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Review Article

IntroductIon

Long noncoding RNAs (lncRNA), a class of nonprotein‑coding 
RNA molecules, regulate gene imprinting and embryonic 
development. Although higher organisms transcribe lots 
of RNAs, the proteins or polypeptides encoded through 
this transcript only occupy 2% of the entire genomes. The 
remaining are noncoding RNAs (ncRNAs). NcRNAs, 
including small interfering RNA, micro‑RNA (miRNA), 
piwi‑interacting RNA (piRNA), and lncRNA, play an 
important role in spermatogenesis and female reproduction.[1] 
miRNAs, a class of endogenous noncoding single‑stranded 

RNAs of about 21–25 nt, can degrade target messenger 
RNAs (mRNAs) or inhibit their translation and thus regulate 
the differentiation of target mRNAs.[2] piRNAs, a large class 
of small RNAs that are 24–32 nt in length, can interact with 
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piwi proteins without dicer enzyme.[3] NcRNAs have been 
long thought as transcriptional noise because they lack 
biological functions.[4] LncRNAs regulate the expression 
of target genes at transcriptional and posttranscriptional 
levels.[5‑7] LncRNAs are polyadenylated and catalyzed by 
RNA polymerase II and can perform various biological 
functions in nuclei and cytoplasm.[8,9] With the introduction 
of high‑throughput sequencing, thousands of lncRNAs have 
been identified, characterized, and categorized.

According to their origins, lncRNAs can be classified 
into five categories:[10] (1) tandem duplicates in adjacent 
repeated units; (2) juxtaposed and restructured lncRNAs 
in untranscribed and separated gene sequence during 
chromosome recombination; (3) duplicates of nonencoding 
genes in reverse transcription; (4) lncRNAs produced by 
frame fracture of protein‑coding genes; and (5) lncRNAs 
produced by transposable element insertion. According to 
its position with neighboring protein‑coding genes, lncRNAs 
can be classified as (1) intergenic lncRNA; (2) intronic 
lncRNA; (3) sense lncRNA; and (4) antisense lncRNA.[11]

Functions of general lncRNAs participate in the proliferation, 
differentiation, and self‑renewal of stem cells, including 
embryonic stem cells, induced pluripotent stem (iPS) cells, 
and spermatogonial stem cells (SSCs). Infertility has become 
a global concern. Due to environmental deterioration, food 
crisis, electromagnetic radiation, and even life stress, the 
incidence of human infertility is on the rise,[12,13] mainly in 
the developed countries.

A complex disease can be defined when: first, it is related to 
two different genomes (oocyte and sperm qualities are two 
major factors determining reproductive success), it depends 
on endometrium receptivity.[14] The embryonic genesis, 
fertilization, and implantation are regulated by complex 
biological pathways involving many molecules (such as 
mRNAs, ncRNAs, and proteins), which make the disease 
more complicated. In female gametogenesis, oocyte 
competence develops through complex processes beginning 
with embryonic formation and ending with metaphase II 
oocyte ovulation.[15] During ovulation, the oocyte is enclosed 
into a lineage of ovarian somatic cells and pregranulosa 
cells and then grows into a primordial follicle.[16] The 
primordial follicle pool, an embryonic product of the most 
mammal species including human, represents the female’s 
ovarian reserve.[17] Hence, the embryo quality is mainly 
decided by the competence of the oocyte selected for 
fertilization. This competence is also affected by the oocyte’s 
follicular environment.[18] However, these lncRNAs have 
a series of functions and participate in the development 
of many diseases,[19‑21] including cervical cancers and 
neurodegenerative diseases. Recently, some lncRNAs have 
been found associated with preeclampsia.[22‑24]

In 2014, global transcriptome profiles of the samples compact 
cumulus cells (CCs) were obtained using state‑of‑the‑art 
RNA sequencing techniques. Yerushalmi et al.[25] identified 
1746 differently expressed genes of compact and expanded 

CCs. Most of these genes were involved in cellular growth 
and proliferation, movement, cycles. Out of the differentially 
expressed (DE) genes, Yerushalmi et al.[25] found 89 lncRNAs, 
12 of which are encoded within introns of genes involved in 
granulosa cell processes. Analysis of these genes helps identify 
genes and ncRNAs potentially involved in cumulus‑oocyte 
complexes maturation and cumulus expansion.

long noncodIng rna databases

Biological characteristics of lncRNAs (e.g., gene organization 
characteristics, sequence conservation, expression profiles, 
molecular interactions, epigenetic modifications, and 
functional annotation) have become much clearer. Some 
investigators have established the databases about the basic 
information of lncRNAs (e.g., primary sequence and genome 
seat). DeepBase database identifies lncRNAs based on 
RNA‑Seq datasets. LncRNA expression profiles from 478 
data sets of 14 species, their functions, and evolutionary 
conservation can be understood.[26] DIANA‑LncBase 
database is a collection of experimental evidence and 
miRNA‑lncRNA target relationships predicted by the 
DIANA‑microT algorithm.[27] ChIPBase database provides 
information on how transcription factors regulate lncRNAs 
and miRNAs.[28] LncRNA database (LncRNAdb) is a 
professional database including comprehensive annotation 
of lncRNAs in eukaryotic organisms.[29] LncRNA DISEASE 
is a Chinese database of lncRNAs and human diseases, 
containing multiple lncRNAs and their relevance to human 
diseases.[30]

LNCipedia provides the primary sequence and secondary 
structure of human lncRNAs and evaluates the protein‑coding 
potential of lncRNA with bioinformatic tools and 
ribosome sequencing data.[31] LncRNA single‑nucleotide 
polymorphism (SNP) includes information on SNPs in 
human and mouse lncRNAs, data from the genome‑wide 
association study, and their impact on lncRNA structure and 
lncRNA‑miRNA combination.[32] LncRNome is developed 
by the Indian Institution of Council of Scientific and 
Industrial Research Genome and Integrative Biology, which 
provides stable annotations, cross‑references, and biological 
significance of lncRNAs.[33]

NONCODE organizes the information of lncRNAs in 
16 species, including the location, sequence, expression 
profile, evolutionary conservation, functional annotation, and 
relevant diseases.[34] An miRNA target database, supported 
by high‑throughput experimental data (CLIP‑Seq, aka, 
PAR‑CLIP, and iCLIP) and mRNA degradome sequencing 
data, describes the regulatory interaction between miRNA 
and mRNA, miRNA and lncRNA, miRNA and circular 
RNA, miRNA and competing endogenous RNA, and RNA 
and protein. This database integrates the data from popular 
target prediction platforms.[35]

LncRNAtor collects data from TCGA, GEO, ENCODE, 
and modENCODE and compiles lncRNA expression 
profiles for cancer samples, as well as provides 
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protein‑coding gene coexpression analysis and gene 
ontology enrichment analysis of coexpressed genes.[36‑39] 
It provides information on the differential expression 
of lncRNAs, identifies tissue or cellular expression 
with specific microarray, and confirms the results by 
quantitative polymerase chain reaction (qPCR). The 
interference and overexpression of RNA can be used to 
study specific lncRNA functions. The characteristics of 
lncRNA databases are listed in Table 1.

long noncodIng rna expressIon In male 
reproductIon

SSCs differentiate into sperms through spermatogenesis that 
involves genes such as B‑cell CLL/lymphoma 6/member 
B, Ets‑variant 5, kit ligand, and epithelial cell adhesion 
molecule. Nuclear paraspeckle assembly transcript 1 (Neat1), 

a 3.2 kb lncRNA, forms paraspeckles and, along with other 
RNA complexes, modifies the transcript of coding genes.[40] 
In 2012, Nakagawa et al.[41] found that metastasis‑associated 
lung adenocarcinoma transcript (MALAT1; a type of 
lncRNA) was embedded in the subnuclei of mouse 
embryonic fibroblasts. Pre‑mRNA regulated many 
biological processes, such as the growth of synapses and 
change of cellular cycles.[41,42] In 2014, Hu et al.[43] found 
that Neat1 was expressed in rat testicular tissues and GC‑l 
cell lines. After the injection of lentiviruses, testicular 
indexes (testicular weight/experimental weight × 100%) 
in the experimental group rose, but not significantly. At the 
same time, the proportion of seminiferous tubules harboring 
sperms dropped to 86%, indicating that Neat1 regulated rat 
spermatogenesis.

With a length of 2.4 kb, miotic recombination hot spot 
locus (Mrhl) is a type of single‑axon lncRNA encoded by 

Table 1: Characteristics of lncRNAs databases

Databases Characteristics Linking
ENCODE‑LncBae[39] The ENCODE project helped map over 8800 small RNAs and 

9600 lncRNAs and is still widely cited as a central database of 
known ncRNAs

http://www.nature.com/authors/editorial_
policies/license.html#terms

LNCipedia 2.0[31] In addition to basic transcript information and structure, several 
statistics are calculated for each entry in the database (such as 
secondary structure information, protein‑coding potential, and 
miRNA binding sites)

http://www.ncipedia.org/

lncRNAdb[29] lncRNAdb containing a comprehensive list of lncRNAs that 
have been shown to have, or to be associated with, biological 
functions in eukaryotes, as well as messenger RNAs that have 
regulatory roles

http://www.Lncrnadb.org/

lncRNA Disease[30] This website provides both experimentally supported and predicted 
lncRNA‑human disease relationships, based on hundreds of 
publications

http://www.Cuilab.cn/lncrnadisease

lncRNASNP[32] This website identified SNPs in lncRNAs and analyzed their 
potential impacts on lncRNA structure and function

http://bioinfo.Life.hust.edu.cn/lnc RNASNP/

lncRNAtor[36] Gene expression data of 208 RNA‑Seq studies, collected from 
GEO, ENCODE, modENCODE, and TCGA databases, were 
used to provide expression profiles in various tissues, diseases, 
and developmental stages

http://lncrnator.ewha.ac.kr/index.Htm

lncRNome[33] The resource hosts information on over 17000 lncRNAs in human 
and provides information on the types, chromosomal locations, 
description on the biological functions and disease associations 
of lncRNAs

http://genome.igib.res.in/lncRNome

lncRNome 
NONCODE[34]

NONCODE is an integrated knowledge database dedicated to 
ncRNAs (excluding tRNAs and rRNAs). Now, there are 16 
species in NONCODE

http://www.noncode.org/

lncstarBase[35] StarBase v2.0 has been updated to provide the most comprehensive 
ChIP‑Seq experimentally supported miRNA‑mRNA and 
miRNA‑lncRNA interaction networks to date

http://starbase.sysu.edu.cn/

ChIPBase[28] The chip base have developed to facilitate the comprehensive 
annotation and discovery of transcription factor binding maps 
and transcriptional regulatory relationships of lncRNAs and 
miRNAs from ChIP‑Seq data

http://deepbase.sysu.edu.cn/chipbase/index.
php

DeepBase[26] DeepBase is a platform, to decode evolution, expression patterns 
and functions of diverse ncRNAs across 19 species

http://biocenter.sysu.eu.cn/deepBase/index.
Php

DIANA‑LncBase[27] The experimental module contains detailed information for >5000 
interactions, ranging from miRNA and lncRNA related facts 
to information specific to their interaction, the experimental 
validation methodologies and their outcomes

http://diana.imis.athena‑innovation.gr/
DianaTools/index.php?r=lncBase/index

MiRNAs: Micro‑RNAs; NcRNAs: Noncoding RNAs; LncRNAs: Long noncoding RNAs; SNPs: Single‑nucleotide polymorphisms; ChIP‑seq: Chromatin 
immnoprecipitation‑sequencing.
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the nuclear genome and expressed in testes.[44] In 2008, the 
studies found that Mrhl regulated spermatogenesis through 
two molecular mechanisms. First, Mrhl is divided by Drosha 
into a midbody of 80 nt. These RNAs are located in the 
nuclei of GC1 spermatogonial lines, probably interacting 
with chromatin.[45] Second, Wnt is critical to mammalian 
spermatogenesis.[46] Cooperating with p68, Mrhl showed 
its negative regulation in Wnt signal. Knockdown of Mrhl 
expression in GC‑1 SPg cell line could disrupt the expression 
of genes that are responsible for cell signal transduction 
and development. Most of these genes are members of 
the Wnt‑signaling pathway promoting cell differentiation 
and inhibiting cell growth. Therefore, Mrhl is crucial for 
spermatogonial division and differentiation.[47] Further 
studies are needed in gene‑knocked‑out mice to define the 
regulation of Mrhl in spermatogenesis.

Male infertility is often caused by maturation arrest (MA). 
HongrES2 is a 1588‑nt‑long lncRNA co‑transcribed 
by rats’ chromosome 5 and 9 and expressed in testes; 
its expression in rates increases at the end of the first 
phase of spermatogenesis and reached a plateau at 
around day 450. Space‑time specificity of this expression 
is manifested in the spermatogenesis. HongrES2 is 
a 1.6 kb mRNA‑like precursor that gives rise to a 
new microRNA such as HongrES2 (Mil-HongrES2). 
Mil-HongrES2, the spliced HongrES2, can downregulate 
the expression of CES7, the products of which affects 
capacitation.[48] Nuclei weakly express mil‑HongrES2 
but strongly express HongrES2, indicating a splicing 
mechanism exists. Therefore, HongrES2 can regulate 
the maturation of sperms. Besides, the overexpression 
of mil‑HongrES2 can weaken spermatic capacitation, 
indicating lowly expressed endogenic HongrES2 promotes 
spermatic development.[48] Narcolepsy candidate‑region 
1 gene (NLC1‑C) is a cytoplasmic lncRNA expressed in 
spermatogonia and early‑stage spermatocytes. NLC1‑C 

overexpression promotes cell growth, whereas its low 
expression inhibits cell growth and accelerates apoptosis. 
Microarray analysis found that NLC1‑C expression in MA 
patients was lower than normal persons. NLC1‑C was also 
bound to the RNA‑binding domain of nucleolin, which 
inhibited the transcription of miR‑320a and miR‑383 and 
induced the proliferation of spermatogonia and early‑stage 
spermatocytes in MA patients.[49] Results from a study of 
Liu et al.[50] provided a catalog of chicken testis lncRNAs. 
In total, 2597 lncRNAs were identified in the chicken 
testis, including 1267 lincRNAs, 975 anti‑sense lncRNAs, 
and 355 intronic lncRNAs. They shared similar features 
with previous studies. Of these lncRNAs, 124 were DE. 
Among 17,690 mRNAs detected in this study, 544 were 
DE, including a bunch of genes affecting sperm motility. 
Integrating analysis of lncRNA and mRNA and lncRNA 
expression in spermatogenesis are listed in Table 2 and 
Figure 1.

long noncodIng rnas expressIon In Female 
reproductIon

Long noncoding RNA Gtl2
Recent studies revealed that lncRNAs (including Gtl2) 
from Dlk1‑Dio3 region were positively correlated 
with the pluripotency of iPS cells. To uncover the 
spatiotemporal expression patterns and changes of 
lncRNA Gtl2, Wei et al.[51] analyzed the mechanism of 
Gtl2 epigenetic regulation. No changes of IG‑DMR and 
Gtl2‑DMR expression were found before and after lncRNA 
Gtl2 expression, which suggested that its activation was not 
regulated by two DMRs’ DNA methylation. Hence, Wei 
et al.[51] checked the histone modifications in the promoter 
regions. They chose H3k9me3, H3K27me3, H3K4me3, and 
H3ac to perform the micro‑ChIP assay with a micro‑ChIP 
method published on nature protocols and found that lncRNA 

Table 2: LncRNAs expression in reproductive diseases

LncRNA Length Chromosomal location Functions
Neat1 3.2 kb 11q13.1 Corpus luteum formation and pregnancy maintenance[51]

Mrhl 2.4 kb Chromosome 8 Wnt signaling regulation in spermatogonial cells; spermatogonial division and 
differentiation[46]

Mil‑HongrES2 1.6 kb Chromosome 5 and 9 Space‑time specificity in spermatogenesis; sperm maturation[48]

RNAsGtl2 1.6 kb 14q32.2 Human early‑stage embryonic development; oocyte maturation; zygotic genome 
activation[51]

Neat AK124742 6078 bp 3p14 Oocyte maturation and embryo development[38]

LncRNA274 – – Cytoskeletal organization and oocyte polarity in Xenopus[52]

XIST 19,296 nt Xq13.2 X‑chromosome inactivation[53]

H19 2322 nt 11p15.5 Upregulation in most ovarian cancer tissues compared with adjacent nontumor 
samples with a significantly positive correlation between its expression and tumor 
stages and tumor size[54‑56]

MALAT1 8708 nt 11q13.1 Tumor pathogenesis,[57] high levels of MALAT1 in endometrioid endometrial cancer[58]

HOTAIR 2377 nt 12q13.13 Tumorigenic factor and biomarker in various cancer types; the most investigated 
lncRNA in cervical cancer[59‑61]

NEAT1: Nuclear paraspeckle assembly transcript 1; Mrhl: Miotic recombination hot spot locus; XIST: X‑chromosome inactive‑specific transcript; 
H19: Imprinted maternally expressed transcript; MALAT1: Metastasis‑associated lung adenocarcinoma transcript 1; HOTAIR: HOX transcript antisense 
RNA; Mil‑HongrES2: Micro RNA‑like HongrES2; –: Not retrieved; LncRNAs: Long noncoding RNAs.
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expression rose as H3K4me3 increased and developed from 
8‑cell stage to blastocyst.

Wei et al.[51] also studied the functions of lncRNA Gtl2 
in preimplantation development. They knocked down 
lncRNA Gtl2 by shRNA lentiviral particle microinjection. 
Although about 60% of Gtl2 was knocked down, the 
blastocyst formation rate did not change compared to the 
control group. However, interference of Gtl2 compromised 
the outgrowth of both trophoblast cell (trophectoderm) 
and inner cell mass and downregulated the adjacent 
genes from Dlk1-Dio3 imprinted region and some stem 
cell pluripotency factors. Expression profile analysis 
revealed that lncRNAs expression was changed in different 
stages of human embryos and different time of mouse 
embryos. Weighted gene coexpression network analysis 
suggested that lncRNAs involved in human early‑stage 
embryonic development were associated with oocyte 
maturation, zygotic genome activation, and mitochondrial 
functions. Results from a study of Qiu et al.[38] showed 
that the network of lncRNAs involved in zygotic genome 
activation was highly preserved in human and mouse 
embryos, whereas in other stages, no strong correlation 
was observed.

Nuclear paraspeckle assembly transcript 1
Neat1 is a nonprotein‑coding RNA. Nakagawa et al.[52] 
found that Neat1‑knocked‑out mice with normal ovulation 
were stochastically infertile and unilateral transplantation of 
wild‑type ovaries or progesterone changed the phenotype, 
suggesting that corpus luteum dysfunction and low‑level 
progesterone were the primary causes of decreased fertility. 

Despite faint expression in most adult tissues, Neat1 was 
highly expressed in corpus luteum. However, luteal tissues 
were severely impaired in nearly half Neat1‑knocked‑out 
mice. These observations suggested that Neat1 is essential 
for corpus luteum formation and the pregnancy under a 
suboptimal condition.

AK124742 and long noncoding RNA274
Another study found that AK124742 and PSMD6 
expression levels in CCs of high‑quality embryo group 
were significantly higher than those in poor‑quality group, 
which might affect oocyte maturation and embryonic 
development. The expression of mRNA PSMD6 was 
positively correlated with that of lncRNA AK124742 in 
CCs, indicating that AK124742 may regulate the expression 
of PSMD6. Therefore, the expression levels of AK124742 
and PSMD6 in human CCs may be biomarkers to predict 
pregnancy outcome.[62]

Ovary is a major female reproductive organ and has functions 
in two ways: first, it produces oocytes and provides them 
a base to develop and mature; second, it secretes ovarian 
steroid hormones to regulate follicular development and 
reproductive cycle. Ovary development is regulated by 
multiple factors, such as gonadotropins, cytokines, and 
small nucleic acids. A study of Li[63] found that nine 
lncRNAs were relatively highly expressed in multiple 
mouse tissues by qPCR, and lncRNA647, lncR147, and 
lncRNA274 were specifically highly expressed in ovary 
at 8 weeks and metestrus. The expression of lncRNA274 
and genes for follicular development were elevated and the 
number of ovulation increased after in vivo transfection. 
Transgenic mice with lncRNA274 as target gene were 
established. According the phenotype analysis, the number of 
offsprings significantly increased. These experimental results 
demonstrated that lncRNA274 could promote ovulation. 
Rosalia et al.[64] found that 41 lncRNAs could interact with 
oocyte miRNAs and may regulate folliculogenesis. These 
findings are important in both basic reproductive research 
and clinical application.

H19
A study analyzed the overexpression of H19 in human 
trophoblasts and detected the cell proliferation with 
CCK‑8 technology. Then, the invasive ability of H19 in 
human trophoblasts was examined with matrix reagent 
through transwell method. Reverse transcription PCR 
showed lncRNA-H19 was highly expressed in human 
villous tissues from early spontaneous abortion patients and 
in human villous tissues from induced‑abortion patients. 
Further, upregulation of lncRNA-H19 inhibited the cell 
proliferation in HTR8/SV neo‑trophoblasts overexpression 
of lncRNA-H19 showed decreased motility in HTR8/SVneo 
trophoblasts. LncRNA‑H19 inhibited early placenta growth 
and early vegetative layer cells, which could lead to early 
spontaneous abortion.[53,65] LncRNAs expression in female 
reproductive diseases is shown in Table 2 and Figure 1.

Placentation
(H19, Gtl2,

Neat1)

Cumulus cells
(lncRNA 

AK124742)

Ovulation
(lncRNA274)

Luteum 
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(Neat1)

Cervical cancer,
Ovarian cancer
(Hotair, Malat1,

H19, Xist,
hotair)

Cervical  
cancer,breas
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(Malat1,
Hotair)    
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(Neat1)
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Figure 1: Different expressions of lncRNA build up a regulatory 
system in reproductive diseases. NEAT1: Nuclear paraspeckle 
assembly transcript 1; Mrhl: Miotic recombination hot spot locus; 
XIST: X‑chromosome inactive‑specific transcript; H19: Imprinted 
maternally expressed transcript; MALAT1: Metastasis‑associated lung 
adenocarcinoma transcript 1; HOTAIR: HOX transcript antisense RNA; 
Mil‑HongrES2: microRNA‑like HongrES2.
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long noncodIng rnas expressIon In Female 
reproductIve tumors

For their roles in cell proliferation, differentiation, and 
apoptosis, lncRNAs are focused in the research on genesis 
of cancers or cancer subtypes. Furthermore, their differential 
expressions show difference in different tumor stages.[54,66]

Long noncoding RNA X‑chromosome inactive specific 
transcript
Engreitz et al.[55] found that mouse lncRNA inactive 
specific transcript (XIST) inactivating X‑chromosome was 
transferred from its transcription site to distant region on the 
X‑chromosome. XIST, initially in the periphery of active 
genes on the X‑chromosome, gradually spreads across the 
genes with its a‑repeat domain, to be bound with inactive 
X‑chromosome in differentiated female cells. XIST encodes 
a spliced lncRNA with a unique characteristic from an 
inactive X‑chromosome. A study compared the total RNA 
expression profiles of primary and recurrent ovarian tumors 
from the same patient. The results showed that XIST was the 
most DE gene and downregulated in the recurrent tumor. In 
addition, in vitro studies showed that the expression of XIST 
was correlated with Taxol sensitivity. The loss of inactive 
X‑chromosome led to the loss of XIST transcripts in ovarian 
cancer cell lines. The downregulation of XIST caused the 
upregulation of X‑linked apoptotic inhibitor, a mechanism 
that prevented drug‑induced apoptosis and brought resistant 
phenotypes of cancer cells.[55]

H19
A recent in vivo study has shown the coexpression between 
oncogenes and H19 in both primary human ovarian 
and endometrial cancers, confirming the existence of 
H19/let‑7‑dependent regulation. The antidiabetic drug, 
metformin, can suppress the tumor cell migration and 
invasion, partly by epigenetic downregulation of H19.[57] 
The loss of H19 imprinting has been detected in malignant 
serous cystadenocarcinomas. H19 is also upregulated in most 
ovarian cancer tissues compared with adjacent nontumor 
samples, which indicates a significantly positive correlation 
between its expression and tumor development. Cooperated 
with histone H1.3 overexpression, H19 knockdown inhibits 
the growth and clonogenicity of epithelial ovarian cancer 
cells.[67] Literature has revealed that the silencing of H19 
induces cell apoptosis and cell cycle arrest at the G2/M 
phase. H19 RNA has been detected in a majority of patients 
with ovarian cancer ascites fluid.[68] H19 was overexpressed 
in ovarian carcinomas, a result of expressed prometastatic 
genes.[69] In ovarian cancer cells, H19 overexpression 
enhanced their migration and invasion.[70] In addition, H19 
sequestering of let‑7 was required for H19 to function in 
epithelial‑mesenchymal‑transition (EMT) processes such 
as cell invasion and migration in ovarian cancer and uterine 
serous carcinoma cell lines.[71] The levels of H19 expression 
increased throughout endometrial epithelium tumorigenesis. 
Level of H19 expression was low in normal endometrial 
epithelium but high in hyperplastic endometrium, especially 

in endometrial carcinoma and tumor tissue‑dedifferentiated 
tumor tissues. Furthermore, in cervical cancer, markedly 
increased levels of IGF2 expression and decreased levels 
of H19 expression were reported. However, the mechanism 
promoting this dysregulation is still unclear and needs to be 
further investigated.[59]

Metastasis‑associated lung adenocarcinoma 
transcript 1
As one of the first identified cancer‑associated lncRNAs, 
MALAT1 acts in the pathogenesis of different tumors, 
including hepatocellular carcinoma, cervical cancer, breast 
cancer, and colorectal cancer.[60] MALAT1 knockdown 
could suppress the proliferation, invasion, and metastasis of 
human osteosarcoma cells. MALAT1 was mediated through 
PI3K/AKT signaling pathway. In addition, the expression of 
MALAT1 increased in primary metastatic bladder tumors 
but not in nonmetastasized tumors. Its silencing could result 
in a decrease in the EMT‑associated zinc finger E‑box 
binding 1 and 2 and Slug levels, as well as an increase in 
the E‑cadherin levels in bladder cancer cells. MALAT1 in 
EMT enhancement activated the Wnt signaling.[61] Although 
its mechanism in ovarian cancer is unclear, it is differently 
expressed in cells of metastatic ovarian cancers.[66] It was 
found that lowering the expression of MALAT1 in Hela cells 
could effectively reduce cell proliferation and migration.[72]

MALAT1 was also overexpressed in SKOV3ip, an ovarian 
cancer cell line derived from SKOV3 with a more metastatic 
phenotype.[66] Furthermore, MALAT1 inhibition markedly 
suppressed tumorigenicity in SKOV3 ovarian cancer cells 
and changed the expression of several genes that were 
involved in cell proliferation, metastasis, and apoptosis. 
However, the mechanism in this situation is still unclear 
and requires more detailed evaluation.[73] In addition, high 
levels of MALAT1 have been reported in endometrioid 
endometrial cancer,[58] in relation with aberrant activation 
of the Wnt/beta‑catenin pathway where the Wnt‑effector 
transcription factor TCF4 interacts with the MALAT1 
promoter region. This Wnt/beta‑catenin aberrant activation 
was caused by the expression loss of the tumor suppressor 
PCDH10 which repressed Wnt/beta‑catenin activation.[74] In 
addition, higher levels of MALAT1 were found in cervical 
cancer tissues and associated with a poor prognosis. 
MALAT1 was overexpressed in the cervical cancer CaSki 
cell line, which promoted the cell growth and invasion and 
decreased its apoptosis.[75,76]

Hox transcript antisense RNA
Hox transcript antisense RNA (HOTAIR), a long intervening 
ncRNA (lincRNA) transcribed from HOXC, is involved 
in epigenetic regulation, cooperative with polycomb 
repressive complex 2 and required for histone H3 lysine‑27 
trimethylation of the HOXD. The expression of HOTAIR 
was associated with cancer cell invasion and metastasis.[77] 
Furthermore, its expression was higher in ovarian cancer 
stem cells (CSCs) than non‑CSCs.[78] Hazard ratios (HRs) of 
lncRNAs in cervical cancer patients showed that HOTAIR 
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generated the highest HR of 5.28. HOTAIR increased in a 
variety of human cancers.[77] Meanwhile, HOTAIR was a 
tumorigenic factor and could be adopted as a diagnosing or 
predictive biomarker in various cancer types.[79,80] HOTAIR is 
the most investigated lncRNA in cervical cancer. Hopefully, 
it can be used as a new biomarker in diagnosing and treating 
cervical cancer.

Moreover, in several ovarian cancer cell lines, the expression 
of HOTAIR caused resistance to cisplatin through Wnt/
β‑catenin pathway activation.[81] In cervical cancer, vascular 
endothelial growth factor and matrix metalloproteinase‑9 
expression were upregulated by HOTAIR. These two 
factors increased the migration and invasion of the tumor. 
HOTAIR was also correlated with recurrence of cervical 
cancer.[82,83] LncRNAs expressed female reproductive tumor 
disease [Table 2 and Figure 1].

conclusIon and Future perspectIves

More and more lncRNAs have been proved to be involved 
in reproductive diseases. Compared with miRNAs, lncRNAs 
are less conservative with overlapped functional domains. 
They act differently as decoy molecules, guide molecules, 
and scaffold molecules are all engaged in expression.

As a form of epigenetic regulation, lncRNAs may function in 
female reproductive processes through histone modification 
and chromatin reconstruction. Different expression of 
lncRNA124742, lncRNA Gtl2, lncRNA‑H19 and lncRNA 
ENST00000502521, Neat1, Mrhl, and HongrES2 builds up 
a regulatory system in reproductive diseases, providing us a 
new way into the reproductive disorders.

LncRNA expression profiling should be assessed in each 
cancer type as the most altered lncRNAs are different in 
cancers. In addition, they may facilitate differentiation 
between different cancer histologic subtypes due to 
difference in expression pattern among different subtypes.

Further studies are needed to understand the roles of 
lncRNAs in reproductive diseases. With new technologies 
and searchable databases, such as bioinformatics tools and 
ontology databases, lncRNAs may serve as biomarkers 
and/or targets to diagnose and/or treat reproductive disorders.
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