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Abstract: The quantitative and functional analyses of cells are important for cell-based therapies. In
this study, to establish the quantitative cell analysis method, we propose an impedance measure-
ment method supported by dielectrophoretic cell accumulation. An impedance measurement and
dielectrophoresis device was constructed using opposing comb-shaped electrodes. Using dielec-
trophoresis, cells were accumulated to form chain-like aggregates on the electrodes to improve the
measurement sensitivity of the electrical impedance device. To validate the proposed method, the
electrical impedance and capacitance of primary and de-differentiated chondrocytes were measured.
As a result, the impedance of the chondrocytes decreased with an increase in the passage number,
whereas the capacitance increased. Therefore, the impedance measurement method proposed in this
study has the potential to identify chondrocyte phenotypes.

Keywords: capacitance; chondrocyte; de-differentiation; dielectrophoresis; differentiation; electrical
impedance; phenotype

1. Introduction

The quantitative and functional analyses of living cells and tissues are important for
the clinical application of cell therapies such as regenerative medicine. Although con-
ventional analysis methods, including polymerase chain reaction, immunohistology, and
flow cytometry using fluorescent dyes, are superior for evaluating cell types and pheno-
types in detail, they require complex procedures and expensive instruments. Therefore, a
simple, cost-effective, and quantitative evaluation method for cells and biological tissues
is required.

Electrical impedance measurement is a promising approach for characterizing cell
types, cell functions, and biological tissues. It has been used to determine simple cell
properties, such as size [1] and concentration [2], as well as cell characteristics, such as
cell phenotype, function, and viability [3–6]. Conventional analysis methods measure
the impedance of a single cell or cell suspension using microscale electrodes and can
characterize the properties of a single cell in detail [7,8]. However, these methods may
not be appropriate for evaluating cell populations dispersed in buffer solution. Therefore,
an efficient electrical impedance measurement device for cell populations such as cell
suspensions is required for both clinical and research purposes.

In this study, we hypothesized that the accumulation of cells on the electrodes to
remove the buffer would improve the sensitivity of impedance measurements, even at
lower cell concentrations in cell suspensions. Dielectrophoresis (DEP) is a promising
approach for manipulating, patterning, and accumulating living cells [9–13]. It generates
dipoles on a micro-particle in a non-uniform electric field [14]. An electrical force, called
DEP force, is generated by the interaction between the dipoles and non-uniform electric
field gradient. The direction of the DEP force is toward a higher electric field gradient
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(positive DEP) or repelled by a higher electrical field gradient (negative DEP), depending
on the electrical properties of the cell and surrounding buffer. Previous studies reported
cell patterning by positive and negative DEP forces [15–18]. Moreover, we previously
reported some chondrocyte accumulation methods using both positive DEP [19] and
negative DEP [20,21].

The purpose of this study is to establish an efficient impedance measurement method
and improve its sensitivity by dielectrophoretic cell accumulation. We constructed transpar-
ent opposing comb-shaped electrodes on glass slides to enable both the DEP and impedance
measurements of living cells. Using our proposed method, cells were accumulated on the
electrodes by a positive DEP force, and electric impedance measurements were performed.
Furthermore, the impedances of differentiated and de-differentiated chondrocytes were
measured to verify the effectiveness of our method in identifying the differentiation and
de-differentiation of chondrocytes.

2. Materials and Methods
2.1. Experimental Design to Improve the Sensitivity of Electrical Imedance Measurement by
Dielectrohpretic Cell Acccumulation

The efficient evaluation of the electrical impedance of living cells in cell suspensions
requires a reduction in the effect of the surrounding buffer. In this study, positive DEP
was used to form pearl-chain-like cell clusters [22]. In this case, cells in a non-uniform
AC electric field generated by opposing comb-shaped electrodes were trapped on the
electrodes to form pearl-chain-like cell clusters (Figure 1A–C). After the cell accumulation,
the comb-shaped electrodes were disconnected from the AC voltage source and connected
to an impedance meter to measure the electrical properties of the cells (Figure 1D). Our
proposed method can increase the sensitivity of impedance measurements even under
lower cell concentrations by cell accumulation and the formation of pearl-chain-like cell
clusters on the microelectrodes.
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Figure 1. Experimental approach for improving the measurement sensitivity of cell electrical
impedance by dielectrophoretic cell accumulation. Dispersed cells on opposing comb-shaped elec-
trodes (A) were trapped on the electrodes by positive DEP forces (B) to form pearl-chain-like cell
clusters (C). Finally, the electrical circuit was disconnected from the AC voltage source and (D) the
cell impedance was measured by an impedance meter.
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2.2. Chondrocyte Isolation and Culture with Multiple Passages

Primary and passaged calf articular chondrocytes were used for this study based
on previous reports [23–27]. The chondrocytes were isolated from the shoulder joints of
3–5-week-old calves from a local abattoir [13,21]. Since all animals were slaughtered for
food purposes, ethical permission was not required. Subsequently, cartilage explants were
extracted from the humeral head of the shoulder joints and minced into 1-mm3 pieces. The
minced tissues were then gently agitated in 0.2% collagenase type II digested with Dul-
becco’s modified Eagle’s medium/Ham’s F12 (DMEM/F12) supplemented with 5% fetal
bovine serum (FBS) and antibiotics–antimycotics for 12–16 h at 37 ◦C. The tissue-digested
solution was filtered through a 70-µm nylon mesh filter (Cell Strainer, Corning, NY, USA)
to remove the debris. Afterward, the chondrocytes were isolated from the cell-containing
solution by centrifugation at 1500 rpm for 5 min and resuspended in phosphate-buffered
saline. This procedure was repeated twice to wash the isolated chondrocytes. Finally,
after centrifugation at 1500 rpm for 5 min, the chondrocytes were resuspended in a fresh
culture medium (DMEM/F12 supplemented with 10% FBS and antibiotics–antimycotics)
for cell culture. The cells were cultured on cell culture flasks to reach 80% confluence.
After reaching the confluence, the cells were treated with 0.05% trypsin/EDTA and pas-
saged in new flasks. The chondrocytes were cultured for multiple passages to induce
de-differentiation. Based on PCR and immunohistology, previous studies reported that
multiple passage induced de-differentiation of articular chondrocytes [25,26]. Primary
calf chondrocyte could be passaged for 10 to 12 passages with maintaining proliferation.
Primary chondrocytes (P0) and chondrocytes at different passage numbers (P1–P9) were
prepared for impedance measurements. Before the experiments, the chondrocytes were
suspended in a low-conductivity buffer (LC buffer; 10-mM HEPES, 0.1-mM CaCl2, and
59-mM D-glucose in sucrose solution) [12,19].

2.3. Electrical Impedance Measurement Device for Living Cells Supported by Dielectrohpretic
Cell Accumulation

In this study, an impedance measurement device supported by DEP cell accumulation
was developed. Both the impedance measurements and DEP were performed on opposing
comb-shaped electrodes fabricated on a glass slide (Geomatec Co., Ltd., Yokohama, Japan)
(Figure 2a). The electrodes were fabricated from glass slides coated with a conductive and
transparent material, indium tin oxide. The width of each electrode line was 20 µm, and
the distance to the adjacent electrode was 80 µm. For the cell suspension measurement, a
liquid reservoir made of polydimethylsiloxane (PDMS) was set on the electrode-fabricated
glass slide.

For DEP, an AC voltage was imposed by a function generator (WF1974, NF Corp.,
Yokohama, Japan), and an amplifier (BA4850, NF Corp., Yokohama, Japan) was connected
to the electrodes (Figure 2b). The applied voltage was monitored using an oscilloscope
(TDS1001B, Tektronix, Beaverton, OR, USA) connected in parallel to the amplifier. During
DEP, the cells were moved in the direction of strong electric field gradients generated at
the edge of the electrodes by positive DEP forces (Figure 1). After cell accumulation, the
comb-shaped electrodes were disconnected from the AC voltage source and connected to
an impedance meter (3532-80, Hioki Corp., Nagano, Japan) for electrical impedance and
capacitance measurements. The impedance measurement and DEP device was set on a
phase-contrast microscope (TE2000, Nikon, Tokyo, Japan) equipped with a digital camera
to monitor the cell movement throughout the experiments.
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Figure 2. Experimental set-up for the electrical impedance measurement of a cell suspension.
(a) Geometry of opposing comb-shaped electrodes: The width of each electrode line was 20 µm
and the distance to the adjacent electrode was 80 µm. (b) Wiring diagram for the dielectrophoresis
and impedance measurement system.

To evaluate the electrical properties of the cells, an equivalent circuit (Figure 3) was
introduced to demonstrate the electrical conditions of the impedance measurement de-
vice [28]. The impedance of the cell suspension consists of the resistance of the LC buffer
RLCB and electrical components of the cells. Meanwhile, the electrical components of the
cells are frequency dependent, consisting of the plasma membrane resistance Rm and ca-
pacitance Cm connected in parallel to each other and in series with the cytoplasm resistance
Rcyto. Additionally, the impedance of Cm and Rm in parallel is frequency dependent. Under
ideal conditions, the cytomembrane capacitance dominates the impedance measurement
and prevents electric current from penetrating the cytoplasm at lower frequencies. At
higher frequencies, the plasma membrane acts as a high-pass filter for current to penetrate
the cytoplasm. The measured impedance of the cell suspension exhibits the electrical prop-
erties of the plasma membrane and cytoplasm at lower and higher frequencies, respectively.
Therefore, the electrical impedance |Z| and capacitance Cp were measured at 10 kHz,
100 kHz, and 1 MHz in this study.
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2.4. Determination of the Experimental Conditions of the Electrical Impedance Measurement
and Dielectrophoresis

To determine the appropriate cell concentration for the impedance measurement
device, the electrical impedance measurements of cell suspensions with different cell
concentrations were performed without DEP cell accumulation. As the representative of
differentiated and de-differentiated chondrocytes, chondrocytes passaged twice (P2) were
prepared and suspended in a LC buffer at concentrations of 0.1, 1.0, and 10 × 106 cells/mL.
Afterward, the cell suspension (300 µL) was injected into the PDMS reservoir, and the
electrical impedance and capacitance at 100 kHz were measured at 0, 60, 120, 240, 480, and
720 s after the injection of the cell suspension.

To evaluate cell accumulation by the positive DEP force, impedance measurements
were performed after cell accumulation for 0, 60, 120, and 180 s. The cells were sedimented
in the reservoir for 720 s before the impedance measurements and DEP experiments. An
AC voltage of 10 Vp–p at 1 MHz was applied to cause positive DEP on the chondrocytes [21],
and the electrical impedance and capacitance were measured at 100 kHz.

2.5. Characterization of the Relationship between Electrical Impedance and the De-Differentiation
Process of Chondrocytes

The electrical impedance and capacitance of differentiated and de-differentiated chon-
drocytes were measured to verify the effectiveness of the proposed method in identifying
chondrocyte phenotypes. According to the previous studies [26], de-differentiation of
calf chondrocytes after passage 4 was confirmed by gene expression analyses. Primary
chondrocytes and passaged cells (P1–P5, P9) were prepared and suspended in a LC buffer
at 1.0 of 106 cells/mL. The cell suspension (300 µL) was injected into the PDMS reservoir,
and the cells were sedimented for 720 s before impedance measurements. The electrical
impedance and capacitance were measured at 10 kHz, 100 kHz, and 1 MHz immediately
after cell accumulation by positive DEP at a voltage of 10 Vp–p at 1 MHz for 180 s.

2.6. Statistical Analysis

Most of the data are representative of three individual experiments from different calf
donors with similar results. For each experimental group, five to seven samples (n = 5–7)
were analyzed, and each data point represents the mean and standard deviation. The
statistical significance of the experimental data was evaluated using Bonferroni’s test.
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3. Results and Discussions
3.1. Effect of Cell Concentration on Impedance Measurement

To determine the appropriate cell concentration for our impedance measurement
device, the electrical impedances of 0.1, 1.0, and 10 × 106 cells/mL chondrocyte suspensions
were measured. The chondrocytes sedimented on the micro-electrodes according to the
experimental time and impedance of 1.0 and 10 × 106 cells/mL chondrocyte suspensions
decreased with increasing experimental time and reached a plateau after 480 s, whereas that
of the 0.1 × 106 cells/mL suspension slightly changed during the experimental period and
had a similar value to that of the LC buffer without chondrocytes (Figure 4). In this study,
we used a LC buffer whose impedance was higher than that of the chondrocytes to contrast
the difference between the electrical properties of chondrocytes and the surrounding
buffer [13,20,21]. Therefore, in the chondrocyte suspension with a higher cell concentration,
chondrocytes sedimented on the microelectrodes to decrease the electrical impedance.
In suspensions with lower cell concentrations, the number of sedimented chondrocytes
was not sufficient to change the electrical impedance. These results demonstrate that our
impedance measurement device can measure electrical impedance at cell concentrations
above 1.0 × 106 cells/mL without dielectrophoretic cell accumulation.
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Figure 4. Changes in (a) electrical impedance and (b) capacitance of chondrocytes according to the cell
sedimentation time at different cell concentrations (0.1, 1.0, and 10 × 106 cells/mL). Mean +/− SD,
n = 7. * indicates a significant difference in each value compared to that at 0 s, p < 0.05.
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3.2. Effect of Dielectrophoretic Cell Accumulation on Impedance Measurement

Electrical impedance measurements were performed after cell accumulation by DEP
force. During DEP, chondrocytes were accumulated on the microelectrodes and formed
pearl-chain-like clusters, which bridged the adjacent electrodes (Figure 5). We previously
reported that positive DEP forces were generated on bovine chondrocytes at 1 MHz of an
AC electric field [21]. These phenomena are caused by the interaction between dipoles in
the cells and the surrounding buffer [14]. At lower cell concentrations, neither the electrical
impedance nor the capacitance changed significantly (Figure 6a). The electrical impedance
decreased with an increase in the cell accumulation time, whereas the capacitance increased
at higher frequencies (Figure 6b,c). After 120 s of cell accumulation, both the impedance
and capacitance values reached a plateau. Furthermore, the standard deviation of the
measured values in the DEP (+) condition tended to decrease with an increase in the DEP
accumulation time. These results suggest that DEP cell accumulation can improve the
measurement sensitivity and reduce the effect of the buffer near the microelectrodes.
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Figure 5. Formation of pearl-chain-like cell aggregates by positive DEP. Phase-contrast images of
chondrocytes (a) before and (b) after positive DEP for 180 s. Scale bar = 100 µm.

3.3. Relationship between Electrical Impedance and the Phenotypes of Chondrocytes

To verify the possibility of evaluating the de-differentiation phenotype of chondro-
cytes, electrical impedance measurements were performed on chondrocytes at different
passage numbers. The chondrocytes were de-differentiated in an in vitro conventional
monolayer culture (Figure 7). Primary chondrocytes showed a round shape, whereas
passaged chondrocytes gradually became spindle-like in shape according to the passage
number. The passaged chondrocytes showed these morphological changes with the de-
differentiation of the chondrocyte phenotype [29]. In previous studies, de-differentiation
of passaged chondrocytes was also confirmed by PCR and immunohistology [25,26]. It
was considered that the chondrocytes gradually de-differentiated with an increase in
passage number.
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sage number. 
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Figure 6. Effect of dielectrophoretic cell accumulation on the electrical impedance and capacitance of
chondrocyte suspensions of (a) 0.1, (b) 1.0, and (c) 10 × 106 cells/mL. Mean +/− SD, n = 7. * indicates
a significant difference between DEP (+) and DEP (–) groups, p < 0.05.
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Figure 7. Phase-contrast microscopic images of primary chondrocytes (P0) and de-differentiated
chondrocytes passaged for up to five times (P1–P5).

The electrical impedance of the chondrocytes decreased with increasing passage num-
ber at 10 kHz, whereas the capacitance increased (Figure 8). The impedance and capacitance
at 100 kHz and 1 MHz did not change dynamically with the passage number. Our exper-
imental results suggest that impedance and capacitance at lower frequencies are related
to chondrocyte morphology and function, such as differentiated and de-differentiated
phenotypes. At lower frequencies, electric current could not penetrate the living cells but
flowed through the plasma membrane during electrical impedance measurement because
the plasma membrane had a lower conductivity and higher permittivity than the cytoplasm.
Therefore, it was considered that the difference in the electrical impedance and capacitance
of the passaged chondrocytes was related to structural changes in the plasma membrane.
The cell size and ratio of cytoplasm volume to plasma membrane area should be evaluated
to determine the structural change in the passaged chondrocytes.
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Wozniak et al. reported that the elastic modulus of chondrocyte plasma membranes
decreased with an increase in passage number [30]. Furthermore, Sliogeryte et al. reported
a relationship between the stiffness of de-differentiated chondrocytes and the strengthening
of the plasma membrane by F-actin [31]. From these previous reports, it was considered
that structural changes accompanied by ion channels and membrane proteins in the plasma
membrane of chondrocytes are caused by cell de-differentiation. The mRNA expression
or immunohistological analysis should be performed to evaluate the de-differentiation of
chondrocytes and relationships with the electrical properties. To validate our method, a
validation study using human cells should be also performed. However, based on our
results, monitoring changes in electrical impedance and capacitance has the potential to
assess phenotypic changes in de-differentiated chondrocytes.

4. Conclusions

In this study, we proposed electrical impedance measurements for living cells sup-
ported by DEP cell accumulation. To verify the proposed method, we developed an
impedance measurement and DEP device using transparent opposing comb-shaped elec-
trodes. Appropriate cell concentrations and DEP conditions were determined using bovine
chondrocytes. Based on the results of this study, the measurement sensitivity of the device
was improved by DEP cell accumulation. Furthermore, differentiated and de-differentiated
chondrocytes were identified by measuring their electrical impedance and capacitance.
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