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Pulmonary fibrosis is the main cause of severe morbidity and mortality in idiopathic interstitial pneumonias (IIP). In the past
years, there has been major progress in the discovery of genetic factors that contribute to disease. Genes with highly penetrant
mutations or strongly predisposing common risk alleles have been identified in familial and sporadic IIP. This review summarizes
genes harbouring causative rare mutations and replicated common predisposing alleles. To date, rare mutations in nine different
genes and five risk alleles fulfil this criterion. Mutated genes represent three genes involved in surfactant homeostasis and six genes
involved in telomere maintenance. We summarize gene function, gene expressing cells, and pathological consequences of genetic
alterations associated with disease. Consequences of the genetic alteration include dysfunctional surfactant processing, ER stress,
immune dysregulation, and maintenance of telomere length. Biological evidence shows that these processes point towards a central
role for alveolar epithelial type II cell dysfunction. However, tabulation also shows that function and consequence of most common
risk alleles are not known. Most importantly, the predisposition of the MUC5B risk allele to disease is not understood. We propose a
mechanism whereby MUC5B decreases surface tension lowering capacity of alveolar surfactant at areas with maximal mechanical

stress.

1. Idiopathic Interstitial Pneumonia

Idiopathic interstitial pneumonias (IIP) are a class of diffuse
lung diseases comprising several distinct entities. Idiopathic
pulmonary fibrosis (IPF) is the most common and severe
form of IIP. Median survival in IPF is 3 years [1]. Other
less common entities include nonspecific interstitial pneu-
monia (NSIP), desquamative interstitial pneumonitis (DIP),
and cryptogenic organizing pneumonia (COP). Distinction
between the different entities of IIP is important with regard
to prognosis and therapeutic decision-making, including
timing of lung transplantation or palliative care. However,
genetic discoveries have raised the question whether the
various types of IIP are in fact different disease manifestations
within the same pathogenetic spectrum [2]. In a large cohort

of patients with familial interstitial pneumonia (FIP), it was
found that a diagnosis of IPF was most frequent, but all
subtypes of IIP were represented [3]. Furthermore, although
it is commonly assumed that IPF does not and non-IPF IIP
does respond to immunosuppressive treatment, part of the
non-IPF IIP patient population are refractory to treatment
and progress to end-stage fibrosis with severely reduced
survival [4].

2. Familial Disease

All human phenotypes, including disease phenotypes, are
influenced by a person’s genetic constitution. In case of IIP,
evidence for a more defining genetic contribution to disease
is most compelling. Ethnic differences in incidence of IPF
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include higher occurrence in Hispanics than in Whites and
the lowest occurrence in Blacks and Maori [5, 6]. In theory,
familial occurrence may well be explained by presence of
a common environmental cause. An environmental cause
requires clustering of affected family members in space
and time, while a genetic cause allows for differences in
space and time. Such differences are frequently observed in
familial IIP including sibs from different environments and
parent-offspring disease with an interval of decades [3, 7-
9] and support the involvement of heritable factors. IIP is
familial in approximately 10% of cases [10] and might even
reach 20% in cohorts with IPF or end-stage lung disease
[11, 12]. These numbers may even be an underestimation,
because the studies relied on patient reports. With more
elaborate measurement of familial disease, an even larger
familial component can be identified. Scholand and cowork-
ers performed an extraordinary study for which they first
identified 1,000 cases that died from pulmonary fibrosis in
the Utah Population Database. They showed that the average
relatedness of these 1,000 cases was significantly higher than
that of matched controls even when first- and second-degree
relatives were excluded [13].

3. Alveolar Epithelial Type II Cell

A major breakthrough was achieved when the first causative
mutation was identified in a family with IIP. Candidate
gene sequencing detected a heterozygous mutation in surfac-
tant protein C (SFTPC) [14]. Because SFTPC is exclusively
expressed in type II alveolar epithelial cells (AECs), it was
proof that erroneous processes in AEC type II could ulti-
mately lead to pulmonary fibrosis.

The reported family already contained many features
of disease associated with SFTPC mutations: familial ILD,
dominant expression, variable penetrance, and expressivity
resulting in acute and chronic lung disease in individuals
ranging from newborn to adult [10, 15, 16]. Since the first
discovery, many IIP families with surfactant mutations have
now been described. SFTPC mutations are now established
as an important cause of paediatric ILD but also known to
contribute to, predominantly familial, IIP in adults [10, 17-
19]. Table 1 summarizes characteristics of mutated genes in
IIP and biological consequences of mutations.

4. Surfactant Processing

After transcription and translation of SFTPC in AEC type 11,
a proprotein is formed which after subsequent folding and
cleavage steps becomes a mature surfactant protein ready
for secretion into the alveolar space via lamellar bodies.
Pulmonary surfactant consists of a mixture of lipids and
specific proteins that lowers alveolar surface tension thereby
preventing alveolar collapse at the end of expiration [20, 21].

Erroneous SFTPC processing is currently one of the best
studied mechanisms leading to IIP. The consequence of a
mutation in SFTPC depends on its position in the gene [22].

Mutations in the C-terminal BRICHOS domain generally
increase endoplasmic reticulum (ER) stress and activate the
unfolded protein response (UPR) in AEC type II [23-26].
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In turn, ER stress can induce epithelial-to-mesenchymal
transition in lung epithelial cells [24].

The role of ER stress is not limited to SFTPC mutation
carriers, as different studies showed that AECs in fibrotic
tissue from nonmutated FIP and sporadic IPF patients were
also positive for ER-stress markers [23, 27].

The most common SFTPC mutation is I73T and does
not cause substantial elevation of ER stress [28]. It repre-
sents a linker domain mutation that alters trafficking of the
propeptide to early endosomes [29] and causes dysregulated
proteostasis [30]. Furthermore, alteration of the surfactant
lipid composition and activation of immune cells are reported
for these mutations [31].

Later, mutations in a second surfactant associated gene,
surfactant protein A2 (SFTPA2), were identified in two
families. Family members presented with adult early-onset
pulmonary fibrosis or lung cancer with features of bronchi-
oloalveolar carcinoma [32]. Surfactant protein A2 is a C-type
lectin important in the defense against respiratory pathogens
and in the lung. It is expressed not only by AEC type II,
but also by Clara cells and submucosal glands [33, 34]. The
mutant protein, when expressed in AECs, was not excreted
but retained in the ER and induced ER stress [35], a process
similar to that seen in SFTPC mutants. However, there are
no reports on lung cancer in patients with SETPC mutation.
ER stress is linked to tumorigenesis [36] and tumorigenesis
in BAC is often thought to involve Clara cells [37].

5. Lamellar Bodies

Lamellar bodies are secretory organelles unique to type II
AECand are crucial for biosynthetic processing and transport
of pulmonary surfactant. Proteins of the limiting membrane
of lamellar bodies are encoded by the gene ABCA3. In the
lung, the highest expression of ABCA3 has been observed in
type II AEC and corresponds with the presence of lamellar
bodies [20]. Recessive mutations in ABCA3 are the most
common genetic cause of lethal surfactant deficiency in
neonates or chronic ILD in children [38-40].

In type II AECs, ABCA3 mutations cause abnormal pro-
cessing, trafficking, and functionality of the ABCA3 protein
[41, 42], resulting in impaired lipid transport [43] or retention
in the ER compartment and elevated ER stress and apoptotic
signaling [44]. Only recently were compound heterozygous
or homozygous mutations in ABCA3 described in adult IIP
[45, 46]. A French patient with ABCA3 mutations presented
with combined pulmonary fibrosis and emphysema (CPFE)
[46]. CPFE typically occurs in male smokers but also has sim-
ilarities to radiographs of IIP patients with SFTPC mutations
[47]. Dysfunctional lamellar bodies in AEC type II were also
identified as a cause of pulmonary fibrosis in Hermansky-
Pudlak Syndrome (HPS).

HPS is a systemic disorder characterized by reduced
pigmentation of skin, hair, and eyes and bleeding diathesis.
Disease is caused by autosomal recessive mutations in the
gene HPSI [48] that lead to giant lamellar bodies in type II
AECs with a deficiency to fuse with the outer cell membrane
and excrete lamellar body content [49-51]. Pulmonary fibro-
sis in HPS shares many similarities with that observed in IPF
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[52,53]. Due to unfamiliarity with the disease and the variable
degree of albinism and bleeding disorders misdiagnosis
might occur. However, clinical features characteristic for HPS
are scars in pulmonary fibrosis. In a cohort study including
127 patients with pulmonary fibrosis, only four patients had
two or more features consistent with HPS. One out of four
had HPS and was compound heterozygous for mutations in
HPSI. Review of her medical documentation showed that she
had received a diagnosis of IPF prior to referral to a tertiary
center [54].

6. Telomere Maintenance

A different set of genes involved in FIP was discovered when
anamnestic familial [55] and genome-wide linkage [56] anal-
ysis linked IIP to mutations in the genes TERT and TERC.
The gene TERT encodes telomerase reverse transcriptase,
which together with the transcript of the telomerase RNA
component (TERC) forms the telomere complex, required to
maintain telomere length.

Mutations in the telomerase genes have been found to
cause a telomere syndrome with one or more manifesta-
tions of early aging, such as idiopathic pulmonary fibrosis,
bone marrow failure, or cryptogenic liver cirrhosis [57]. A
mutation in one TERT allele can lead to haploinsufficiency
that results in overall decreased telomerase activity and is
manifested as premature aging disorders. Approximately half
of the mutations (10 out of 19) have less than 40% loss of
telomerase function. In a heterozygous individual carrying
one wild type and one mutant allele, this would result in
“normal,” >80%, overall telomerase activity [58]. However,
carriers of mutations that cause a minor decrease in overall
telomerase activity were shown to cause significant reduction
of telomere length over generations that will eventually lead
to telomere syndromes [55, 56, 59]. It is not the presence of the
mutation per se but the length of telomeres that confers the
risk for disease. Because telomere length is heritable, carriage
of slightly dysfunctional alleles will over generations lead
to pathologically short telomeres, a phenomenon known as
genetic anticipation.

Leukocytes telomere lengths in cohorts of FIP and spo-
radic IIP patients were significantly shorter compared to
age-matched controls [60, 61]. Although this is interesting,
acquired telomere shortening is a common feature of disease
in humans and, recently, it was shown that all ILD patient
cohorts have shorter telomere length than controls. However,
patients with sporadic IPF had significantly shorter telomeres
than patients with other forms of IIP or patients with surfac-
tant mutations [62]. This suggests that telomere shortening
is a common denominator of patients with ILD but telomere
dysfunction is only key to IPE.

7. Alveolar Epithelial Type II Cell Senescence

Although telomerase has much more functions than main-
tenance of telomere length, these are not suggested to play
a major role in the pathogenesis of IIP. The prominent
role of telomere length instead of telomerase is underlined
by the observed genetic anticipation in congruence with
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development of disease phenotypes. Furthermore, recently,
another four genes, TINF2, DKCI, RTELI, and PARN,
involved in telomere maintenance have been discovered to
harbor mutations associated with IIP [63-67]. Altogether,
this points towards maintenance of telomere length as the
unifying cause and not the secondary functions of the
individual genes.

AECs type II are responsible for growth, differentiation,
and repair in alveoli [68]. In case of alveolar injury AEC type
II cells proliferate along the alveolar basement membrane and
differentiate in AEC type I [69].

Recently, it was shown that critically short telomeres
in AEC type II preferentially induce cellular senescence
[70]. Such cell cycle alterations are mediated by p53 and
p21. Increased levels of p53 and p21 have been observed in
hyperplastic AECs in IPF patients [71] and polymorphisms
in these genes were shown to associate with disease devel-
opment in IPF [72]. Cellular senescence of type II AEC
caused regenerative defects, inflammatory responses, and
susceptibility to injury in mice lungs and mice lung organoids
[70]. This strongly implicates type II AEC senescence as a
causative mechanism in IIP pathogenesis.

8. Common Risk Alleles

At the outset of genetic studies at the end of the last
century, pulmonary fibrosis was thought to result from a
chronic inflammatory process. It was therefore logical that
cytokine genes were among the first candidate genes studied
[73]. Only one gene from that period, interleukin-1 receptor
antagonist (ILIRN), the gene encoding interleukin-1 receptor
antagonist (IL-1Ra), now fulfills our criterion of independent
replication, although both positive and negative associations
have been published [74-77]. A meta-analysis including
all five cohorts showed that carriage of ILIRN VNTR"2
predisposed to IPF with an odds ratio of 1.6 [78]. The risk
allele associates with a reduction of the IL-1Ra to IL-1p ratio
and thereby causes a profibrotic environment. In vivo this
effect can be counteracted with addition of IL-1Ra, which
was shown to prevent fibrogenesis in mice with bleomycin
induced fibrosis [79]. Mutations in ILIRN cause deficiency
in IL-1Ra which result in systemic life-threatening neonatal
autoinflammatory disease [80]. Local deviations of desired
IL-1Ra levels might be associated with the autoinflammatory
environment that is seen in IPF lung and is not responsive
to immunosuppressive therapy. Immunosuppressive therapy
suppresses IL-1Ra synthesis [81] and has been shown to be
harmful in IPF [82]. All other evidence for the involvement
of common genetic variants in IIP is the result of hypothesis-
free genome-wide studies. The common genetic variants
that have been associated with IIP in multiple independent
cohorts are shown in Table 2.

9. Genome-Wide Studies

Genome-wide linkage and fine-mapping identified the minor
allele of rs35705950 to be associated with disease in both
FIP and IPFE. rs35705950 is situated in the putative promoter
of MUC5B and the risk allele was shown to correlate with
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TABLE 2: Genes with polymorphisms predisposing to IIP in multiple studies, expressing pulmonary cells, function, and mutational conse-

quences.
Gene Expressing cells in Gene function Risk allele Effect of risk Cellular consequence
lung allele
o B ot e
- proinflammatory VNTR"2 haploblock Decreased . .
ILIRN Alveolar epithelium & . with proinflamma-
effect of IL-1o and [78] expression [78] .
[161] 1L-18 [163] tory/fibrotic effect
Immune cells [162] [74]
AEC type II [123] Enzyme in telomerase
TERT Lung fibroblasts [124] ~ complex maintaining  rs2736100 major A , ,
Lung epithelial cells telomere length allele [86, 97, 98,164]  ° ’
[126] [127-130]
Influence on Lower bacterial
Afrway submucosal Z?Z?isvfyciiﬁernes 313651205950 minort Expression T burden [93, 94]
MUCSB i}g;fg [11125 ]es (166] mucociliary (83, 84, 86, 87, 96,98, [83] iﬂ‘ggﬁi « function
phag transport, and airway 100, 164, 167-169] 93] phag
defense [93, 165]
Not detected in 1rs$6793295 minor C
? ? ?
LRRC34 human lung [170] ’ allele [86, 98] ’ ’
?
. 2 rs2609255 minor G No upregulation
FAMI3A Lung tissue [99] ’ allele [86, 98] in lung tissue ’
(98]
Mitochondrial matrix ?
VD ’ enzyme involved in rs2034650 major T No upregulation ’

leucine catabolism
[98]

allele [86, 98] in lung tissue

(98]

#*Pooled meta-analysis of five independent cohorts [74-77].

increased MUC5B expression in lung from unaffected sub-
jects [83]. Carriage of the risk allele conferred high odds ratios
well over five [83, 84]. Such high odds ratios in genome-wide
analyses are seldom found and would usually involve rare
variants [85]. However, the minor allele of rs35705950 is not
rare in Caucasian cohorts where the population frequency is
approximately 10%.

In African Yoruban, African American, and Asian pop-
ulations, risk allele frequencies are rare and vary between 0
and 3% (http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref
.cgi?rs=35705950). The contribution to disease of the risk
allele in these cohorts is still under investigation [86, 87].
Interestingly, the SNP was recently shown to be associated not
only with IPF, but also with NSIP in a small German cohort,
which suggests that IPF and NSIP have similar pathogenesis
with regard to MUC5B [87].

10. Airway Involvement

In the lung, MUCSB is preferentially expressed by distal
airway epithelium, but not by alveolar epithelium [88].
Several exogenous factors, including cigarette smoke, and
endogenous factors have been shown to increase MUC5B
expression or decrease clearance in the lung [50, 89, 90].
Chronic airway diseases are commonly accompanied by

raised expression of gel-forming mucins. Interestingly, in
human bronchial cells it was shown that proinflammatory
cytokines IL-1$ and IL-17A were potent inducers of MUC5B
mRNA expression. The induction by IL-1B was both time
and dose dependent and involved IL-IRI receptor binding
followed by NF-xB-based transcriptional mechanism [91].

The MUCSB protein is present in IPF lesions and IPF
patients had significantly increased expression of MUC5B
in the lungs compared with controls. Changes in MUC5B
levels have been suggested to interfere in alveolar repair
in IPE but this needs further investigation [83, 92]. More
evidence is available regarding MUC5B dependent changes
in pulmonary immune regulation. Muc5b deficient mice
have impaired mucociliary clearance. And absence of Muc5b
caused accumulation of apoptotic macrophages, impaired
phagocytosis, and chronic infection. Muc5b overexpression
in mice leads to improved macrophage function [93]. In
IPF patients carrying the risk allele a lower bacterial burden
was found, suggesting a direct relationship between host
immunity and bacterial load [94]. This beneficiary effect of
the risk allele corresponds well with significant associations
with improved survival in IPF [95], less severe pathological
changes in FIP [92], and slower decline in FVC for IPF [96].
All evidence so far points towards a beneficiary effect of the
risk allele during disease but its role in disease susceptibility
remains elusive.



11. Genome-Wide Association Studies

The first common variant that was associated with IIP
through a genome-wide association study (GWAS) was
rs2736100 in the TERT gene [97] in a Japanese population.
The association was replicated in a second GWAS including
non-Hispanic white IIP patients [98] and in a Mexican candi-
date gene study [86]. Furthermore, three novel IIP-associated
loci that were identified in the second GWAS were also
replicated in the Mexican study: polymorphisms rs6793295
(LRRC34), 152609255 (FAMI3A), and 1s2034650 (IVD)
(Table 2) [86]. The IVD variant was also associated with
IPF in a Korean IPF population [86]. For all variants, allele
frequencies differed significantly between populations, but
the allele associated with increased risk for IIP was consistent.

LRRC34 is of unknown function, but the LRRC34 gene
is located near the TERC gene [98], perhaps indicating an
association with telomere maintenance. Polymorphisms in
the FAMI3A gene have been associated with lung function in
the general population, as well as with various lung diseases.
The function of FAMI3A is unknown, but it is speculated that
FAMI3A polymorphisms affect rho GTPases activity, possibly
affecting the lung endothelial barrier [99]. The IVD gene
encodes a mitochondrial matrix enzyme involved in leucine
metabolism [98]. Why an IVD polymorphism is associated
with IIP remains to be determined.

One further large GWAS conducted by Noth and cowork-
ers [100] included IPF patients and controls, distributed over
three stages. There might have been a partial overlay between
cases from this GWAS and the previously mentioned GWAS
by Fingerlin et al. [98], as a proportion of patients were
recruited from the same cohorts. This study did not identify
new risk alleles that have been replicated independently.

12. Genome Region 11p15.5

The GWAS by Noth et al. [100] identified three polymor-
phisms in the TOLLIP gene that were significantly associated
with IPE. TOLLIP is a negative regulator of the TGF-beta
pathway and interacts with Toll-like receptors and with
interleukin-1 receptor trafficking, which makes it an inter-
esting candidate gene for IPF susceptibility [100]. However,
the association with TOLLIP has not been replicated inde-
pendently. In the GWAS by Fingerlin et al. [98] associated
TOLLIP SNPs had also been identified, but they discovered
that the effect disappeared after correction for the effect
of MUCS5B. This suggests that there is linkage disequilib-
rium (LD) between TOLLIP and MUC5B. Both genes are
located in the same chromosomal region, 11p15.5, just 12kb
apart (http://www.ncbi.nlm.nih.gov/gene/). Genes separated
by 12 kb are considered to be in very close proximity, because
the expected extension of LD in humans of European origin is
at least 60 kb [101]. Measures for LD describe the nonrandom
association of genetic markers based on the frequencies of
the marker alleles. LD is often represented as the correlation
coefficient * between markers. In the study by Noth et
al., r* between TOLLIP and MUC5B SNPs was found to
be very low, ¥ < 0.16, and analysis of TOLLIP was
therefore pursued [100]. However, another measurement for
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linkage disequilibrium, D', provides information about the
recombination breakpoints of chromosomes. SNPs with low
+* values can reside in a linkage disequilibrium block with
a high level of D' between markers. In such a case disease
associations are not independent [102]. Further studies are
therefore needed to fully understand the contribution of the
11p15.5 region to disease.

13. Genes in Disease Pathogenesis

Genetic variations in surfactant associated genes SFTPC,
SFTPA2, and ABCA3 point out AEC type II dysfunction at
the initiation of disease. Coping with additional epithelial
damage requires proliferation of AEC type II with proper
telomere maintenance controlled by TERT, TERC, DKCI,
TINF2, RTELI, and PARN. In families, one mutation that
alters the quality or quantity of any of these genes is enough
to cause pulmonary fibrosis. In sporadic patients, more subtle
effects of a polymorphism in TERT might steer damage con-
trol into a similar direction, although this would likely require
additional damaging environmental or genetic influences.
On the other hand, it is more difficult to place the MUC5B
association into this model of disease pathogenesis. Verified
effects of the polymorphism, such as increased production
that enhances the immunological properties of the lung,
associate well with the observed beneficial consequences of
carriership in patients, such as increased survival and slower
decline of lung function. However, it does not explain the
disease predisposing effect.

14. A Unifying Theory: MUC5B Alters Alveolar
Surfactant Fluid Properties at Areas with
Maximal Mechanical Stress

Interestingly, the MUCS5B risk allele associated with the pres-
ence of interstitial lung abnormalities on HRCT in a general
population. The association was independent of smoking
history and stronger in a subgroup with CT evidence of
fibrosis and in older participants [103]. This suggests a general
role for MUC5B in induction of CT patterns of interstitial
pneumonia. Such a general observation is likely to be caused
by a mechanism that is uniformly present in the human lung.
This mechanism might already be identified. Mechanical
stress due to respiratory lung movements has been proposed
to contribute to IPF and induce such CT patterns [104].
Mathematical modelling showed that the distribution of
IPF lesions on HRCT coincides with the hypothetical distri-
bution of maximal mechanical stress [105]. We postulate that,
in lung, where MUCS5B is abundantly expressed, increased
admixture of airway fluid to alveolar surfactant fluid might
occur, thereby increasing MUCSB levels in surfactant fluid.
The high MUCSB levels in the surfactant fluid might cause
a significant change in its surface tension lowering capacity.
Optimal surfactant reduces the surface tension by a factor
of about 15 [106], which is necessary for proper alveolar size
regulation during inspiration and expiration. We hypothesize
that a suboptimal surfactant mix is most abundant and
detrimental at areas with maximal mechanical stress as
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FIGURE 1: Hypothesized scheme of increased mechanical stress in MUC5B risk allele carriers. At areas with maximal mechanical stress in the
lung, optimal surface tension lowering capacity of alveolar surfactant fluid is required. Through breathing mechanics admixture of alveolar
and airway surfactant occurs. Increased amounts of MUCS5B protein in MUCS5B risk allele carriers have detrimental effect on surface tension
lowering capacity of the alveolar surfactant fluid. In case of suboptimal surfactant, inflation requires increased traction on the alveolar wall
and induces epithelial damage. Alveolar repair causes high epithelial cell turnover with consequent critical shortening of telomeres, which in

turn induce senescence of alveolar epithelial type II cells.

the surface tension lowering capacity of alveolar surfactant
fluid is most important in these areas. Increased mechanical
stress causes alveolar damage that will initially be repaired by
AEC type II. Increased turnover of AEC type II is associated
with decreased telomere length which in turn will lead to
AEC type II senescence (Figure 1). Further experiments are
necessary to confirm this hypothesis.
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