically, pluripotent stem cells,
embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs), are able to replicate indefinitely and differ-
entiate into any cell types derived from the three germ lay-
ers, while mesenchymal stem/stromal cells (MSCs) are
only capable of multipotent differentiation and progenitor
cells are more committed to their tissue of origin such as
the bi-lineage differentiation potential of hepatoblasts into
mature hepatocytes and cholangiocytes.'* Typically, there
are two major roles of stem cells and progenitors in liver
regeneration, including paracrine effect and hepatic differ-
entiation. The former targets host cells for activation and
acceleration of self-healing, while the latter produces new
hepatic tissues to replace the injured liver.

Paracrine effect

The secreted growth factors involved in paracrine effects
affect numerous intra- and extra-cellular signaling pathways,
which may trigger a series of reactions promoting liver
regeneration.’**’ For example, small hepatocyte-like pro-
genitor cell (SHPC) clusters, one type of cells that have some
phenotypes similar to hepatocytes, that appeared in injured
rat livers induced by administration of retrorsine (Ret) and
70% partial hepatectomy (PH) increased in number and size
after implantation of Thyl™ cells, one type of hepatic pro-
genitor cells.*! The liver regeneration was enhanced through
the IL17RB signaling pathway regulated by Thyl™ cell-
released extracellular vesicles (EVs). Yu et al.** showed that
hypoxia-preconditioning of bone marrow-derived mesen-
chymal stem/stromal cells (BMSCs) promoted liver regen-
eration after the infusion of cells into the portal vein of a rat
model with 85% hepatectomy due to their enhanced expres-
sion of vascular endothelial growth factor (VEGF). Liver
regeneration was also enhanced in a partially hepatectomized
mouse model following infusion of conditioned medium of
liver-derived MSCs through promoting cell proliferation and
reducing proinflammation.** Such therapeutic efficacy could
be further promoted by using conditioned medium from adi-
pose-derived mesenchymal/stromal cells (ASCs) in a
hypoxic condition (1% oxygen) via the JAK/STAT3 signal-
ing pathway.* In another study by Lee et al.,*> liver regen-
eration in the partially hepatectomized mice was observed
after intravenous administration of the exosomes derived
from lipopolysaccharide-preconditioned ASCs. The superior
therapeutic efficacy of MSCs and their exosomes for early
hepatic ischemia-reperfusion injury (IRI) was reported by

Anger et al.*® In addition, the paracrine effect of endothelial
progenitor cells (EPCs), particularly those derived from bone
marrow, has also been evidenced with enhanced liver regen-
eration and suppression of liver disorders after their exten-
sive proliferation and engraftment into the injured liver.2247-30
The secreted paracrine factors such as VEGF and hepatocyte
growth factor (HGF) from the EPCs could promote hepato-
cyte proliferation and angiogenesis of resident liver sinusoi-
dal endothelial cells (LSECs) in addition to the induction of
apoptosis in hepatic stellate cells (HSCs).*$4>1-53 However,
it is notable that such paracrine effect can also aggravate the
cirrhosis if circulating EPCs are derived from abnormal
donors which might be due to the distinct functions of the
two cell subpopulations, early EPCs and outgrowth EPCs
that are involved in inflammation and angiogenesis,
respectively.>!>+36

Growth factors are demonstrated to be the functional
components of exosomes, therefore their targeted and sus-
tained delivery may further promote liver regenera-
tion.*+>7% For example, Yu et al.>® recently reported that
cell proliferation of hepatocytes was markedly promoted
after implantation of VEGF-loaded nanofibers into rats
with 70% hepatectomy. Sustainable release of HGF, one
type of paracrine growth factors, from carboxymethyl-
hexanoyl chitosan (CHC) hydrogel was also reported to
enhance cell proliferation of iPSC-derived hepatocyte-like
cells and maintain their hepatic functions in vitro.®
Meanwhile, the reduced area of hepatic necrosis and
increased survival rate of thioacetamide (TAA)-induced
liver injured mice were evidenced after the administration
of HGF in vivo.?® Moreover, multi-dose administration of
insulin-like growth factor-1 (IGF-1), another exosome
component, was also recently reported to reduce collagen
deposition in mice by Fiore et al.,’" indicating the amelio-
ration of liver fibrosis.

Cell differentiation

In addition to the activation and acceleration of self-heal-
ing process in the host liver by paracrine factors, stem cells
and progenitors are also used for the treatment of liver fail-
ure based on their capability of differentiation toward
hepatic cell lineages.®? For instance, human induced pluri-
potent stem cells (hiPSCs) have been successfully induced
to undergo hepatic differentiation in vitro to produce func-
tional hepatocytes with comparable liver functions to those
in vivo under flow conditions, suggesting that hiPSCs may
be an accessible cell source for extensive liver tissue engi-
neering.®>** In addition to hepatocytes, pluripotent stem
cells can also be differentiated into other nonparenchymal
cells such as endothelial cells, cholangiocytes,**%
Kupffer cells,*® and HSCs.%® Although the low differentia-
tion efficiency still requires further optimization of induc-
tion protocols, these successes make it possible for
bioengineering of a whole liver organ using a wide range
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of differentiated cells with identical genomes. Of note,
although hepatocytes and cholangiocytes are both derived
from hepatoblasts during embryogenesis, recent studies
have revealed the possibility of transdifferentiation of
reactive biliary epithelial cells to hepatocytes in animal
models with severe chronic liver injuries whose hepato-
cyte proliferation is inhibited.”®’! Unlike the dedifferentia-
tion of mature hepatocytes and their robust expansion after
liver injury,’>”* mature LSECs seem to do little favor to the
liver regeneration.* Instead, bone marrow-derived EPCs
were evidenced with enhanced proliferation, migration to
the injured liver and differentiation into LSECs for the
reconstruction of the hepatic vasculature.**7*7> Similar
results were also found for intrahepatic ECPs when they
were isolated and reinfused into rats with hepatic injury.**74

However, due to the high pluripotency of hiPSCs and
ESCs, there is a potential risk of aberrant differentiation
leading to teratoma formation.”® One of the potential solu-
tions for this issue is pre-differentiation of these cells
toward multipotent stem cells or progenitors, which can be
further induced to differentiate into specific cell types
only. For instance, hESCs/hiPSCs were induced into
MSCs by Spitzhorn et al.”” before injection into the tip of
the spleen of the 70% hepatectomized Gunn rats (a typical
animal model for the study of Crigler-Najjar syndrome
type 1). It was found that the implanted MSCs survived
and engrafted into the host livers for up to 2 months with
normal hepatic functions and no tumor formation, which
might be because of cell fusion that led to the transfer of
Ugtlal gene from human donor cells to rat host cells.
Therefore, the hESCs/hiPSCs-derived MSCs could be a
promising cell source for the repair of injured livers with
heritable dysfunction.

Xu et al.”® implanted ASCs-derived hepatocyte-like
cells into the liver lobes of ganciclovir-administrated
TK-NOG mice through ultrasound-guided multi-injection,
resulting in favorable liver regeneration and no tumor for-
mation for over 2months. Interestingly, the authors also
reported that iPSC-derived hepatocyte-like cells tended to
induce visible tumors in 3 weeks after their implantation at
the kidney capsules in vivo. However, in another study by
Yuan et al.,”” no tumorigenesis was observed in the main
host organs (liver, lung, kidney, heart, spleen, and colon) in
8 weeks after splenic implantation of iPSC-derived hepat-
ocyte-like cells. The different results might be due to the
distinct differentiation efficiency of iPSCs toward hepato-
cyte-like cells or the suppression of tumor growth by hiP-
SCs-derived MSCs, thus indicating the importance of an
efficient pre-differentiation route in the clinical applica-
tion of iPSCs.”88

Another alternative cell source for liver regeneration,
human bone marrow-derived muse cells, were directly
injected into the tail vein of the immunodeficient mice for the
repair of liver fibrosis by Iseki et al.3! Interestingly, this type
of pluripotent cells are capable of differentiation into cells
within three germ layers but with no risk of tumorigenesis

because of the low telomerase activity. The majority of the
implanted muse cells showed rapidly homing to the dam-
aged livers and underwent mature hepatic differentiation
without fusion with host hepatocytes.

Bioengineering of functional hepatic
constructs

Tissue engineering is an emerging field that has shown
great potential in the fabrication of liver-mimicking struc-
tures for studying biological and disease development of
liver, performing drug screening, and supporting hepatic
functions and liver regeneration.'*%? There are a variety of
studies already revealing the importance of nonparenchy-
mal cells such as Kupffer cells,®® hepatic stellate cells,*%
and endothelial cells®*®” for liver regeneration. Thus, many
co-culture systems have been established in vitro to mimic
the specific liver structures.®® For example, primary rat
hepatocytes (PRHs) and liver sinusoidal endothelial cells
(LSECs), freshly isolated cells from the rat liver, were cul-
tured simultaneously on the opposite sides of the same
collagen-coated Transwell inserts to imitate the layered
organization of liver sinusoids, leading to the maintenance
of normal cell morphology and viability as well as hepatic
functions for around 40 days.* The bile duct-like networks
were formed through a “sandwich culture” of bile duct epi-
thelial cells in collagen hydrogels, which showed both
functional and morphological similarity to the bile ducts in
vivo.”? Detzel et al.”! constructed a 3D liver mimic com-
prised of multilayered primary rat hepatocytes and liver
sinusoidal endothelial cells as an in-vitro platform for
studying the metabolism of bile acid. The 3D liver mimic
not only exhibited bile canaliculi but also showed similar
physiological hepatic metabolism as that in vivo. Wu
et al.”? established a non-alcoholic fatty liver disease
(NAFLD) model through perfusion culture of HepG2 cells
in decellularized liver scaffolds, which provided a useful
tool for studying the development of NAFLD in vitro and
screening relevant drugs. Co-culture of hepatocytes and
hepatic stellate cells as cell aggregates has also been
recently reported by Coll et al.®” and Mannaerts et al.”* for
modeling of liver fibrosis in vitro. Although various strate-
gies have been reported for liver tissue engineering and
regeneration, the most promising approaches are based on
cell aggregates and decellularized liver scaffolds due to
their replication of physiological liver structures.>”** The
premium benefits of cell aggregates and decellularized
liver scaffolds are discussed in details in the following
sections.

Cell aggregate-based approach

Cell aggregates are a group of cells binding with each
other via cell proliferation and/or cell aggregation.®®
Previously published articles have different naming rules
for this form of cells, which may cause confusion, thus this
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review uses cell aggregates as the representative of cell
clusters, cell spheroids, cell pellets, microtissues, embry-
oids, and organoids regardless of their overall morphology.
Cell aggregates are commonly seen in the formation of
embryoids during embryogenesis, condensation of cells
during skeletal development, and proliferation of hepato-
cytes during liver regeneration.*?°® There have been a
variety of studies showing that cellular functions are
enhanced in cell aggregates compared to single-cell sus-
pensions, such as the enhanced immunomodulatory poten-
tial and multi-lineage differentiation of MSC aggregates
and the increased production of albumin and urea in hepat-
ocyte aggregates.’>?"1% Moreover, cell aggregates also
show improved cell viability and survival rate after
implantation in vivo.®!! Cell aggregates can be generated
by different methods,'*”''® such as cell culture on low
attachment plates or in hanging drops, as well as substrate-
based and technology-assisted methods, amongst which
3D scaffold/hydrogel-based approaches are of high inter-
est since cells can form cell aggregates in situ after seeding
inside the 3D scaffolds/hydrogels.!%31%11112 The approach
does not require extra process, which can avoid cell loss or
damage during cell harvest. For instance, Tong et al.'®3
formed HepG2 cell aggregates inside glycyrrhizin-con-
tained alginate hydrogels with enhanced cell viability, pro-
liferation, and hepatic functions, suggesting the potential
application of the injectable hydrogels in liver tissue engi-
neering and regeneration. Spontaneous formation of cell
aggregates in situ was also reported by Lau et al.,'** who
embedded murine iPSCs within micro-cavitary alginate
hydrogels, showing increased hepatic differentiation com-
pared to monolayer culture. In another study by Kundu
and Kundu,''? HepG2 cell aggregates were formed within
the porous fibroin-based scaffolds fabricated by lyophili-
zation. The distinct cell proliferation in the different scaf-
folds might be correlated with their pore size and porosity
since spatial confinement of pores could restrict the growth
of cell aggregates. As the size of cell aggregates is highly
related to cellular functions, the controllable properties of
substrates are critical for their applications in liver tissue
engineering and regeneration.!”

Bioengineering of conventional hepatocyte aggregates. Due to
the advantages of cell aggregates, hepatocyte aggregates
have been engineered and widely used in liver tissue engi-
neering (bioartificial livers or implantable hepatic con-
structs) for the rescue of liver failure (Table 1).!® For
example, Saadi et al.® showed the formation of Huh7 hepat-
ocyte aggregates inside fibrinogen-PEGDA microgels,
which enhanced cell engraftment after injection of 15,000
cell-loaded microgels (6 X 10° cells in total) via the portal
veins of the lateral and median liver lobes into female Lewis
rats with 34% partial hepatectomy. In another case, Erro
et al.?? encapsulated HepG2 cells within alginate microgels
and cultured them in a fluidized bed bioreactor functioning
as the liver-assist device. The authors demonstrated high

throughput of functional hepatocytes (~34-fold increase)
without compromise of cell viability, which could be even
scaled up to 0.7-1.0 X 10" hepatocytes, accounting for
approximately 30%—-50% of normal adult liver mass after
optimizing the provision of nutrients and oxygen. Further-
more, the expanded cells were able to be transported at
room temperature for 48h based on the storage protocol
established by the authors. A liver-assist device containing
the alginate-encapsulated HepG2 cell aggregates have been
successfully used to support liver functions in pigs with
ischemic liver failure.!'>'"* Chen et al.** recently also
reported rescue of acute liver failure in pig models using a
multilayer BAL device that contains clinically relevant
number of functional hiPSCs-derived hepatic aggregates.
Chang et al.'® co-cultured primary rat MSCs and AML12
cell line, mouse liver-derived immortalized hepatocytes, by
encapsulating the cells inside collagen/alginate volvox
spheres using a high voltage electrostatic field system (Fig-
ure 2(a)). The hepatic differentiation of MSCs was higher
during dynamic cell culture compared to that using static
culture. After direct injection of the cell-loaded volvox
spheres into the SD rats with retrorsine-CCl, induced liver
injuries, restoration of liver functions and regeneration of
new normal hepatic tissues were both observed (Figure
2(b)). Ng et al.'” recently fabricated extracellular matrix
(ECM) protein-conjugated porous poly(ethylene glycol)
scaffolds and showed the formation of human iPSC-derived
hepatic progenitor cell aggregates only inside the collagen
I-conjugated scaffolds with mature hepatic functions similar
to those of primary hepatocytes. The cell aggregates resulted
in better tissue integration, vascularization, and albumin
production after implantation of the bioengineered hepatic
constructs into the capsule of the mouse caudate lobe.

Bioengineering of vascularized hepatocyte aggregates. Owing
to the importance of vasculatures for normal physiological
liver functions, various strategies have been employed to
guarantee the supply of oxygen and nutrients to hepatic
cells.!'>!1® One strategy is to implant hepatocyte aggre-
gates near the existing blood vessels in vivo to promote
angiogenesis.''” As an example, Yap et al.’ implanted
murine liver progenitor cells embedded in growth factor-
reduced Matrigel into the vascularized chamber fitted
around the superficial epigastric vascular pedicle at the
groin of SCID mice. After 14 days, glandular organization
of cells and vascularization were only seen in the cham-
bers with implantation of cell aggregates but not single-
cell suspensions.

The direct co-culture of hepatocytes and endothelial cells
is another strategy for bioengineering of vascularized liver
constructs.!'®!1° The increased hypoxia-inducible factors at
the center of hepatocyte aggregates can function as the che-
moattractant, which results in the invasion of endothelial
cells and the formation of capillaries.’” However, the fusion
of these cell aggregates should be minimized to avoid the
central necrosis of large aggregates and maintain the high
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Figure 2. Bioengineering of implantable hepatic aggregates: (a) the process for generation of microspheres and volvox spheres
using mesenchymal stem/stromal cells (MSCs) and hepatocytes (AMLI2). Scale bar: 200 um and (b) the aspartate aminotransferase
(AST) and alanine aminotransferase (ALT) concentration indicating liver injury level in the normal rats (Normal), injured rats
(Group A), injured rats with implantation of MSCs/AMLI2-encapsulated volvox spheres (Group B), injured rats with implantation
of volvox spheres only (Group C), injured rats with implantation of MSCs-encapsulated volvox spheres (Group D), or injured rats

with implantation of AMLI2-capsulated volvox spheres (Group E) on week 0, 4 and 6. *p < 0.01,

normal group. Adapted with permission from Chang et al.'®

surface-to-volume ratio for the effective exchange of nutri-
ents and gases. To achieve these goals, Pang et al.* used
fiber fragments as the spacers to separate vascularized
hepatocyte aggregates from each other and improve the sup-
ply of nutrients and oxygen. In a follow-up study, they fur-
ther fabricated a Nylon 12-based 3D perfusion system
composed of 43 chambers to house hepatocyte/endothelial
cell aggregates, which could be theoretically scaled up to a
clinically-relevant size (500 cm® in volume) (Figure 3). Both
cell viability and hepatic functions were improved during
the perfusion culture.?* Moreover, they also seeded hepato-
cyte and endothelial cell hybrids inside the customized
micro-scale scaffolds. The pores and intersecting hollow
channels of the scaffolds allowed sufficient penetration of
the medium throughout the scaffolds when packed in a bio-
reactor for perfusion culture, leading to high cell viability
and enhanced hepatic functions.'?

sok

p<0.001, compared with the

In addition to fabrication of vascularized hepatocyte
aggregates, advanced techniques for bioengineering of in-
vivo liver-mimicking architectures have also been devel-
oped.!*2125121 Yajima et al.'® recently fabricated a
lobule-like hepatic structure through microfluidic device-
assisted encapsulation of HepG2 cells within alginate hol-
low fibers and coculture of endothelial cells on the surface
of the fiber bundles (Figure 4(a)). The cell proliferation
and hepatic functions were significantly enhanced during
perfusion culture. Liu et al.?! proposed a new approach to
construct the lobule-like tissue building blocks through the
encapsulation of rat RLC-18 liver cells within the hexago-
nal poly-L-lysine (PLL)-alginate microcapsules using
electrodeposition. Compared to cell spheroids, the same
number of cells cultured inside the microcapsules tended
to show increased hepatic functions, due to the hollow
structure of the microcapsules that facilitated the efficient
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Figure 3. Bioengineering of a cell aggregate-based bioartificial liver: (a) dynamic culture of hepatocyte (HepG2)/endothelial cell
(TMNK-1) aggregates in a customized 3D perfusion system and (b) Immunofluorescent staining of HepG2/TMNK-1 cell aggregates
in the microwells 24 h after cell incubation. Red: HepG2 cells; green: TMNK-1 endothelial cells. Scale bar: 100 pm. Adapted with

permission from Pang et al.2*

exchange of nutrients and oxygen. When these building
blocks were assembled in a layer-by-layer manner, a 3D
lobule-like liver construct with a central channel function-
ing as the vascular vessel was established (Figure 4(b)). In
another study, Grigoryan et al.? fabricated a vascularized
hepatic construct by seeding endothelial cells and hepato-
cyte aggregates inside the 3D-printed channels and the
external carrying chamber, respectively (Figure 4(c)).
Although the 3D bioengineered construct was not directly
implanted into the host injured liver, but rather sutured at
the perigonadal fat pad of mice, enhanced albumin produc-
tion and host engraftment were observed in vivo. Du
et al.? also assembled multiple polyelectrolyte fibers
through multi-interfacial polyelectrolyte complexation
(MIPC), which consisted of endothelial cells at the center
and hepatocytes at the periphery to mimic the liver lobule
structure (Figure 5(a)). As the hepatocytes and endothelial
cells were both derived from the same iPSC source, they
were genetically identical. In addition to the enhanced
albumin secretion in vitro (Figure 5(b)), vascularization of
the scaffolds and their integration into the host vasculature
in vivo were evidenced after implantation of the lobule-
like constructs into the livers of hepatectomized SCID
mice (Figure 5(c)). Even though the in-vivo vasculatures
were far more complex than the vascularized hepatic con-
structs fabricated in these studies, the positive results did
indicate the importance of endothelial cells for a functional
bioengineered hepatic construct. Hence, further works
with an emphasis on bioengineering of complex vascula-
tures with physiological liver hemodynamics are required,
which can be guided based on the design principles estab-
lished by Hoganson et al.'??

It is worth noting that restoration of hepatic functions
and liver regeneration in vivo are actually two different
aspects during the assessment of the therapeutic strategies
for specific liver diseases. For example, Sgroi et al.'?’
showed that intraperitoneal implantation of alginate/

PLLA/alginate-capsulated hepatocytes could support the
normal hepatic functions in mice with acute liver failure
(administration of acetaminophen and 30% hepatectomy),
leading to improved animal survival. However, there was
no significant difference in liver regeneration between
mice with or without implantation of hepatocytes. Thus, to
restore the normal hepatic architecture and functions, tis-
sue engineering strategies for liver regeneration should
position bioengineered hepatic constructs into the defect
site of an injured liver instead of heterotopic implantation
(subcutaneous or intraperitoneal accesses).

Decellularized liver scaffold-based approach

Decellularized liver tissues are ideal scaffolds for liver tis-
sue engineering as the native liver architectures and com-
positions such as the pre-existing vascular network and
scaffold-bound growth factors are retained (Figure 6).'2+
126 The intact vascular structures allow reconstruction of
the complex hepatic vasculature in vivo for sufficient mass
and gas supply while the bile tracts permit drainage of the
excreted bile from hepatocytes in time.” In addition, the
retained growth factors, such as VEGF, HGF, and bFGF,
are essential biochemical cues for the maintenance of
hepatic functions and regulation of stem cell fate.!?!1%°
Therefore, decellularized liver tissues can be either broken
into powders as the extracellular matrix (ECM) hydrogel
formulation using the functional residues or used as a
whole to take the advantage of the retained vascula-
ture.”13%131 For example, Sellaro et al.'”’ revealed the
maintenance of primary hepatocyte functions in porcine
liver-derived ECM hydrogels comparative to that in the
typical Matrigel™. Agarwal et al.'3? showed higher hepatic
functions of HepG2 cells embedded within caprine liver-
derived ECM 3D hydrogels compared with collagen
hydrogels in vitro. Moreover, the ECM 3D hydrogels also
supported the formation of microvasculature in vitro,
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which demonstrated its potential for bioengineering of a
vascularized liver tissue construct for tissue engineering.
Similar results were also shown in primary rat hepatocytes
cultured in the rat liver-derived ECM 3D hydrogels.'*?

Meanwhile, ECM can be used as the bio-ink for 3D print-
ing due to its high versatility.'** For instance, Lee et al.'?8
showed that BMSCs and HepG2 cells embedded inside the
ECM bio-ink showed enhanced hepatic differentiation and
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liver functions than that in collagen hydrogels, respec-
tively. In principle, an artificial liver resembling the physi-
ological hepatic architectures can be fabricated by 3D
printing. However, technical challenges of 3D printing
need to be first addressed, before the rapid engineering of
liver organs at a high resolution can be realized.!3>!3¢

There are a variety of feasible decellularization proto-
cols using either chemical, biological or physical methods
to remove cellular and genetic components from the fresh
liver.3%13! Generally, chemical and biological decellulari-
zation methods can achieve effective decellularization but
cause disruption of the ECM ultrastructure and loss of bio-
active components, which are reversed by physical meth-
o0ds.3%131 Moreover, different sterilization methods have
also been comprehensively studied. Of note, Hussein
et al.’¥” showed that sterilization of decellularized liver
scaffolds using slightly acidic electrolyzed water could
retain the most bioactive components such as glycosami-
noglycan and collagen compared to ethanol and peracetic
acid. To characterize the decellularized liver scaffold, vari-
ous methods have been previous reported, including SEM
imaging and histological analysis through H&E/IF/THC
staining, which are normally used for evaluation of struc-
tural maintenance and integrity as well as quantification of
the residual DNA and the retained ECM biochemical com-
positions.'3%!13! By normalization of remained components
to the initial weight of a whole organ unit, various decel-
lularization protocols can be properly compared.'® As the
properties of decellularized liver scaffolds mainly rely on
the preparation protocols, it is necessary to establish uni-
versal criteria for quality assessment.”’! In the study by
Moulisova et al.'* a three-level scoring system was used
to evaluate the morphological structures of a given decel-
lularized liver scaffold based on the measured parameters
by the automatic customized software, ScaffAn. The
authors claimed that the best discrimination between dif-
ferent decellularized liver scaffolds could be achieved by
the multi-scale evaluation system. Despite the availability
of diverse decellularization protocols, recellularization of
whole liver organs currently still faces some challenges,
amongst which poor cell distribution and thrombosis are
the two most challenging obstacles in the clinical applica-
tion of decellularized liver scaffolds.?

Optimization of recellularization. The most common method
utilized for recellularization is infusion of cells into the
decellularized liver scaffolds via the existing vasculatures,
therefore maintenance of the vascular and hepatic archi-
tecture during decellularization is the key for the subse-
quent cell repopulation.” There are a variety of factors that
can influence cell distribution during recellularization,
including cell density and morphology, infusion time,
direction and access of infusion flow, and flow rate. Bao
et al.>? showed that infusion of single hepatocyte suspen-
sion through the portal vein of rat liver lobes at a cell

density of 3.33 X 107 cells/mL and a flow rate of 2mL/min
resulted in faster cell death than that of cell aggregates
(diameter: >30 um) with the same amount of cells, which
indicated the advantage of using cell aggregates in retain-
ing cell viability. Meanwhile, the authors also claimed that
infusion of hepatocyte aggregates for a longer time caused
their integration into vascular spaces besides parenchymal
regions. Therefore, the size of cell aggregates and infusion
time still needed to be further optimized for a desirable cell
distribution. Poor cell survival was also seen in a study by
Uygun et al.3' who infused primary hepatocytes into a
whole decellularized liver organ via the portal vein in a
four-step manner. Although cell viability was approxi-
mately 80% during the recellularization, the overall value
was only 72% if the viability of initial seeding cells (~90%)
was also considered.

In addition, antegrade infusion of endothelial cells via
portal vein mainly resulted in the distribution of cells near
the periportal areas, while retrograde infusion through
vena cava led to the selective localization of endothelial
cells at the larger and smaller vessels up to the pericentral
regions of liver lobes but not yet reaching the periportal
areas, which reflected the complex vasculatures in the
decellularized liver tissues and how the direction of infu-
sion flow influenced the re-endothelization.'*’ Direct infu-
sion of a mixture of human EpCAM™ fetal liver cells and
endothelial cells via the vasculatures achieved good paren-
chymal recellularization, but the underlying mechanism
was still not clear.'**!'*! Homing and differentiation of
these highly migrant EpCAM™ cells through the attraction
of specific growth factors bound on the decellularized liver
scaffolds might be one of the explanations.'414!

Although good recellularization can be obtained from
cell infusion, cell migration-dependent repopulation of
hepatocytes via vascular channels into parenchyma is not an
efficient strategy for rapid restoration of liver functions,
since it usually takes a few days.?' Therefore, the optimiza-
tion of cell seeding methods is still being pursued for recel-
lularization. For example, endothelial cells and hepatocytes
could be infused via different accesses to achieve a cell dis-
tribution resembling that of native liver. Infusion of endothe-
lial cells via vasculatures and hepatocytes through bile ducts
resulted in adequate reendothelization and well parenchy-
mal recellularization, respectively.'4*4> Alternatively, Zhou
etal.' revealed that multi-positional parenchymal injection
(10 sites) resulted in better cell engraftment and distribution
than that of continuous cell fusion. In another similar study,
Soto-Gutierrez et al.'* reported that multistep infusion
(86 = 5%) of hepatocytes into the whole decellularized liver
organ of rat via the portal vein exhibited the highest cell
engraftment compared to direct multi-positional parenchy-
mal injection (five sites, 12.6 =9%) and continuous infu-
sion (69*+0.5%). All these results demonstrated that
multiple cell infusions outperformed continuous infusion,
and the efficiency of cell engraftment depended on the
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Table 3. Advantages and disadvantages of various recellularization methods.

Recellularization methods Advantages

Disadvantages

Continuous infusion e Rapid and easy preparation

Multi-step infusion .

Multi-channel infusion

Good cell engraftment and distribution

Suitable for infusion of multiple cell types °

e Low engraftment and uneven
distribution of cells

e Slow parenchymal cell repopulation
Time-consuming preparation
Requirement of large cell number

e Slow parenchymal cell repopulation

Time-consuming preparation

Reconstruction of hepatic tissue organization

Multi-positional
parenchymal injection .

Easy operation
Good cell engraftment

e Potential damage to hepatic structures

Rapid and well parenchymal recellularization

Implantation of cell
aggregates o

Good cell viability and enhanced hepatic functions °
Well parenchymal recellularization

Blockage of vasculatures during
continuous infusion

e Additional optimization of multi-step
perfusion parameter and aggregate size

number of injections.!* A comparison between various
recellularization methods is summarized in Table 3.

The infusion rate is another factor that needs to be consid-
ered. A slow infusion rate always leads to cell precipitation,
while a fast one may cause cell aggregation.?! Hence, a suit-
able flow rate during recellularization is necessary along
with additional contributing effects such as rotating/shaking,
multistep infusion, or direct parenchymal multi-injections.'*
Baptista et al.!* showed that hepatic cell organization and
neovascularization in the decellularized liver tissues were in
a flow rate-dependent manner. The results suggested the
highest cell viability, proliferation, and occupancy within the
decellularized liver tissues were achieved at an infusion rate
of 9mL/min, and it was regulated via nitric oxide (NO) path-
way by flow-induced shear stress.

Elimination of blood coagulation. Although the vascular net-
work is maintained during the decellularization of a whole
liver organ, the exposure of the vascular basement mem-
brane often triggers thrombosis upon blood reperfusion.
Administration of heparin in the blood before the implan-
tation of decellularized liver scaffold was attempted to
avoid coagulation but failed after reperfusion for 1-2h.%
Immobilization of heparin to the vascular structures of the
decellularized liver scaffolds was also carried out by Bru-
insma et al.'¥7 through layer-by-layer assembly of posi-
tively charged poly(diallyldimethylammonium chloride)
(PDADMAC) and negatively charged heparin. Anti-coag-
ulation was demonstrated in a heparinization-dependent
manner in vitro with no visible blood clots in the 8-layer
heparin-coated scaffolds after 2-h perfusion of fresh
diluted whole blood, but congestion occurred in 24 h dur-
ing the in vivo assessment. Hence, further optimization of
endothelialization might reduce the resistance of grafts
and facilitate their successful transplantation in vivo. Hus-
sein et al.*® achieved efficient endothelialization of decel-
lularized liver tissues through surface modification by

heparin/gelatin after recellularization with hepatocytes,
which showed enhanced hepatic functions and absence of
thrombosis both in vitro and in vivo (Figure 7(a-i)).
Although the authors monitored thrombosis in a pig model
in vivo for 1h only, the importance of endothelization for
the successful liver repair was stressed. Heparin was also
employed in a study by Bao et al.>? to avoid thrombosis of
the decellularized rat livers in vivo. Recellularization of
hepatocytes in the scaffolds improved the hepatic func-
tions and extended the mean lifespan of rats with 90%
hepatectomy from 16h to 72h. In another study by Ko
et al.,’* the authors showed uniform endothelial attach-
ment throughout the liver blood vessels even for capillar-
ies by conjugation of CD31 antibodies on the vasculature
of the decellularized liver scaffolds (Figure 7(a-ii)). In
addition, whole blood reperfusion in pigs both in vitro and
in vivo displayed normal physiological blood flow up to
24h (Figure 7(b) and (c)).

All these studies reveal the importance and challenge of
recellularization, therefore a comprehensive study for the
influence of all factors on the recellularization is essential
for the clinical application of decellularized liver tissues.

Conclusion and perspectives

Living-donor-liver transplantation is the gold standard for
the treatment of serious liver failure. However, alternative
therapeutic strategies, including stem cell therapy and liver
tissue engineering, are still needed because of the severe
donor shortage.!*%!4 Although conventional cell therapy
using direct injection of single-cell suspensions in vivo is
a simple strategy for the treatment of liver diseases in a
minimally-invasive manner, poor cell engraftment and
survival often result in the requirement of multiple injec-
tions of high-dose cell suspensions to achieve expected
therapeutic efficacy, which is not applicable for primary
normal hepatocytes due to their limited number in vivo
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and challenging proliferation in vitro.>!! Poor cell engraft-
ment and low cell survival rate are also shown during the
repopulation of cells in decellularized liver scaffolds, par-
ticularly for the recellularization of multiple cell types.” In
addition, due to the difference of liver architectures across
species, cell repopulation in decellularized xenograft did
not show better results than that in homograft either in
vitro or in vivo.'*8

Stem cells and progenitors have shown promise in the
repair of injured livers either through paracrine effects or
hepatic differentiation, therefore they can be the alternative
to primary hepatocytes in cell therapy.'® The paracrine
effects modulate the local environment and accelerate the

self-healing process of the injured livers, while the hepatic
differentiation provides functional building blocks for the
reconstruction of a normal liver. Although the synergy of
paracrine effects and cell differentiation can maximize the
therapeutic efficacy, treatment of inherited hepatic dysfunc-
tions using stem cells or progenitors may mainly depend on
cell differentiation since the host cells are characterized by
genetic disorder. Before cell transplantation for the treatment
of inherited metabolic liver diseases, the host liver is often
pre-treated to increase cell engraftment in vivo using a vari-
ety of strategies, such as partial hepatectomy, portal ligature/
embolization, or administration of chemotherapeutic drugs,
which provide necessary stimuli for preparation of donor cell
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housing.'¥'2 For instance, Pourcher et al.">? showed that

cell engraftment was increased by around 3-folds after induc-
ing volumetric portal embolization in the C57BL6 mice
using polyester microspheres and subsequently injection of
hepatocytes into the spleen.

Decellularized liver scaffold-based tissue engineering is
a potential strategy for the treatment of liver failure due to
their well-preserved hepatic architecture.'?* %% In addition
to recellularization, other concerns such as the potential risk
of xenogeneic/allogeneic livers, long-term stability of liver
grafts in vivo, and bioengineering of a physiologically rele-
vant sized liver construct should also be addressed before
clinical application of the decellularized liver scaffold-based
approach.”*3* Wang et al.'>3 successfully achieved in vivo
decellularization of partial liver lobes in rats with a good
survival rate through the perfusion of 1% SDS solution.
Although recellularization and anti-coagulation processes
still require further optimization, the study represents a
promising strategy for liver engineering and regeneration in
vivo. Hence, decellularization in vivo that removes injured
or metabolism-disordered cells but maintains hepatic ECM
might be a potential solution for liver tissue engineering and
regeneration in situ. Cell aggregate-based liver tissue engi-
neering has also shown some promising results for the res-
cue of various liver diseases due to their functional
enhancements, however, only simple hepatic organizations
have been successfully constructed.?>?* Therefore, recellu-
larization using stem cell aggregates in decellularized whole
liver organs may facilitate the recovery of normal hepatic
functions and the reconstruction of complex liver architec-
tures. Li et al.">* previously showed that improved hepatic
differentiation, as well as maintenance of hepatocyte-like
cell morphology and viability, were achieved by employing
human umbilical cord-derived mesenchymal stem/stromal
cell (hUC-MSC) aggregates cultured in the decellularized
porcine liver scaffolds, suggesting the great benefits of the
novel approach that combines stem cell aggregates and
decellularized liver scaffolds for liver tissue engineering
and regeneration.
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