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Abstract

Whole exome sequencing (WES) is a powerful approach for discovering sequence variants in cancer cells but its time
effectiveness is limited by the complexity and issues of WES data analysis. Here we present iWhale, a customizable pipeline
based on Docker and SCons, reliably detecting somatic variants by three complementary callers (MuTect2, Strelka2 and
VarScan2). The results are combined to obtain a single variant call format file for each sample and variants are annotated by
integrating a wide range of information extracted from several reference databases, ultimately allowing variant and gene
prioritization according to different criteria. iWhale allows users to conduct a complex series of WES analyses with a
powerful yet customizable and easy-to-use tool, running on most operating systems (macOs, GNU/Linux and Windows).
iWhale code is freely available at https://github.com/alexcoppe/iWhale and the docker image is downloadable from https://
hub.docker.com/r/alexcoppe/iwhale.
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Introduction

Malignant transformation of cells is driven by many factors,
including the development of somatic mutations that may affect
signalling pathways which govern cell behavior and the expres-
sion of cancer hallmarks [1]. Both molecular and bioinformatics
advancements are helping early diagnosis of the disease as well
as the identification of better therapeutic strategies facilitating
personalized medicine [2].
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From a biological point of view, it is well known that not all
somatic variants present in cancer cells share the same impor-
tance: mutations [3–6] providing a growth advantage during neo-
plastic transformation (and thus driving disease development),
called ‘driver’ variants, coexist with many ‘less deleterious’ or
neutral ones, which are called ‘passenger’ variants [3].

Cancer exome sequencing is a popular and efficient way
to get information about somatic mutations, which are not
only one of the main causes of tumor development [7], but
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also of its aggressiveness [8] and progression [9]. Being the
exome less than 3% of the human genome, the sequencing of
exons is a timesaving and cheaper option than whole genome
sequencing (WGS). In the last few years, the reduction in
sequencing costs led to a substantial increase of the target
region coverage, increasing the rate of detection of relevant
mutations, also at subclonal level (i.e. those present only
in a fraction of the considered cancer tissue sample under
investigation). To distinguish somatic variants from germline
and loss of heterozygosity variants, the exomes from tumor
and control samples collected from the same patient are often
compared. Despite the design of this analysis seems simple,
a mere subtraction of control sample variants from tumor
samples is not an appropriate strategy for the detection of
somatic mutations. The steps used to detect somatic variants
from matched tumor-control samples are complex and error
prone due to several confounding factors, such as altered ploidy,
intra-tumor heterogeneity and low tumor purity, and insertion
of false positives or artifacts during tumor tissue conservation,
library preparation, sequencing or reads alignment. Additionally,
to perform the downstream analysis of the sequencing data,
remarkable bioinformatics knowledge is required, including the
installation and set up of several different software tools. To
overcome these issues, pipelines for whole exome sequencing
(WES) analyses have been developed in recent years. One of
these tools is Fastq2vcf [10], a pipeline based on bash scripts,
outputs not only the annotated variant call set for each caller,
but also the consensus variant call set shared by different callers.
Other Authors have tested and compared the performance
of different variant callers from WES data. One of the first
comparisons [11] was between GATK [12] and SAMtools [13],
two of the first variant callers developed and still extremely
used. Another available variant caller pipeline is SeqMule [14],
which allows the user to obtain results of various alignment
and analysis software. SeqMule consists of Perl scripts but
all the external programs do need previous installation. From
a biological point of view, it can be used for both Mendelian
disease or cancer genome study. Another pipeline implemented

in Perl is Cake, that integrates four variant callers and combines
single nucleotide variants (SNVs) called by at least two software
[15]. Other tools for WES include pipelines integrating multiple
variant callers by machine learning approaches. For instance,
NeoMutated pipeline [16] incorporates seven supervised
machine learning algorithms to prioritize variants detected by
seven callers. NeoMutate shows good performance compared to
standard filtering protocols but unfortunately it cannot perform
variant annotation; additionally, the pipeline is available only
upon request. Another tool is SMuRF (Huang et al. 2019), an
R package for the integration of results from different variant
callers: it uses a supervised random forest approach, which
however has been trained on WGS data, derived from only
two tumor samples (from the International Cancer Genome
Consortium). Finally, there are also web-based pipelines like
Galaxy [18] and GotCloud [19]. The former is an open-source
software that provides a very simple interface, which can be used
to carry out WES analyses offering a good solution for developing
easy usable applications. GotCloud [19] detects variants from
large-scale sequencing data, performing various steps, starting
with alignment, variant calling and quality score controls.
It can be run on Amazon Web Services or in a local server,
but its installation can be challenging for non-computational
experts.

Overall, many of the above-cited software tools include com-
mand line pipelines which require to be installed on servers or
local computers, very often presenting hard to solve dependen-
cies. At the same time, even if user-friendly, web-based option
exists, e.g. Galaxy, they come with some other significant draw-
backs, such as the amount of data to be uploaded and the CPUs
time to run the processes.

To overcome these limitations, and leveraging our experience
in the field of WES applied to cancer research [8, 20–22], we
present iWhale, an automated, easy-to-use and customizable
software pipeline. It allows the identification of reliable and
putative somatic SNVs and indels (insertions and deletions) in
tumor samples (Figure 1) addressing the problems that most
often come with the analyses of cancer WES data.

Figure 1. Flowchart diagram of the iWhale pipeline. The software runs under Docker and all the steps are managed by SCons.
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iWhale is based on Docker, a container platform to build and
manage applications and launch them from macOs, Linux or
Windows platforms. All steps and dependencies are controlled
by SCons, automatically resuming the analysis from the last
process run, in the event of any stop, like killing by error the
process or computer shutting down.

The pipeline is made up of three different parts, in the first
step reads are mapped to the reference human genome and
alignments are optimized for variant calling. In this section of
the pipeline, the software BWA [23], one of the most performing
tools for exome and genome data alignment is employed [24].
The optimization of the alignments is performed by GATK4 and
GATK3, which are software packages including several bioin-
formatics tools to manage WES and WGS data. The second
part of iWhale consists of the variant detection step: here, the
user can choose to employ (with default, or custom parameters)
all or just some of three somatic variant callers chosen. We
adopted variant callers Mutect2, Strelka2 and VarScan2 because
they are specific for somatic variants and are based on differ-
ent algorithms that complement each other. MuTect2 employs
a haplotype-based strategy getting notably better detection of
indels and structural variants with respect to position-based
strategies. This tool locally assembles reads in a region and
generates candidate haplotypes that may be represented by
de Brujin-like graphs. Then, the likelihood of each haplotype
is estimated by aligning reads to the haplotype and counting
the read support. This approach is preferable in regions dense
with variants, as it does not rely on local alignments, which
are prone to errors, particularly in difficult regions. Strelka2 is a
variant caller modeling joint allele frequencies and applying an
additional random forest model trained on call-quality features.
VarScan2 exploits a heuristic approach for the identification
of potential somatic variants present in reads in accordance
with algorithm-specific thresholds and then applies statisti-
cal tests or rules to call somatic variants. Although the user
can choose to run only one of the variant caller methods, the
union of variants detected by at least two methods is recom-
mended to obtain robust results [12, 25]. Finally, iWhale anno-
tates variants with SnpEff [26] and SnpSift [27] exploiting infor-
mation from publicly available methods and databases. SnpEff
is a genetic variant annotation and functional effect prediction
toolbox, which annotates variants on transcripts and proteins. It
also predicts the genomic region hit by the variant (i.e. coding,
non-coding, regulatory region, splice site), codon changes and
amino acid changes information, functional impact (missense
variants, loss of function among others), epigenomic informa-
tion, protein functional domains that could be affected by the
variant among others. SnpSift associates variants with informa-
tion about allele frequency on populations, the predicted impact
on coded proteins or transcripts, the clinical significance and
the known implication in genes dysfunction known to be cancer
drivers. All this information is extremely useful for prioritiza-
tions of detected variants and interpretation of biological signif-
icance of mutated genes. Thus, users can run the software with
almost no intervention, excluding a relatively simple data prepa-
ration, obtaining richly annotated variants that could help to
understand what has generated the specific cancer in samples.
Advanced users can launch personalized analyses adapting the
parameters to the design and objectives of their specific research
project.

At the light of all of the above considerations on currently
available tools, i.e. that they tend to be difficult to set up and use,
or, for the few user-friendly options, scarcely customizable and
limited in range, a major advantage of iWhale is that it allows

even non-expert users to conduct a complete, comprehensive
WES cancer analysis, from reads mapping to somatic variants
annotation.

Implementation
iWhale is based on Docker (https://www.docker.com/), which is
a container platform to build, manage and run applications from
macOS, Linux or Windows.

All analysis steps are tied together by SCons (https://scons.
org), a software construction tool written in Python (www.python.
org) designed to facilitate software development by managing
the building and compilation of large software projects
specifying step dependencies so to ensure the correct workflow
of the software. SCons automatically runs all the pipeline steps
and, in case of a sudden interruption, is capable of resuming
the analysis from the last successfully completed step of the
process.

To run the pipeline, the user needs to download the Docker
iWhale image from Docker hub (https://hub.docker.com/) with
the Docker pull command. Notably, the design based on Docker
allows running iWhale also leveraging parallel computing, if
needed.

iWhale runs in a specific directory containing two directories
for each matched sample (one for tumor and one for the
corresponding control samples) including the two paired-
end fastq files, a text file including the sample names and
finally a Python file with changes in pipeline parameters, if
any are specified. All parameters are optional except for the
specification of the .bed file, which requires the user to specify
the target exome regions (option exomeRegions). The software
also needs the gziped version of the bed file made by bgzip
and the .tbi index done with tabix [13]. Among the different
parameters of the analysis that can be customized, one is
particularly important, as the user can choose to employ all
or a subset of the three variant callers included in the pipeline
(additionally, with the possibility to change their default settings
for each of them). All databases needed by iWhale should be
inserted in a specific directory, which must be declared by
the user in the Docker run command (i.e. the command that
initiates the analysis, launched from the specified working
directory).

Methods
The human reference genome (GRCh37 and GRCh38) has been
downloaded from Ensembl genome browser (ftp://ftp.ensembl.
org/pub/grch37/current/fasta/homo_sapiens/dna/ and ftp://ftp.
ensembl.org/pub/grch38/current/fasta/homo_sapiens/dna/) and
Epstein-Barr virus (EBV) reference genome from https://
www.ncbi.nlm.nih.gov/nuccore/AJ507799.2?report=fasta. All
chromosomes and EBV sequences have been joined into a single
FASTA file for the whole human genome. As required by BWA
[23] for faster mapping of reads, the reference genome was
indexed using Picard (http://broadinstitute.github.io/picard/) to
obtain the .dict index, while samtools was used to create the
.fai.

The pipeline workflow is divided into two main steps: after
mapping of sequences to the human reference genome, somatic
variants are called and annotated.

Initially, the paired-end fastq files obtained by WES are
mapped to the reference genome by BWA MEM, which generates
the BAM alignment files.

https://www.docker.com/
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http://ftp.ensembl.org/pub/grch37/current/fasta/homo_sapiens/dna/
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https://www.ncbi.nlm.nih.gov/nuccore/AJ507799.2?report=fasta
https://www.ncbi.nlm.nih.gov/nuccore/AJ507799.2?report=fasta
http://broadinstitute.github.io/picard/
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To improve alignment quality, various steps are executed
after the first mapping phase: reads are sorted and PCR
duplicated are flagged by Picard (http://broadinstitute.github.io/
picard/). GATK4 [13] is used to remove low quality reads
(CIGAR, i.e. spliced alignments, failing vendor quality check,
duplicated) and reads with low mapping quality (unmapped,
or where mapping quality is unavailable, or where reads
are not primary aligned, i.e. mapping in different genome
sites but with less mapping quality). Then, local realignment
around indels and base quality score recalibration (BQSR) are
performed by GATK3 [23, 28]. Local realignment around indels
is performed to improve alignment quality in difficult regions.
Genome aligners can only consider reads in an independent
way resulting in many mismatches near the indels with respect
to the reference genome, which ultimately can result in false
SNPs. In addition, reads having an indel near their start or
end are often incorrectly aligned. Local realignment takes
into account all reads spanning a given position necessary
to obtain alignments with higher scores to support indels.
This refinement along with base quality recalibration, may
reduce false positives resulting from stochastic and systemic
sequencing and alignment errors. A previous study reported
that BWA mapping generated misalignment for over 15% of the
reads spanning known homozygous INDELs [29], leading to the
call of false variants. It also tested the effect of local realignment
around indels, showing a noticeable effect on indel calling at low
coverage, and only a minor effect on detection of true variants
by haplotype-based callers (e.g. MuTect2 and Strelka2). In any
case, local realignment around indels was proven to improve
true indel detection, particularly with specific variant callers
[30] such as VarScan2.

Raw sequencing data scores are subject to various sources
of non-random technical errors, which can result in over- or
under-estimated base quality scores. Quality score recalibration
(BQSR) is carried out with GATK4, obtaining the matched BAM
files subsequently to be used for somatic variant calling.

Once the alignment of reads to the genome is refined, the
calling and annotations of somatic variants are performed.

Variant calling can be done with all the possible combina-
tions of three softwares: Mutect2 [13], VarScan2 [14] and Strelka2
[15]. Variant call format (VCFs) files are annotated by iWhale
using a series of different databases. SnpEff [13,16] is used to
annotate genomic variants and estimates the impact and/or
deleteriousness of variants, also considering information about
genomic location and changes induced on coded protein. Clin-
Var [10] which ‘aggregates information about genomic variation
and its relationship to human health’ to associate variants to
diseases is used to define known disease-associated variants.
dbSNP [11, 18] is employed to annotate variants as likely neutral,
or likely pathogenetic, as compared to known cases. COSMIC
(cancer.sanger.ac.uk) [11] is used to identify mutations that were
previously associated with cancer development. Finally, Genome
Aggregation Database (gnomAD) [9, 11, 18] is used to retrieve
information on variant allele frequencies, as calculated from
125 748 exomes and 15 708 genomes of unrelated individuals
(sequenced in different population genetic and disease-specific
studies).

All reference data employed in the annotation step of the
pipeline, can be downloaded as gz or zip files from compgen
site (http://compgen.bio.unipd.it/downloads/annotations.tar.gz,
http://compgen.bio.unipd.it/downloads/annotations.zip), with
the exception of COSMIC files, which need to be downloaded
by the user from https://cancer.sanger.ac.uk/cosmic/download
(non-academic users must sign up and logins).

At the end of the annotation process, the user is provided
with two annotated VCFs, for SNVs and indels, for each sample
analyzed.

Evaluation with simulated data
We tested iWhale capability to detect somatic variants using
simulated paired ‘tumor’ and control WES samples. Tumor sam-
ples were obtained by spiking variants in HG00246 and NA20505
WES samples obtained from the International Genome Sample
Resource [31], which were used as controls (Table 1). After quality
control with FASTQC [32] and adapter removal, iWhale aligns
reads of control samples to the GRCh37 human genome. Next,
1619 and 786 randomly selected COSMIC v.90 variants (VAF range
0.02–0.6) were inserted by BamSurgeon [33] in HG00246 and
NA20505 BAMs, respectively. The obtained BAMs were sorted by
name using Samtools [13] and converted to paired end .fastq files
by bamtofastq command of Bedtools [34].

iWhale was launched for each tumor-control matched
sample using default settings and somatic variants detected in
tumor samples were compared with spiked in variants. Detected
true positive variants were 1280 and 798 by Mutect2, 1576 and
746 by Strelka2 and 932 and 584 by Varscan2 (Figure 2A). The
results showed that the intersection of the three variant callers
(828 in HG00246 and 571 in NA20505) would miss almost half
(48.8%) of the variants in HG00246 and 27.4% of the variants
in NA20505. Conversely, iWhale employing its default strategy
based on the union of all three variant callers detected 1614
(99.7%) and 785 (99.9%) true positive variants. The false negatives
were five in HG00246 sample while only one in NA20505
(Table 1) and only one false positive variant was detected
in both samples by iWhale. High accuracy (0.99), precision
(0.99), recall (0.998), F1-Score (0.999) and very low (0.001) false
discovery rate were obtained with iWhale, run in default mode
(Figure 2B). Despite the fact that each of the three variant
callers showed high accuracy and precision, they provided
inferior performances for recall and F1-Score if compared to
iWhale (Figure 2B). In summary, running on simulated data
with default settings, iWhale returned very good performance
metrics.

Sample analysis

To illustrate iWhale workflow with an actual, real-life sample
analysis, the software was applied to the re-analysis of WES
data of the tumor and control from a patient with Juvenile
myelomonocytic leukemia [22]. These data were previously ana-
lyzed with UnifiedGenotyper and VariantFiltration (with default
parameters) software from the GATK suite: a non-synonymous
variant c.820G > A in WAS (WASP Actin Nucleation Promoting
Factor) gene was identified [22]. This variant was validated and
functionally studied, demonstrating that the alanine to thre-
onine change in position 274 (p.Ala274Thr) destabilizes WASP
auto-inhibition, potentially alters the protein localization and
leads to its aberrant activation within the hematopoietic com-
partment [22].

The analysis of the same WES data with the iWhale pipeline
(with all parameters set to default values), identified 24 416
somatic variants called by at least one method. MuTect2 and
Strelka2 gave a relatively limited list of reliable somatic variants,
while VarScan2 outputs a considerably larger list of candidates,
which should be filtered (by considering caller-specific param-
eters), to reduce false positives. In our test, we kept VarScan2

http://broadinstitute.github.io/picard/
cancer.sanger.ac.uk
http://compgen.bio.unipd.it/downloads/annotations.tar.gz
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https://cancer.sanger.ac.uk/cosmic/download
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Table 1. Results obtained by iWhale on simulated mutations obtained on samples HG00246 and NA20505 by BamSurgeon software

Sample ID Project Library type Variants inserted True positive False positive False negative

HG00246 Male (GBR population) WES paired end 1619 1614 1 5
NA20505 Female (Toscani population) WES paired end 786 785 1 1

Figure 2. (A) Venn diagram displaying the comparison of the detected variants found by the three variant callers used by iWhale. (B) Performance evaluation of iWhale,

using simulated paired tumor and control WES data.

variants if: supported by both strands with a minimum cover-
age of 20; supported by at least six reads for the alternative
allele, presenting a minimum average base quality for variant-
supporting reads of 30; satisfying a minimum variant allele
frequency > 0.2 and a P-value threshold (for variants calling)
less than 0.01. With these filters, we came up with 9726 reli-
able somatic variants, mostly ‘passenger.’ To identify the vari-
ants with a putative ‘driver’ role, only variants with a SnpEff
predicted impact ‘HIGH’ or ‘MODERATE’ and with a cancer-
specific FATHMM [35] ‘deleterious’ status were considered. Com-
mon somatic variants with a population allele frequency > 5%
in gnomAD were filtered, obtaining 167 somatic SNVs and 24
indels. Notably, the previously validated pathogenetic WAS vari-
ant [22], described before, was included in this group. Moreover,
other, previously undetected variants were identified by our
method, including NOTCH1 (c.1693G > A) and ING1 (c.527C > T),
highlighting iWhale discovery power. Both variants were tagged

as potential ‘drivers’ by the Cancer Genome Interpreter webtool
(https://www.cancergenomeinterpreter.org) [36].

NOTCH1 c.1693G > A is a deleterious substitution (p.Val565Met)
in the EGF domain of NOTCH1. NOTCH1 encodes a transmem-
brane receptor and an important transcriptional regulator
of importance for normal development of many tissues,
including blood cells. NOTCH1 is a master regulator of T cell
maturation [37]. It can act as both an oncogene and a tumor
suppressor [31, 32] and was already found mutated in Juvenile
myelomonocytic leukemia [38]. NOTCH1 is a master regulator
of T cell maturation; besides its aberrant activation of NOTCH1
is a hallmark of T cell acute lymphoblastic leukemia and it is
found mutated in at least 65% of cases [39, 40]. Finally, NOTCH1
increases c-MYC expression to mediate the activation of
pathways promoting leukemia cell growth and metabolism [41].

The ING1 (c.527C > T, p.Pro176Leu) variant affects an epi-
genetic regulator, which modulates gene expression and cell

https://www.cancergenomeinterpreter.org
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growth, and with a previously reported tumor suppressor role
[42, 43]. ING1 physically interacts with TP53 promoting cell
growth arrest and apoptosis [43]. ING1 gene expression has
been found to be downregulated or lost in many cancer types,
including childhood acute lymphoblastic leukemia [42, 44],
and a loss-of-function mechanism could be speculated for the
identified variant.

Therefore, iWhale, used with default settings, was able to
detect already known and confirmed variants as well as other,
likely to be relevant (i.e. as they hit regions with previously
reported important roles in cancer); this suggests that our
pipeline can provide a detailed landscape of somatic variants
in cancer cells.

Conclusion
iWhale is an automated and modular tool to detect and annotate
somatic variants from WES data of cancer samples allowing the
user to select and combine three variant callers for the analyses.
The combination of variants detected by more than one method
is recommended to obtain comprehensive results [6, 7], since dif-
ferent variant callers based on different theoretical premises can
complement each other. Moreover, our pipeline creates richly
annotated variant files, by using annotations derived from differ-
ent databases, which thus facilitates the identification of ‘driver’
variants.

From a computational perspective, iWhale is a robust
pipeline, and can be run in any platform that supports Docker.
The defined dependencies between the various steps of the
calculations and different intermediate level results files allow
re-run the pipeline and restart the analyses from the last
concluded step, if needed. The open source software is available
on GitHub (github.com) and can be cloned and modified by any
developer.

Notably, being a tool used by its developers, iWhale will be
regularly updated and bug fixed. We envisage that with the feed-
back from users and developers, we will keep on improving the
method, aiming to positively contribute the field by providing
a user-friendly pipeline, allowing a broad range of scientists
(i.e. including relatively non-expert computer users) to extract
results from WES data, relevant for cancer studies.

Overall, iWhale makes it easy to perform a complex analysis
of cancer WES data. It yields reliable results that could give
an important contribution to address and understand cancer
molecular foundations; this, in turn, should help the develop-
ment of new therapeutic approaches and, in terms of personal-
ized medicine, allow better responses to cancer treatment.

Key Points
• The pipeline performs cancer whole exome sequenc-

ing automatic data analysis in a user friendly way,
returning reliable somatic variants in variant call for-
mat.

• Three variant callers are integrated (Mutect2, Strelka2
and VarScan2).

• ClinVar, Cosmic, dbSNP, The Cancer Gene Census
and Genome Aggregation Database data are used for
detailed annotation of identified variants.

• Docker technology allows easy installation and distri-
bution of the software, making it easy to run on the
most used operating system.

• SCons provides complete automation of the process
and recovery, if needed.
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