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Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide,

occuring in approximately one-third of diabetic patients. One of the earliest hallmarks

of DKD is albuminuria, often occurring following disruptions to the glomerular filtration

barrier. Podocytes are highly specialized cells with a central role in filtration barrier

maintenance; hence, podocyte dysfunction is a major cause of albuminuria in many

settings, including DKD. Numerous studies over the last decade have highlighted

the importance of intact podocyte insulin responses in the maintenance of podocyte

function. This review summarizes our current perspectives on podocyte insulin signaling,

highlighting evidence to support the notion that dysregulated podocyte insulin responses

contribute toward podocyte damage, particularly during the pathogenesis of DKD.

Keywords: podocyte, insulin signaling, diabetic kidney disease (DKD), insulin resisitance, diabetes, albuminuria,

podocyte metabolism

INTRODUCTION

Insulin is a metabolic hormone, essential in regulating systemic glucose levels and whole-body
metabolism. While the primary function of insulin is to enhance glucose uptake into classically
insulin-responsive tissues, including skeletal muscle, adipose tissue, and liver; several other cellular
responses are also directly regulated by insulin, including fatty acid synthesis, growth, apoptosis,
transcription, and translation (1, 2). In this regard, insulin can directly influence a range of cells
and tissues, contributing to systemic homeostasis. In the kidney, insulin acts at multiple sites along
the nephron, including in the glomerulus (3–5) and throughout the renal tubule (6–8).

Insulin resistance is a common metabolic abnormality which plays a central role in the
pathogenesis of both type 1 and type 2 diabetes. Insulin resistance is also linked to renal
injury, including the development of albuminuria and DKD (9–15). While numerous circulating
factors are dysregulated in conditions of systemic insulin resistance, including various nutrients,
metabolites, and proinflammatory cytokines, it is increasingly well-recognized that the disruption
of metabolic pathways in intrinsic renal cells, including insulin signaling pathways, are key drivers
of kidney damage.

Podocytes sit on the urinary side of the glomerular filtration barrier and have a critical
role in glomerular function. They are highly-specialized, terminally-differentiated cells with a
limited capacity for renewal, thus relying on their ability to sense and adapt to environmental
changes and stimuli. Podocyte loss occurs early in many albuminuric conditions and is one
of the earliest features observed in diabetic kidney disease (DKD) (16–21). Over the last
decade, many studies have highlighted the importance of podocyte insulin signaling in the
maintenance of glomerular function; this review summarizes our current perspectives on podocyte
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insulin responses, highlighting recent advances in this field
and focusing on the notion that dysregulated podocyte insulin
signaling occurs in, and contributes toward the pathogenesis of,
albuminuria and DKD.

AN OVERVIEW OF PODOCYTE INSULIN
SIGNALING

The insulin signaling cascade is a complex intracellular
network, involving multiple points of regulation, divergence
and interaction with other signaling pathways. Briefly, insulin
binding to the insulin receptor (IR; of which there are
two isoforms, IR-A and IR-B, which have both structural
and functional differences) stimulates IR kinase activity,
autophosphorylation and the phosphorylation of insulin receptor
substrate (IRS) proteins which subsequently act as docking sites,
recruiting Src homology 2 (SH2)-domain-containing proteins to
facilitate downstream signal transduction. These SH2-domain-
containing proteins include the p85 subunit of PI3K and Grb2,
thereby mediating the activation of PI3K/Akt and MEK/MAPK
signaling cascades, respectively (1, 2). Importantly, while the
majority of cells express IRs and several components of the
signaling cascade, the downstream actions of insulin-signaling
are largely dependent on cell-type. The relative expression of key
signal transducers and their isoforms (including IR-A/-B, IRS1-
4, and Akt1-3), expression of suppressors or enhancers, activity
of interacting signaling networks, in combination with duration
(and level) of insulin stimulus all contribute toward the cellular-
(and context-) specificity of insulin action (1, 2).

In 2005, our group found that podocytes were insulin-
sensitive cells, able to rapidly increase cellular uptake of glucose,
via GLUT1 and GLUT4 glucose transporters, following insulin
stimulation (4). The importance of intact podocyte insulin
responses for glomerular function was subsequently highlighted
in podocyte-specific IR knock-out mice, which develop features
of DKD, despite normal blood glucose levels (3). Insulin has
since been shown to modulate several downstream responses
in podocytes including changes in mitochondrial function (22),
autophagy (23), ER stress (24), VEGF-A secretion (25), actin
dynamics (26), contractility (27), albumin permeability (27–29),
and calciummobilization (28, 30). Current knowledge of insulin-
stimulated responses in podocytes is summarized in Figure 1

(2, 33).
Of note, when compared to the other glomerular cells in

primary culture, podocytes have the highest level of IR expression
(5), indicating the importance of intact insulin responses in
these cells. Both the IR-A and IR-B isoforms are expressed in
podocytes, although IR-A is more abundant at the mRNA level
(26). It is important to note here the difficulty in studying these
IR subtypes, largely due to the isoforms differing in only 12
amino acids at the α-subunit carboxyl terminus (34), andwhether
the relative expression of IR-A or IR-B has any implications
for the activation of selective signaling cascades or downstream
responses in podocytes is not currently known. Following
podocyte IR activation, both IRS-1 and IRS-2 are phosphorylated,
which are likely to have distinct yet overlapping functions. It has

been suggested that IRS-2 is the predominant isoform mediating
insulin-stimulated PI3K activation in podocytes, including Akt
activation and glucose uptake, due to the finding that IRS-1
cannot fully compensate for the loss of IRS-2 (31).

Akt AND mTOR

One of the central signaling molecules activated following insulin
stimulation is Akt, of which there are three isoforms, Akt1-
3. Of these isoforms, it is the disruption of Akt2 that is
associated with impaired glucose uptake, insulin resistance and
diabetes in humans and mice (35, 36), indicating that Akt2 is
particularly important in mediating metabolic insulin responses.
Importantly, Akt2 is also critical for podocyte survival in models
of CKD, specifically in conditions of nephron-reduction (37). Of
the glomerular cells, Akt2 is predominantly expressed in both
mouse and human podocytes, where it is activated in situations of
glomerular stress and CKD. This activation of Akt2 is considered
to protect against the development of renal injury, as a podocyte-
specific deletion of Akt2 has been shown to result in a more rapid
disease progression (37).

These studies further suggested that the proteinuric effects
of rapamycin observed in renal transplant patients with severe
nephron reduction may be attributed to the inhibition of Akt2
(37), highlighting the links between the activity of Akt2 and
mTOR in podocytes. In other cell systems, it is well-established
that mTORC2 is responsible for Akt phosphorylation at Ser473
(38, 39), mTORC1 activity occurs downstream of Akt (39) and,
notably, the chronic inhibition of mTORC2 with rapamycin
promotes insulin-resistance in several model organisms (40, 41).
In podocytes, signaling via the IR has been shown to influence
mTOR activity (22) and, importantly, while regulated mTOR
activity is essential for podocyte function, podocyte-specific
over-activation of mTORC1 induces podocyte injury and plays
an important role in DKD development (42, 43). Prolonged
activation of mTORC1 has also been linked to insulin-resistance
(44), with rapamycin treatment reversing insulin-resistance in
these settings (39).

THE ROLE OF NEPHRIN IN INSULIN
SIGNALING

Nephrin is a podocyte-specific protein in the kidney, essential
for podocyte function (45, 46). The necessity of nephrin in
the maintenance of filtration barrier integrity is highlighted by
the numerous nephrin mutations which cause severe nephrotic
syndrome (47, 48). The importance of this protein in podocyte
insulin signaling was first demonstrated in 2007, with the finding
that nephrin expression was essential for podocyte GLUT1
and GLUT4 trafficking (32), which may be dependent on the
interaction of nephrin with VAMP2 (32) and the requirement
of nephrin for efficient insulin-stimulated actin remodeling (26).
Furthermore, factors linked to the development of podocyte
insulin-resistance also have effects on nephrin function and
phosphorylation (49).
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FIGURE 1 | A summary of insulin-stimulated signaling in podocytes. (A) Activation of the insulin receptor (IR) (-A or -B isoforms) triggers auto-phosphorylation,

facilitating binding and tyrosine phosphorylation of the insulin receptor substrate (IRS) proteins 1 and 2, which act as scaffolds for downstream signaling events. GRB2

is an example of an SH2-domain-containing protein, responsible for facilitating activation of Ras–MAPK signaling, resulting in p44/42 MAPK phosphorylation.

Phosphoinositide 3-kinase (PI3K) is recruited via the p85 regulatory subunit, ultimately resulting in Akt phosphorylation (at Thr308). The mammalian target of

rapamycin complex 2 (mTORC2) is responsible for Akt phosphorylation at Ser473. Akt can also activate mTORC1; (B) Insulin-stimulated contractility is regulated by

calcium mobilization, via co-ordinated action of BK channels and TRPC6, which are regulated by Akt/p44/42 MAPK signaling (29) and increased ROS production (28),

respectively. Insulin-stimulated dimerization of PKGIα, which may also involve TRPC6 (30), also contributes toward podocyte contractility (27); (C) Insulin-stimulated

glucose-uptake in podocytes (4) is dependent on the expression and function of IRS-2 (31), Akt and nephrin (26, 32). Signaling via PI3K/Akt pathways can promote the

translocation of GLUT4-storage vesicles (GSVs) to the plasma membrane. Nephrin plays a role in the docking and fusion of GSVs at the plasma membrane and F-actin

re-organization (26, 32); (D) Insulin-signaling via p85α/β is involved in the adaptive ER stress response in podocytes; promoting the nuclear localization of sXBP1. Loss

of podocyte IR signaling promotes increases in nuclear ATF6 and CHOP expression (24); (E) Podocyte VEGF-A expression is also modulated by insulin (25).

The importance of nephrin in regulating insulin action has
been further implied by studies in other cell types. Although
nephrin is a podocyte-specific protein in the kidney, there
are a handful of sites around the body where nephrin is also
expressed, including in pancreatic beta-cells. The importance
of nephrin in controlling beta-cell insulin sensitivity has been
demonstrated recently, as both patients with nephrin mutations
and mice with a beta-cell-specific nephrin deletion have a
reduced glucose tolerance, likely due to impaired insulin
secretion (50).

Interestingly, nephrin can also directly interact with the IR
(specifically the IR-B isoform) in podocytes and in glomeruli (50),
which may impact on IR function. This interaction was shown
to promote the selective activation of insulin signaling pathways;
inhibiting the insulin-stimulated p70S6K activation, while the
insulin-stimulated activation of Akt was unaffected. It would be
interesting to further determine whether the selective activation
of Akt isoforms also occurs (and is potentially responsible) in
these settings. It is also of note that nephrin can activate PI3K/Akt
pathways (51), including p70S6K phosphorylation, independent
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of insulin signaling (50). As nephrin dysregulation also occurs
early inDKD, further exploration of the role of the role of nephrin
in podocyte insulin signaling is likely to be beneficial.

THE ROLE OF PODOCYTE INSULIN
RESISTANCE IN DISEASE

Insulin resistance is a major metabolic abnormality with a central
role in the pathogenesis of both type 1 and type 2 diabetes,
including the development of renal damage (10–12, 14, 52);
even in non-diabetic individuals, insulin resistance is associated
with the development of albuminuria (52). This association
between insulin resistance and renal disease has been further
highlighted recently in a study by Ahlqvist et al., which re-
classified 4 independent cohorts of diabetic patients into 5 novel
clusters based on several characteristics, including the level of
systemic insulin resistance. Interestingly, the patient cluster that
was defined as being most insulin resistant had the highest risk of
developing DKD (9).

The systemic insulin-resistant environment is associated with
a dysregulation of several circulating metabolites including free
fatty acids, glucose, insulin, and inflammatory cytokines, all of
which have been shown to influence podocyte function in DKD.
The inflammatory cytokine TNF, for example, is linked to the
development of insulin resistance (53), associated with DKD
progression (along with the receptors TNFR1 and TNFR2) and
directly causes podocyte injury (54).

It is important to note, however, that the development of
cellular insulin-resistance is often tissue-specific, and several
factors associated with systemic insulin resistance may in
fact enhance signaling in cells otherwise un-responsive to
physiological insulin levels (55). In addition, branches of insulin-
stimulated signaling pathways may be selectively impaired within
cells (56, 57).

The first indication that podocytes become insulin-
resistant in a diabetic environment was in findings from
type-2 diabetic mice; podocytes isolated from db/db animals
had a reduction in insulin-stimulated Akt phosphorylation,
which was associated with increased apoptosis (58). In the
following years, several circulating factors associated with
systemic insulin resistance were shown to directly disrupt
podocyte insulin signaling via several cellular mechanisms,
as recently reviewed (2). We have since demonstrated that
hyper-stimulation of podocytes with insulin also causes insulin-
resistance, by promoting IR degradation, although nephrin
expression is also required for selective downstream responses;
including glucose uptake and reorganization of filamentous
actin (26).

As mentioned, the importance of intact podocyte insulin
responses is highlighted in studies of podocyte-specific IR-knock-
out (PodIRKO) mice, which develop a glomerular phenotype
with features reminiscent of DKD, including albuminuria,
despite maintaining normal blood glucose levels (3). In addition,
in models of type 1 DKD a podocyte-specific haploinsufficiency
of the IR causes a worsened phenotype, including exacerbated
albuminuria (24), further highlighting the importance of

intact podocyte insulin responses in disease. It is therefore
reasonable to deduce that the disruptions to podocyte insulin
signaling, occurring in conditions of diabetes and systemic
insulin resistance (26, 58), directly contribute toward disease,
particularly in the early stages of DKD development (2, 59). A
summary of the implications of insulin resistance for podocyte
biology is presented in Figure 2.

EPIGENETIC CONTROL OF PODOCYTE
INSULIN SIGNALING

Epigenetic mechanisms are heritable changes in gene expression
that are not a consequence of changes to primary DNA
sequences. Many environmental factors influence the epigenome,
including several metabolites associated with systemic insulin
resistance. Importantly, epigenetic alterations may persist long
after the removal of the initial insult and, as such, are often used
to explain the concept of “metabolic memory”; a phenomenon
whereby a transient disruption in metabolites confers long-term
changes in cells and tissues. Several epigenetic mechanisms have
been linked to the development of DKD (61, 62). One of the first
studies to explore the relationship between changes in podocyte
metabolism and the epigenome found that hyperglycaemia can
induce H3 acetylation in the p66Shc promoter region, enhancing
p66Shc expression, which is in turn associated with increased
ROS generation (63).

More recently, the role of epigenetic modifications in
controlling podocyte insulin sensitivity has been investigated.
Specifically, the circulating fatty acid palmitate, known to cause
podocyte insulin-resistance (2, 64), has been shown to induce a
“metabolic memory” effect in podocytes, with palmitate-induced
insulin-resistance persisting long after palmitate removal (65).
This study demonstrated that this persistent insulin-resistance
was associated with global decreases in histone H3K27 tri-
methylation and increases in histone H3K36 di-methylation
within the FOXO1 promoter region (65); thereby indicating that
epigenetic mechanisms may be responsible for the long-lasting
effects of palmitate in podocytes.

Similarly, persistent insulin-resistance associated
with increased SHP-1 expression has been shown via a
“hyperglycaemic memory” effect in podocytes (59). While
elevations in podocyte SHP-1 had previously been linked to
podocyte insulin resistance following high glucose exposure (66),
this more recent study found elevations in SHP-1 expression
were sustained after the normalization of glucose levels in
both diabetic glomeruli and in podocytes. This sustained
SHP-1 expression was associated with epigenetic changes to the
promoter region of SHP-1 (specifically histone H3K4me1 and
H3K9/14ac) (59).

Although the understanding of the cell-specific nature of
epigenetic modifications DKD is still in its infancy, these
studies indicate that changes in the podocyte epigenome may be
responsible for persistent podocyte insulin-resistance in diabetes.
Further research will no doubt reveal additional cell-specific
epigenetic changes in DKD and their relative contribution to
podocyte dysfunction.
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FIGURE 2 | Consequences of losing dynamic IR signaling in podocytes. (A) Hyperinsulinaemia, hyperglycaemia, free fatty acids, and inflammation are all factors

associated with systemic insulin resistance, that have been shown to disrupt podocyte insulin signaling, via several different mechanisms (60); (B) these mechanisms

include directly affecting IR expression, increased ubiquitination of IRS-1, regulation of several proteins involved in insulin signaling, including SHP-1, SHIP-2, PTEN,

ultimately disrupting downstream signal transduction; (C) Dysregulated IR signaling (either loss of IR signaling or uncontrolled activation of selective signaling

branches) has the potential to influence several inter-connected metabolic pathways in podocytes. These include ER stress responses (promoting apoptosis),

mitochondrial signaling, Akt and mTOR signaling, glucose transport and the regulation of F-actin dynamics.

INSULIN AND PODOCYTE ER STRESS

The endoplasmic reticulum (ER) plays an important role
in cell maintenance. During ER stress, the unfolded protein
response (UPR) is triggered as an adaptive response, to restore
ER homeostasis, limiting protein synthesis, correcting protein
folding, and/or promoting the degradation of misfolded proteins.
However, prolonged or unresolved ER stress results in the
UPR pathways triggering apoptosis (67). Several studies have
demonstrated that ER stress is involved in DKD progression

and, in podocytes, several factors associated with systemic
insulin resistance can induce ER stress, including hyperglycaemia
and free fatty acids (68, 69). Notably, in other cell types, ER
stress can also inhibit IR signaling (69), although whether ER
stress also contributes toward podocyte insulin-resistance is
unknown.

Recently, the importance of insulin signaling in the regulation
of podocyte ER stress responses has been highlighted. Insulin
signaling, through p85α and p85β subunits of PI3K, has been
shown to control podocyte ER stress responses, by promoting
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the nuclear localization of sXBP1 (24). Studies using podocyte-
specific heterozygous IRKO mice in vivo demonstrated that
a reduction in podocyte IR signaling reduced the nuclear
translocation of sXBP1 and concurrent increases in nuclear ATF6
and CHOP expression which was, importantly, associated with a
heightened DKD phenotype (24). Similar phenotypes were also
observed in both podocyte-specific p85α KO and whole-body
p85β KO mice, indicating the importance of signaling via IR-
PI3K (specifically p85α/β) in mediating sXBP1 activation and
adaptive ER stress responses in DKD.

Recent work from our own group has expanded on these
studies, further exploring the role of podocyte insulin sensitivity
and resistance in maladaptive ER stress in vitro. We found
that enhancing podocytes insulin sensitivity in two independent
cell models; stable IR overexpression and stable knock-down
of PTP1B; was able to protect against several ER stress
responses including increased CHOP expression and apoptosis
(70). Conversely, a stable knock-down of PTEN in podocytes
(which results in PI3K over-activation, in both stimulated
and unstimulated cells) resulted in an increase of the ER
stress response and apoptosis. This particularly highlights the
importance, if not necessity, of regulated activation of these
signaling pathways. This work also implies that the protective
effects of IR signaling in maladaptive ER stress is not solely
mediated by PI3K/Akt activity in isolation.

INSULIN SIGNALING AND PODOCYTE
MITOCHONDRIAL FUNCTION IN DKD

Mitochondria, and mitochondrial signaling, represents another
network essential in the regulation of cellular metabolism
and homeostasis. Mitochondrial dysfunction is recognized as
another primary event occurring in the pathogenesis of DKD,
resulting in the increased generation of reactive oxygen species
(ROS), including superoxide (13). In podocytes, increased ROS
production in diabetes (from both the plasma membrane and
mitochondria) promotes apoptosis and cell loss (71). Given
the importance of mitochondria in the regulation of cellular
metabolism and metabolic pathways, it is unsurprising that
podocyte insulin signaling has also been linked to mitochondrial
pathways (22). Insulin has been shown to enhance Nox4-
dependent ROS production (23, 27), a ubiquitous NAD(P)H
oxidase which is present in mitochondria (72). Nox4 has also
been implicated in insulin-regulated autophagosome maturation
(23), although whether this is a consequence of mitochondrial-
specific ROS production is to be determined.

Mitochondrial signaling pathways also have complex and
important roles aside from respiration and reactive oxygen
species generation. The podocyte-specific knock-out of Phb2 (a
protein indispensable for mitochondrial fusion and integrity)
causes albuminuria and a severe kidney phenotype, despite
mitochondrial respiration and ROS generation remaining intact.
In fact, the phenotype was linked to the hyperactivation of
mTOR signaling and both treatment with rapamycin and
specifically reducing IR/IGF-IR signaling limited mTOR hyper-
activity, ameliorating renal damage, and prolonging survival (22).

This study not only explicitly links podocyte insulin signaling
with mitochondria, but also indicates that over-activation of
certain branches of podocyte insulin signaling pathways can be
detrimental, again demonstrating the importance of regulated
IR activity. Further investigation of the relationship between
podocyte mitochondria and insulin sensitivity is likely to
be beneficial in further understanding podocyte metabolism,
particularly in DKD.

THE RELATIONSHIP BETWEEN INSULIN
AND GLUCOSE TRANSPORT IN
PODOCYTES

Enhanced glucose uptake is one of the classical insulin-sensitive
responses. Podocytes express many glucose transporters,
including the insulin-sensitive transporters GLUT1 and GLUT4,
and rapidly uptake glucose in response to insulin (4, 73, 74).
Importantly, both the expression of glucose transporters and
insulin-sensitive glucose uptake are dysregulated in podocytes
in DKD (26, 64, 75). The relationship between podocyte glucose
transporters and the development of DKD has been recently
reviewed (76), so will not be covered in detail, but it is important
to discuss the seemingly conflicting results from podocyte-
specific GLUT1-over-expressing (77) and GLUT4-knock-out
(75) mice, as both of these models were found to protect against
the development of DKD. These apparent inconsistencies may
be attributed to the differential regulation of GLUT1 and GLUT4
expression that seems to occur in DKD; indicating a divergence
in the pathways regulating GLUT1 and GLUT4.

While both GLUT1 and GLUT4 are insulin-sensitive glucose
transporters, their activity is also regulated by other signaling
molecules independent of the IR, such as AMPK (78), and
the protective effects of GLUT4-deficiency observed were likely
independent of the IR. This again highlights the complexity of IR
signaling networks and interaction with other signaling cascades.
It also provides another example whereby a loss of selective
branches of insulin signaling may in fact be beneficial in certain
settings; in this case again the over-activation of mTOR.

THERAPEUTIC POTENTIAL OF
PROTECTING PODOCYTE INSULIN
SIGNALING

The role of podocyte injury in the development of albuminuria
is well-established, occurring early in the pathogenesis of
many albuminuric conditions, including DKD. Thus, strategies
to prevent podocyte damage and albuminuria are attractive
therapeutic options in the treatment of many forms of chronic
kidney disease. Given the collective evidence demonstrating
that podocyte insulin signaling is disrupted in disease, and
that the disruption to podocyte insulin responses (either loss
of IR signaling or uncontrolled activation of selective signaling
branches) is detrimental, it stands to reason that that strategies
to protect podocyte insulin signaling may be beneficial in the
treatment of albuminuric renal disease; particularly in the setting
of systemic insulin resistance.
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Supporting this notion, the insulin-sensitizing drug
rosiglitazone can have direct, protective, effects on podocyte
insulin responses (74) and similar, systemic, insulin-sensitizing
drugs can protect against albuminuria, in both experimental
diabetic nephropathy models and clinical studies (79–81),
suggesting that this beneficial effect may be in part mediated by
protecting podocyte insulin signaling.

Furthermore, our group have recently demonstrated that
enhancing IR expression protects against ER-stress-mediated
apoptosis in podocytes (70). Importantly, however, reducing
PTEN expression (resulting in a consistent over-activation of
PI3K signaling) has a negative effect on ER stress responses, again
highlighting the importance of regulated, dynamic IR signaling.

SUMMARY

The importance of podocyte insulin signaling in glomerular
function has been highlighted in several studies over the last
decade. It is also becoming increasingly well-recognized that
podocyte insulin responses are dysregulated in conditions of

systemic metabolic dysfunction, including diabetes, contributing
towards albuminuria in these settings. Coupled with the
knowledge that several other essential metabolic pathways
interact with insulin-stimulated networks in podocytes,
this makes IR signaling an attractive target for therapeutic
intervention. Future work in this area will no doubt advance
our understanding of these signaling cascades and highlight the
potential of podocyte IR-signaling as an early intervention in
DKD.
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