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ABSTRACT Proteus mirabilis is a pathogen that has been linked to nosocomial in-
fections. Studies on phages infecting P. mirabilis may provide therapeutics for infec-
tions caused by antibiotic-resistant strains of this pathogen. Here, we announce the
complete genome sequence of a P. mirabilis myophage, Mydo, which is distantly re-
lated to Escherichia coli phage rv5.

Proteus mirabilis is a Gram-negative enteric pathogen that is linked to a variety of
hospital-acquired illnesses (1). It is intrinsically resistant to nitrofurantoin and

tetracycline (1) and has been reported to have developed resistance to extended-
spectrum cephalosporins and coresistance to other antibiotics due to the production of
�-lactamases (2, 3). The study of phages infecting P. mirabilis may lead to alternative
treatments for these antibiotic-resistant strains.

Phage Mydo was isolated from a wastewater sample collected from College Station,
TX, in 2013 using a Proteus mirabilis isolate as the host. Host bacteria were cultured on
nutrient broth or agar (Difco) at 37°C with aeration. Phages were cultured and propa-
gated using the soft agar overlay method (4). It was identified as a myophage using
negative-stain transmission electron microscopy performed at the Texas A&M Univer-
sity Microscopy and Imaging Center, as described previously (5). Phage genomic DNA
was prepared using a modified Promega Wizard DNA cleanup kit protocol, as described
previously (5). Pooled indexed DNA libraries were prepared using the Illumina TruSeq
Nano low-throughput (LT) kit, and the sequence was obtained from the Illumina MiSeq
platform using the MiSeq V2 500-cycle reagent kit, following the manufacturer’s
instructions, producing 1,112,580 paired-end reads for the index containing the phage
Mydo genome. FastQC 0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) was used to quality control the reads. The reads were trimmed with FASTX-
Toolkit 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/download.html) before being as-
sembled using SPAdes 3.5.0 (6). Contig completion was confirmed by PCR using
primers (5=-GGTGTCTGGTACGTTGGTTC-3= and 5=-TGTGTGTGACAACGTACCTG-3=) facing
off the ends of the assembled contig and Sanger sequencing of the resulting product,
with the contig sequence manually corrected to match the resulting Sanger sequenc-
ing read. Glimmer 3.0 (7) and MetaGeneAnnotator 1.0 (8) were used to predict
protein-coding genes with manual verification, and tRNA genes were predicted with
ARAGORN 2.36 (9). Rho-independent terminators were identified via TransTermHP
v2.09 (http://transterm.cbcb.umd.edu/). Sequence similarity searches were performed
by BLASTp 2.2.28 (10) with a maximum expectation cutoff of 0.001 against the NCBI
nonredundant (nr), UniProt Swiss-Prot (11), and TrEMBL databases. InterProScan 5.15-
54.0 (12), LipoP (13), and TMHMM v2.0 (14) were used to predict protein function. All
analyses were conducted at default settings via the CPT Galaxy (15) and Web Apollo
(16) interfaces (https://cpt.tamu.edu/galaxy-pub).

Phage Mydo was assembled at 81-fold coverage to a complete genome of
145,127 bp. Mydo has a G�C content of 45%, which is higher than that of its host (39%)
(17). At both the nucleotide level and protein level determined by BLAST against the
NCBI nr/nucleotide database (E value, �0.001), Mydo is closely related to Klebsiella
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phages vB_KpnM_BIS47 (GenBank accession number KY652726) and vB_KpnM_KB57
(GenBank accession number KT934943). Mydo shares 86% and 83% DNA similarity and
230 and 223 proteins (out of 264 total predicted proteins in Mydo) with phage
vB_KpnM_BIS47 and phage vB_KpnM_KB57, respectively. With 77 shared proteins
(determined via BLASTp; E value, �0.001), phage Mydo is also distantly related to
Escherichia coli phage rv5 (GenBank accession number NC_011041) (18), placing it
within a cluster of large, virulent myophages that infect Gram-negative hosts.

Data availability. The genome sequence of phage Mydo was submitted to
GenBank as accession number MK024806. The associated BioProject, SRA, and Bio-
Sample accession numbers are PRJNA222858, SRR8771451, and SAMN11234226, re-
spectively.
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