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In a clinical dose finding study with active control a new drug with several dose levels is
compared with an active comparator drug. The main focus of such studies often lies on the
estimation of a target dose that leads to the same efficacy as the control. This article
investigates the finite sample properties of the maximum likelihood estimation of the target
dose and compares several approaches for constructing corresponding confidence intervals
under the assumption of a linear dose-response curve and normal error terms.
Furthermore, the impact of deviations from the model assumptions regarding the error
distribution is explored.
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1. INTRODUCTION

Phase II dose-finding studies aim at the characterization of the dose response
relationship of an investigational drug for which the principle proof of concept has
been shown, as well as the estimation of a target dose that leads to a predefined response.
The investigation of dose response relation and the subsequent selection of a target dose
is considered to be a pre-requisite for the transition to a confirmatory pivotal study in
Phase III. Several approaches have been proposed for the efficacious planning and
analysis of such a dose-finding study. Bretz et al. (2005) and Pinheiro et al. (2006a)
proposed a methodology that combines formal hypothesis testing for dose response with
flexible modeling of the dose response relationship and estimating a target dose, i.e., a
minimum effective dose that produces a clinical relevant effect. For a more detailed
discussion we refer to Bretz et al. (2008) and Pinheiro et al. (2006b). The estimation of a
minimum effective dose based on a given model can be regarded as a calibration
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problem, a reverse process to regression, i.e., the estimation of a value for an independent
variable that yields an expected outcome for the dependent variable equal to a predefined
value. There is an extensive literature not only on these calibration problems, e.g., in
quality control, but also related to dose estimation, e.g. Hsu and Berger (1999), Tamhane
and Logan (2002), Morales et al. (2006), and Budtz-Jørgensen (2007). Although these
approaches focus on a target dose that is defined by a specific effect difference to
placebo, there is an increasing interest in describing the dose response relative to an
active comparator to be included in the dose-finding trial which, however, has found little
attention in the literature with the exception of Källén and Larsson (1999) and Dette et al.
(2014). In addition, in some situations the use of the placebo may be unethical even in
early stages of the development.

If an active comparator study is planned in Phase II, the interest lies in the
determination of a dose range that ensures superiority over the competitor. If, on one
hand, the probability of an adverse drug reaction is expected to increase with a higher
dose, and, on the other, the efficacy is expected to improve with increasing dose, the dose
that leads to the same efficacy as the comparator needs to be defined as precise as
possible. Only if this information is available, the confirmatory clinical trials in Phase
III can properly be designed. Also, manufactural standards should be considered in the
precision requirements on the target dose estimation. Whereas this paper refers to a target
dose defined by the dose that leads to the same mean efficacy as the active comparator,
the application of a more general definition given by a predefined difference to the control
is straightforward.

The precision, with which the target dose is estimated, depends on the dose-
response shape, especially the steepness of the dose response as well as on the residual
variance and the mean response of the control. Focusing on Phase II dose-finding studies
with active control and a linear dose-response function the properties of the maximum
likelihood estimator (MLE) of the target dose and several methods for confidence inter-
vals of the target dose were investigated in extensive simulation studies. The investigated
confidence interval approaches include an approximation of the standard error (SE) by the
Δ-method (Ferguson, 1996), an extension of the method by Fisch and Strehlau (1993) to
repeated measures, a parametric bootstrap (Efron, 1979), and a profile likelihood method
(Pawitan, 2001). The MLE is characterized in terms of bias, variance, and mean squared
error (MSE) whereas coverage probabilities and interval lengths are presented for the
confidence intervals. Further the impact of the residual error assumptions will be analyzed
by sensitivity analysis to investigate a potential robustness of one of the four methods. In
particular, the question of which method is the most useful in terms of coverage prob-
ability, interval weights, and numerical effort.

To motivate the settings for the simulation studies, two examples of Phase II dose-
finding studies with active control are presented briefly in what follows. Krum et al.
(1998) report a study investigating the effect of an endothelin-receptor antagonist called
bosentan on blood pressure in patients with essential hypertension. In this study 293
patients were randomly assigned to receive placebo or one of four oral doses of bosentan
(100, 500, 1000, 2000 mg per day) or the angiotensin-converting-enzyme inhibitor
enalapril (20 mg once daily) as active control for 4 weeks. The second example is a
Phase II study presented in Chapple et al. (2004), which investigated the effect of
solifenacin on patients with symptomatic idiopathic detrusor overactivity. A total of 255
patients were randomized to receive placebo or one of four doses of solifenacin (2.5, 5,
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10, or 20 mg per day), or tolterodine 2 mg twice daily as active control. The primary
endpoints were voids/24 h and mean volume voided (ml).

The paper is organized as follows. In Section 2 notation and statistical model are
introduced, and an overview over the different methods is presented. In Section 3 the
properties of the point estimator of the target dose including bias, variance, and MSE
are investigated by deriving approximations for the expressions which are subsequently
compared to exact values obtained through simulations for a variety of scenarios. In
Section 4 the properties of the various confidence intervals of the target dose are
investigated. Therefore, the coverage probability as well as the median interval length
are simulated. In Section 5 the robustness of the methods for point and interval
estimation of the target dose to deviations from the model assumptions such as
normality of the error terms are explored. Finally, we close with a brief discussion
and some recommendations.

2. NOTATION, MODEL, AND METHODS

2.1. Notation and Statistical Model

In this paper bold small letters such as α or a define a vector and bold capital letters
such as Σ or A a matrix. Also A0 is the transpose of A and the Kronecker sum of two
matrices is defined as A� B. Further , defines “distributed as”, !$ “convergence in
distribution” and �_, defines “approximately distributed as.”

With k groups the dose levels d1; . . . ; dk , and an active control (ac) the random
variable of the jth person in the ith dose level can be written as

Y ij ¼ fθðdiÞ þ �ij i ¼ 1; . . . ; k j ¼ 1; . . . ; ni;

where fθðdiÞ denotes the linear mean function, i.e., fθðdiÞ ¼ θ0 þ θ1di, and normally
distributed error terms �ij ,Nð0; σ2Þ "i ¼ 1; . . . ; k; j ¼ 1; . . . ; ni. The random variables
of the active control can be written as

Y ac; j ¼ μþ �ac; j j ¼ 1; . . . ; nac;

with expected value µ and error terms �ac;j ,Nð0; σ2Þ"j ¼ 1; . . . ; nac. Let nd ¼
Pk

i�1 ni
be the sample size of all dose levels and N ¼ nd þ nac the total sample size. The linear
model can be written as

Y d ¼ ðY11; . . . ; Yk;nk Þ0 ¼
10n1 � � � 10nk

d110n1 � � � dk10nk

� �0
θ0
θ1

� �
þ ð�11; . . . ; �k;nk Þ0

¼ Xθ þ �d;

Y ac ¼ ðYac;1; . . . ; Yac;nacÞ0 ¼ μ � 1nac þ �ac:

(1)

To determine the target dose d* the equation fθðd�Þ ¼ θ0 þ θ1d� ¼ μ must be solved. In
general the parameters of the dose-response curve, i.e., θ0 and θ1, as well as the expected
value of the active control µ are unknown and must be estimated from the data. In the next
section the necessary parameter estimators will be presented.
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2.2. Point Estimator of the Target Dose d*

Following standard theory for linear models (Mattai and Provost, 1992) we
summarize briefly the parameter estimators in the linear model before deriving an
estimator of d*. The expected value of the active control can be estimated by using the
mean value of the active control

μ̂ ¼ �Yac� ¼ 1

nac

Xnac
j¼1

Yac;j ,N μ;
σ2

nac

� �
:

The parameter estimators of the linear dose response function can be written as

θ̂ ¼ θ̂0
θ̂1

� �
¼ ðX 0XÞ�1X 0Y d ,N θ; σ2 � ðX 0XÞ�1

� �
:

Furthermore, the variance of the error terms is in practice unknown and must be
estimated. Therefore, X t ¼ ðX � 1nacÞ and Y ¼ ðY 0

d Y
0
acÞ0 are defined so that the variance

can be estimated by

bσ2 ¼ 1

N � 3
Y 0 IN � X 0

tðX 0
t X tÞ�tX t

� �
Y ,

σ2

N � 3
� χ2N�3:

If these estimators are used as plug-in estimators in the maximum likelihood equation of
the target dose, the estimator of the target dose can be written as

bd� ¼ bμ� bθ0� �
bθ1 : (2)

In the next section several methods to compute a confidence interval for the target dose
will be presented.

2.3. Confidence Intervals for the Target Dose d*

2.3.1. Approximation of the Standard Error by the Δ-method. All
parameter estimators which are needed to determine d* are normally distributed and can
be written in a joint distribution

θ̂d� ¼
θ̂0
θ̂1
μ̂

0@ 1A,Nðθd� ;ΣÞ;

with expected value θd� ¼ θ0 θ1 μð Þ0 and covariance matrix Σ¼ σ2�
ððX 0XÞ�1 � 1=nacÞ. The target dose d* can then be written as a function gðθd�Þ, i.e.,
d� ¼ gðθd� Þ ¼ ðμ� θ0Þ=θ1. Then the gradient Δgð:Þ of gð:Þ is given by
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Δgðθd� Þ ¼ � 1
θ1

�ðμ�θ0Þ
θ21

1
θ1

� �
:

From Cramér’s theorem (Ferguson, 1996) with the use of the first-order Taylor approxi-
mation it can be shown that ffiffiffiffi

N
p bd� � d�

� �
!$ Nð0;N � �2Þ;

with

�2 ¼ Var bd�� �
¼ Δgðθd� ÞΣΔgðθd� Þ0

¼ 1

N

σ2

θ21

P
wi½di � d��2

� �
P

wið Þ Pwid2ið Þ � P
widið Þ2

� �þ 1

wac

24 35;
wi ¼ ni=N "i ¼ 1; . . . ; k the weights of the ith dose level, wd ¼ nd=N the weight of all
dose levels and wac ¼ nac=N the weights of the active control (Dette et al., 2008).

Furthermore, let b�2 be the plug-in estimator of the unknown variance �2 so that a
ð1� αÞ-confidence interval of the target dose can be constructed as

CIΔ ¼ bd� � u1�α
2

ffiffiffiffiffiffib�2;q bd� þ u1�α
2

ffiffiffiffiffib�2q	 

;

with u1�α
2
the ð1� α=2Þ-quantile of the standard normal distribution.

2.3.2. An Extension of the Method by Fisch and Strehlau (1993). An
alternative way to determine a confidence interval for the target dose d* is an extension of
the method by Fisch and Strehlau (1993) to repeated measures which was originally
proposed for calibration problems without replications. Therefore, the expected value of
the response of the active control is replaced by μ ¼ θ0 þ θ1d� in (1) which leads to a
nonlinear model. Instead of performing a standard nonlinear regression the maximum

likelihood equation of the estimator of the target dose bd� can be rewritten in the following
form:

Yac� � bθ0 � bθ1d ¼ 0

and the dose d should be considered as fixed, but unknown. All necessary estimators were
defined in Section 2.2 and are identical with the maximum likelihood based estimators.
The left side of the equation can be defined as a new random variable V (d) with the
following exact distribution:

V ðdÞ ¼ Yac� � bθ0 � bθ1d ¼ θ0 � bθ0� �
þ θ1 � bθ1� �

� d þ ���ac ,N 0; �ðdÞ2
� �

;

because µ can be written as μ ¼ θ0 þ θ1d. The variance �ðdÞ2 of the linear combination
of normally distributed random variables can be written as
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�ðdÞ2 ¼ Var bθ0 þ bθ1 � d� �
þ Varð��acÞ ¼ σ2 � 1

nac
þ 1

nd
þ ðd � dÞ2=Sdd

	 

;

with d ¼ 1
nd

Pk
i¼1 nidi and Sdd ¼

Pk
i¼1 niðdi � dÞ2. Because d was considered as fixed, the

only unknown variable in �ðdÞ2 is the error term σ2 which can be estimated by bσ2
presented in Section 2.2. Finally the new variable W (d) is defined as

W ðdÞ ¼ ðV ðdÞ=�ðdÞÞðσ2=bσ2Þ�1=2 ¼ Vbσ � 1
nac

þ 1
nd
þ ðd � dÞ2=Sdd

h i� � , tN�3:

The t-distribution of the variable W (d) only depends on the total sample size N. With the
knowledge of the distribution of W (d) a confidence interval of the target dose d* can be
computed by finding the limits of the confidence interval of W (d) depending on d. This
leads to the following (1 – α)-confidence interval with w(d) the realization of W(d):

CIF&S ¼ dj � tN�3;1�α
2
� wðdÞ � tN�3;1�α

2

n o
:

This method does not always lead to finite confidence intervals, but the conditions for the
appearance of infinite confidence intervals can be found in Fisch and Strehlau (1993).

2.3.3. Semiparametric Bootstrap. All estimators ðbμ; bθ0; and bθ1Þ which are
necessary to estimate the target dose d* are known with their explicit distribution
functions. Hence, a parametric bootstrap (Efron, 1979) can be used to construct a
confidence interval for the target dose d*. Therefore, the bootstrap estimates have to be
generated by simulation based on the parameter estimators gained from the data

bθb ¼ bθ þ Zθ; Zθ ,N 0; bσ2ðX 0XÞ�1
� �

and

bμb ¼ bμþ Zμ; Zμ ,N 0;
bσ2
nac

 !
:

Then the bootstrapped estimator of the target dose can be computed as

bd�b ¼ bμb � bθb0� �
bθb1 :

This simulation step is repeated nboot times resulting in the vector bd�b of all bootstrapped
parameter estimators. The confidence interval is then computed from the ordered vector of
the bootstrapped target dose estimators by using, for example, the quantile method. The

nboot � α
2th and the nboot � ð1� α

2Þth component of the sorted vector bd�b are selected to
construct the (1–α)-confidence interval

CIb ¼ bd�b nboot �α2ð Þ; bd�b nboot �ð1�α
2Þð Þh i

:
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2.3.4. Profile Likelihood. The idea of this approach is to set the target dose d*
to a fixed value and to optimize the maximum likelihood equation depending on this fixed
target dose (Pawitan, 2001). The likelihood is given by

L ¼ Lðd�; μ; θ; σjY d;Y acÞ

¼ ðγÞN exp �
Pk

i¼1

Pni
j¼1 ðYij � X iθÞ2 þ

Pnac
j¼1 ðYac;j � μÞ2

2σ2

" #

¼ ðγÞN exp �
Pk

i¼1

Pni
j¼1 ðYij � X iθÞ2 þ

Pnac
j¼1 ðYac;j � θ0 � θ1d�Þ2

2σ2

" #
;

with Xi the ith row of the matrix X in (1) and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
. If the target dose is set to a

fixed and known value d the parameter estimates can be computed depending on d so that
the profile likelihood is defined as

LðdÞ ¼ max
θ;σ

Lðd; θ; σÞ:

For convenience the linear model with fixed d can be written as

Y ¼ Y d

Y ac

� �
¼

1n1

..

.

1nk
1nac

d11n1

..

.

dk1nk
d1nac

0BBBB@
1CCCCA θ0

θ1

� �
þ �d

�ac

� �

Y ¼ XpðdÞθ þ �:

With this notation and standard methods for linear models (Mattai and Provost, 1992) the
MLE for θ and σ2 depending on d can be constructed as

bθpðdÞ ¼ XpðdÞ0XpðdÞ
� ��1

XpðdÞ0Y andbσ2pðdÞ ¼ 1

N � 2
� Y 0 IN � X pðdÞðXpðdÞ0XpðdÞÞ�1XpðdÞ0
� �

Y

¼ 1

N � 2

XN
i¼1

Yi � X p;iðdÞ � bθpðdÞ� �2
;

with Xp;iðdÞ the ith row of the matrix Xp (d). Then the profile likelihood equation of the
target dose d can be written as
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LðdÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π bσ2pðdÞq� �N � exp �

PN
i¼1 Yi � X p;iðdÞθ̂pðdÞ2
� �

2 bσ2pðdÞ
24 35

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π bσ2pðdÞq� �N � exp �ðN � 2Þ

2

	 

:

The maximum Lmax ¼ max
d

LðdÞ of the profile likelihood is at bd� ¼ ðbμ� bθ0Þ= bθ1 so that

Lmax ¼ Lð bd�Þ. The confidence interval for the target dose can be constructed by using the

ratio LðdÞ=Lð bd�Þ 2 ½0; 1�. Then the Wilks likelihood ratio statistic W (see, e.g., Pawitan
(2001)) has the following distribution under H0 : d = d*:

W ¼ 2 log
L bd�� �
LðdÞ !$ χ21

and it follows PðLðdÞ=Lð bd�Þ > cÞ ¼ 1� α with c ¼ e�
1
2χ

2
1;ð1�αÞ . This generates a confidence

interval for the target dose which is given by

CIP ¼ dj LðdÞ
L bd�� � > c

8<:
9=;:

For example a 95%-confidence interval contains all d for which the condition

LðdÞ=Lð bd�Þ > 0:1465 holds.

3. PROPERTIES OF THE POINT ESTIMATOR OF d*

In this section the properties of the point estimator bd� of the target dose will be
investigated through second-order Taylor approximation as well as simulation studies.
The focus will lie on the assessment of the bias as well as the MSE.

It is not possible to calculate the exact expected value of bd� in (2) because it is a
ratio of dependent random variables. Therefore, an approximation with second-order
Taylor approximation will be exploited here. As already described in Section 2.3.1, the
target dose d* can be written as a function gðθd� Þ of the parameter vector θd�. For the
calculations the gradient Δ and the Hessian matrix H of the function g are required, which
are given by

Δgðθd� Þ ¼ � 1
θ1
; �ðμ�θ0Þ

θ21
; 1

θ1

� �
; Hðθd� Þ ¼

0 1
θ21

0

1
θ21

2�ðμ�θ0Þ
θ31

� 1
θ21

0 � 1
θ21

0

0BB@
1CCA:

With these the point estimator of the target dose can be approximated as
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bd� � gðθd� Þ þ Δgðθd� Þ0 bθd� � θd�
� �

þ 1

2
bθd� � θd�
� �0

Hðθd� Þ bθd� � θd�
� �

:

Hence, the expected value Eð bd�Þ is approximated by d� þ 1
2trðHΣÞ. Then an approxima-

tion of the bias of bd� is given by

1

2
trðHΣÞ ¼ σ2

Nθ21

Pk
i¼1 wi½d� � di�

h i
Pk

i¼1 wi

� � Pk
i¼1 wid2i

� �
� Pk

i¼1 widi
� �2� � :

If d� ¼ ðPk
i¼1 widiÞ=ð1� wacÞ, the approximate bias is equal to 0. Also the approximate

bias is increasing with larger error term variance σ2 and is decreasing for larger total
sample sizes N and for larger slopes of the dose-response function θ1.

The properties of the point estimator of the target dose and its approximation
described above are evaluated in a simulation study motivated by the example studies
described in Section 1. We consider studies with k = 5 dose levels which are equidistant
on [0, 1], and d1 = 0, and d5 = 1. The sample sizes ni = n per dose group for i ¼ 1; . . . ; k,
the sample size of the active control nac ¼ 2n, the mean effect of the active control is set
to µ = 1, and the intercept of the linear response function is θ0 = 0. In all simulations the
number of replications is nsim = 10,000 and the number of bootstrap simulations per
simulation run is nboot = 10,000. Table 1 summarizes the considered simulation
scenarios.

In Fig. 1 it can be seen that the derived approximation of the bias based on the real
values explains the trend of the simulated bias quite well. However, there are limitations
to the use of the approximation. In various situations, especially for small and moderate
sample sizes, the estimated bias approximation is way too large compared to the estimator
of the target dose. Therefore, we refrain from using the approximation for bias correction.
Also, as we will see below, the bias is fairly small in comparison to the variance. The
MSE is given by

MSE ¼ E bd� � d�
� �2

¼ Var bd�� �
þ Bias bd�� �h i2

:

The variance and the bias could not be calculated directly and therefore the same second-
order Taylor approximation as in Section 3 was used to approximate the Var bd�� �

which
leads to

Table 1 Simulation scenarios for different variances σ2, different slope levels θ1,
corresponding target doses d*, and various sample sizes n per group

σ2 θ1 d* n

1 1.25 0.8 10,12,…, 30, 40,…, 100
2 0.5 10,12,…, 30, 40,…, 100
5 0.2 10,12,…, 30, 40,…, 100

2 1.25 0.8 10,12,…, 30, 40,…, 100
2 0.5 10,12,…, 30, 40,…, 100
5 0.2 10,12,…, 30, 40,…, 100
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Var bd�� �
� Δgðθd� ÞΣΔgðθd� Þ0 þ 1

2
tr HΣ½ �2
� �

:

Hence, the approximate MSE can be rewritten as

MSE � Δgðθd� ÞΣΔgðθd� Þ0 þ 1

2
tr HΣ½ �2
� �

þ 1

4
tr HΣð Þ½ �2:

In the simulation studies the MSE could be estimated by

dMSE ¼ 1

nsim � 1

Xnsim
i¼1

bd�sim;i � d�
h i2

;

with bd�sim;i denoting the simulated target dose estimator in the ith simulation run.
However, this estimator is highly sensitive to outliers which occur in several simulation

runs with small group sample sizes. Therefore, instead of dMSE the median of the

simulated squared differences ½d̂�sim;i � d��2 can be used as an approximation of dMSE

which is more robust to outliers. This is possible because ðd̂� � d�Þ2 �_, gU with U , χ21
and g = MSE. So the expected value of U is E(U) = 1 and the Median(U) ≈ 1 · (1 − 2/9)3.
Hence, E (gU) = gE(U) ≈ g · Median(U) · (1 − 2/9)−3. With this approach the estimator of
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Figure 1 Approximated and simulated bias of the estimator of the target dose for various variances σ2, slopes θ1,
and sample sizes n per group.
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the MSE is not influenced by simulation caused outliers and extremes and therefore will
be used in the following simulation study.

The MSE of the estimator of the target dose was simulated for the scenarios
described in Table 1 and compared to the approximate MSE. In Fig. 2 it can be seen
that the MSE, as with the bias above, depends on the error term variance σ2, the slope θ1,
and the sample size n per dose group. The MSE is decreasing with larger n and larger
slopes θ1 and is increasing with larger error term variances σ2. These numerical investiga-
tions demonstrate that the estimator of the target dose is not unbiased, but that the bias is
relatively small for moderate sample sizes and not really a concern for estimating the
target dose.

4. PROPERTIES OF THE CONFIDENCE INTERVALS OF THE TARGET DOSE

In this section the performance of the different methods for constructing a con-
fidence interval will be assessed through simulation studies. The setting of the linear
model in the simulation studies is the same as in Section 3. To investigate the behavior of
the different interval methods the scenarios described in Table 1 will be investigated at a
95%-confidence level. In Fig. 3 it can be seen that the method of Fisch and Stehlau
(F&S), the semi-parametric bootstrap (Bootstrap), and the profile likelihood (PL) perform
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Figure 2 Mean squared error (MSE) of the estimator of the target dose shown by the simulated MSE and the
approximate MSE for different slopes θ1 = 1.25 (- - -), 2 (—), 5 (…), various variances σ2, and sample sizes n per
group.
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quite well under nearly all scenarios. Furthermore, it can be seen that especially for small
sample sizes the Δ-method (Delta method) is relatively conservative compared to the other
three methods. To assess the performance of the different methods for the nominal
coverage probability of 95% the dotted lines in Figs. 3 and 6 indicate the simulation
error and were derived as 0:95	 u99:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95 � 0:05p

=
ffiffiffiffiffiffiffiffi
nsim

p
. This is roughly ±0.005 which

has been considered as a practical irrelevant deviation from the nominal level (Friede
et al., 2007).

Now the median length of the different intervals will be investigated. Because a
closed expression of the confidence interval only exists for the Δ-method (see Section
2.3.1) the length will be investigated via simulation. Therefore, the scenarios defined
in Table 1 will be simulated under the same conditions as described in Section 3. In
Fig. 4 it can be seen that the confidence interval length is relatively similar for all four
methods. But in all scenarios the median length of the Δ-method is a little bit smaller
than the length for the other three methods. This is possible even if the Δ-method is
more conservative than the other three methods because the Δ-method generate
symmetric confidence intervals and all other methods generates asymmetric confidence
intervals. This will be explained in more detail in a simulated example next.
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Figure 3 Coverage probability of the Δ-method, the method by Fisch and Strehlau (F&S), the parametric
bootstrap, and the profile likelihood for various variances σ2, slopes θ1, and group sample sizes n. The dotted
lines indicate the simulation error with 99% probability.
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To explain the behavior of the median length of the confidence intervals the
scenario θ1 = 1.25, σ2 = 1 with group sample size n = 20 will be investigated.
Therefore, the simulated lengths were split in upper and lower confidence interval
halves. The results of these simulations are presented in Fig. 5. It can be seen that the
median length of the lower confidence interval half of the Δ-method is larger than the
median length of the other methods, but on the other hand the median length of the
upper confidence interval half is larger for the method of Fisch and Strehlau(F&S), the
bootstrap, and the profile likelihood. The reason for this is that the Δ-method, in
contrast to the other methods, generates symmetric confidence intervals. This leads to
a slightly larger lower confidence interval half and a smaller upper confidence interval
half.

5. ROBUSTNESS AGAINST NON-NORMAL RESIDUALS

In this section the robustness of the methods to deviations from the assumption
of normally distributed error terms will be investigated. Therefore, different non-
normal error terms will be simulated in the linear model for the scenarios explained
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Figure 4 Median interval length of the Δ-method, the method by Fisch and Strehlau (F&S), the parametric
bootstrap, and the profile likelihood for various variances σ2, slopes θ1, and group sample sizes n.
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in Table 1. The methods described in the sections above were used to estimate the
target dose and to construct intervals under the assumption of normally distributed
error terms. As non-normal distributions the t-distribution with 4 degrees of freedom
as well as a log-normal distribution were used. All error terms were scaled so that the
expected value is equal to 0 and the variance is equal to 1. In Fig. 6 it can be seen,
that for t and log-normal distributions the methods perform quite well and that there
is basically no difference in the coverage probabilities compared to normally
distributed error terms. Furthermore, there is a slight decrease in median interval
length for all methods except of the Δ-method. Overall, it appears that these methods
are quite robust to the deviations from the distributional assumption of the error term.
This might be explained by the fact that the used total sample size, with a minimum
of N = 70, is large enough for large sample approximations by the central limit
theorem.

6. REAL DATA EXAMPLE

In this section the methods introduced above are illustrated by a dose-finding study
including placebo, four dose levels of Solifenacin (0, 2.5, 5, 10, 20 mg) and 2 mg
Tolterodine as active control with sample sizes n = (n1,…, n5)′ = (36, 40, 37, 33, 34)
and nac = 37 (Chapple et al., 2004). The primary endpoint is the reduction in “Voids/24 h”
after 6 weeks from baseline. For the different dose levels and the active control only the
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Figure 5 Length of the lower and upper interval of the Δ-method, the method by Fisch and Strehlau (F&S), the
parametric bootstrap and the profile likelihood for variance σ2 = 1, slope θ1 = 1.25, and sample size n = 20 per
group.
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mean values of the reduction in “Voids/24 h” are reported in Chapple et al. (2004). The
standard deviation (SD) of the error terms is not displayed but can be calculated using the
reported p-values of the test statistics which lead to σ 2 [1.9, 2.5]. We used σ = 2 to
evaluate this example. For the log(1+dose) the results of the study are summarized in
Fig. 7 as mean responses and SEs. Even though the individual patient data are not
available it is possible to calculate the estimator of the target dose as well as the
confidence intervals of the Δ-method, the method of F&S, and the parametric bootstrap
(Bootstrap) which only need the sample sizes, the mean responses, and the SD by using
the SAS macro “DF_AC_LIN_MEAN.” The results of the confidence interval methods are
shown in Table 2 for the target dose estimator d̂� ¼ 3:011 mg. For some of the confidence
intervals the lower interval limit was set to zero to guarantee a positive dose range. Further
it is not possible to calculate the profile likelihood based interval on basis of the mean
values alone. Therefore, a dataset was generated with identical mean responses and SD. It
is somewhat surprising that with a total sample size of N = 217 it is only possible to
exclude the maximum dose as potential target dose. The SAS macros for the linear dose-
finding problem based on the raw data (DF_AC_LIN) as well as based on the mean values
as presented here are available in the supplementary material.

7. CONCLUSIONS

In this paper we presented an MLE of the target dose and several approaches for
confidence intervals of the target dose in clinical dose-finding studies with active control.
We found that the MLE d̂� of the target dose is slightly biased and that the size of the bias
depends on the design of the dose-finding study. If the target dose

d� ¼ ðPk
i¼1 widiÞ=ð1� wacÞ, then the bias is relatively small. Also the total sample size

N, the strength of the dose relationship (the slope θ1), and the variance σ2 of the error term
have an influence on the size of the bias. For larger variances σ2 the bias is increasing and
for larger slopes the bias is decreasing. With larger sample sizes N the bias approaches
zero.

Because the bias and the MSE could not be calculated exactly a second-order Taylor
approximation was used instead. These approximations perform overall well and were
compared with the simulated bias and MSE in numerous scenarios. We showed that the
normal approximation based on the Δ-method is the simplest way to construct a con-
fidence interval of the target dose, but the coverage probability is fairly conservative for
small sample sizes. The method by F&S requires numerical optimization and is therefore

Table 2 The estimated target dose and the corresponding confidence intervals (CI) of the Δ-method, the method
of Fisch and Strehlau (F&S), the parametric bootstrap (Bootstrap), and the profile likelihood approach (PLH) for
the data presented in Fig. 7.

d̂� CI-approach 95%-CI CI-length

3.011 Δ-method [0.236, 12.001] 11.765
F&S [0.000, 13.237] 13.237
Bootstrap [0.000, 12.671] 12.671
PLH [0.000, 13.018] 13.018
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computationally more involved than the Δ-method. In terms of coverage probability
however, the method by F&S outperforms the Δ-method. In nearly all scenarios the
coverage probability is within the simulation error from the nominal level. One disadvan-
tage of the method by F&S is that it cannot be easily extended to nonlinear models. The
semi-parametric bootstrap is slightly more computer intensive than the other methods
because the bootstrapped parameter estimates have to be generated nboot times. In terms of
coverage probability performs the bootstrap quite well in most of the scenarios consid-
ered. The profile likelihood performs quite similar to the method by F&S, and the semi-
parametric bootstrap, but tends to be slightly more liberal compared to the other methods.
The median confidence interval length is quite similar for all methods except of the
Δ-method, there the median length is in all scenarios a little bit smaller than in the other
methods. One reason for that is that the Δ-method always generates symmetric intervals
whereas the other methods yield asymmetric intervals. Even if the median confidence
interval is shorter for the Δ-method, it does not mean that the Δ-method is superior over
the other methods in general. As Lehmann (1959) argues “short intervals are desirable
when they cover the true parameter value but not necessarily otherwise”. Therefore, we
selected first the methods which hold the coverage probability well and from this subset
the method with the shortest interval length would be used.

As illustrated in the supplementary material the results in terms of coverage
probability are quite similar for designs with four or even three dose levels instead of
five. Especially in the last design with only three dose levels it is quite difficult to use
higher or more complex models than the linear model because of the small amount of
information on the dose-response curve. To analyze the influence of a non-normal error
term in the linear model a t-distribution as well as a log-normal distribution were
simulated. We found that the non-normal error term has basically no influence on the
coverage probability and on the median interval length. Therefore linear models or
transformed models (linearization, log-linear dose response) with non-normal error
terms can be evaluated quite well with the methods described in this paper, for moderate
group sample sizes n > 10.

To our knowledge up to now a systematic comparison of the various approaches
for confidence intervals of the target dose in dose-finding studies with active control is
lacking. Here we presented such a comparison for linear models because these models
are of interest in some situations and are subject of recent research (Demidenko et al.,
2013). They are used in a wide range of applications such as transformation techni-
ques into linear models (see, for example, Neter et al. (1996) and Box and Cox
(1964)), generalized linear models via link function (McCullagh and Nelder, 1989), as
well as regression situations with low information of the dose relationship. In these
situations the MLEs of more complex models might not converge and the model has
to be simplified, which is described in more detail by Jones et al. (2011) and Kirby
et al. (2011).

We assumed variance homogeneity, i.e., the variance of the error terms to be the
same for all dose levels as well as for the active control. One reason for this
assumption was that in the case of equal variances and normally distributed error
terms the least square estimators of the linear model theory are identical with the
MLEs, resulting in a simple presentation of the various methods. For both approaches,
least squares and maximum likelihood and all presented confidence interval methods,
it is possible to use separate variance estimators for each dose level and/or only for the
active control and the dose levels. This can be done straightforward but the MLH
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estimators would differ from the least squares estimators and have to be computed
numerically.

Of course for larger deviations from a linear dose-response curve or without a useful
transformation it will be necessary to fit appropriate nonlinear models. The extension of
some of these methods to nonlinear mean functions in the setting of active controlled
dose-finding studies is subject to ongoing research with a focus on adaptive designs as
presented in Jones et al. (2011) and Kirby et al. (2011).

SUPPLEMENTAL MATERIAL

Supplemental data for this article can be accessed on the publisher’s website.
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