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Summary
Knockoff-based methods have become increasingly popular due to their enhanced power for locus discovery and their ability to prior-

itize putative causal variants in a genome-wide analysis. However, because of the substantial computational cost for generating knock-

offs, existing knockoff approaches cannot analyze millions of rare genetic variants in biobank-scale whole-genome sequencing and

whole-genome imputed datasets. We propose a scalable knockoff-based method for the analysis of common and rare variants across

the genome, KnockoffScreen-AL, that is applicable to biobank-scale studies with hundreds of thousands of samples andmillions of genetic

variants. The application of KnockoffScreen-AL to the analysis of Alzheimer disease (AD) in 388,051 WG-imputed samples from the UK

Biobank resulted in 31 significant loci, including 14 loci that are missed by conventional association tests on these data. We perform

replication studies in an independent meta-analysis of clinically diagnosed AD with 94,437 samples, and additionally leverage single-

cell RNA-sequencing data with 143,793 single-nucleus transcriptomes from 17 control subjects and AD-affected individuals, and prote-

omics data from 735 control subjects and affected indviduals with AD and related disorders to validate the genes at these significant loci.

These multi-omics analyses show that 79.1% of the proximal genes at these loci and 76.2% of the genes at loci identified only by

KnockoffScreen-AL exhibit at least suggestive signal (p < 0.05) in the scRNA-seq or proteomics analyses. We highlight a potentially causal

gene in AD progression, EGFR, that shows significant differences in expression and protein levels between AD-affected individuals and

healthy control subjects.
Introduction

Recent advances in whole-genome sequencing (WGS) and

genotype imputation technologies provide an exciting op-

portunity to identify common (minor allele frequency

[MAF] R 1%) and rare (MAF < 1%) genetic variation in

the human genome and to investigate their contribution

to complex trait heritability. Large-scale WGS/WG-

imputed studies, such as the Trans-Omics for Precision

Medicine (TOPMed) study1 and UK Biobank (UKBB),2

have collected hundreds of thousands of samples with

directly sequenced or imputed whole genomes. However,

our ability to analyze and infer causal pathways from these

datasets remains limited at this point. Themain challenges

include the substantial computational cost, the burden of

multiple comparisons, and the difficulties with the func-

tional interpretation of the discovered loci. In addition, it

is well known that conventional association tests often

identify proxy variants that are correlated only with the

true causal variants. Identification of causal variants re-

mains challenging, and it usually requires a follow-up sta-

tistical fine-mapping analysis.3
1Department of Neurology andNeurological Sciences, Stanford University, Stan

Stanford University, Stanford, CA 94305, USA; 3Institut du Cerveau - Paris Brain

Pittsburgh, Pittsburgh, PA 15260, USA; 5Department of Biostatistics, Columbia

University, Stanford, CA 94305, USA; 7Institute for Computational and Mathe
8These authors contributed equally

*Correspondence: zihuai@stanford.edu

https://doi.org/10.1016/j.ajhg.2021.10.009.

2336 The American Journal of Human Genetics 108, 2336–2353, Dec

� 2021 The Author(s). This is an open access article under the CC BY-NC-ND
A considerable proportion of variants identified by

genome-wide association studies (GWASs) reside in inter-

genic regions, and their functionalconsequences remainun-

known. Recent large-scale GWAS analyses have leveraged

external multi-omics resources, such as GTEx4 and

ENCODE,5 for post-GWAS analyses including colocaliza-

tion, fine-mapping, and functional enrichment analyses,

to better interpret their findings and identify putative causal

genes andvariants.Although important, the success of these

analyses has been limited. For example, eQTLs detected in

GTEx account only for a minority of GWAS signal,6 making

colocalization analyses less powerful. Fine-mapping

methods such as CAVIAR7 and SuSiE8 were developed for

common variants in GWASs and are not directly applicable

to rare variants. Moreover, most public multi-omics re-

sources arenotdisease specific,making it challenging tocon-

nect potential functional consequences of genetic variants

to a particular disease or phenotype of interest.

Knockoff-basedmethodshavebecome increasingly popu-

lar due to their enhancedpower for locus discovery and their

ability to prioritize putative causal variants in a genome-

wide analysis,9–12 in contrast to conventional association
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tests. Specifically, whereas conventional fine-mapping

methods are applied to individual signal regions in post-

GWAS analyses, the knockoff-based approach allows simul-

taneous genome-wide locus discovery and prioritization of

causal variants. The idea of knockoff-based inference is to

generate synthetic, noisy copies (knockoffs) of the original

genotypes where each sample resembles the original data

in terms of linkage disequilibrium (LD) structure but is

conditionally independent of the trait of interest, given

the original genotypes. The synthetic sequences serve as

negative controls for feature selection, which helps enhance

power and attenuate the confounding effect of LD. Several

knockoff-based methods have been proposed for genetic

data. For example, Sesia et al.9,10 proposed KnockoffZoom

based on Hidden Markov Models (HMMs) to generate

knockoffs for phased common variants in the UK Biobank

(�400,000 samples; 600k variants). They demonstrated

that the knockoff-basedmethod exhibits comparable/better

performance than state-of-the-art fine-mapping methods

such as SuSiE and CAVIAR in terms of the prioritization of

causal variants. More recently, He et al.12 proposed Knock-

offScreen based on a sequential conditional independent

tuples13 (SCIT) algorithm for unphased common and rare

variants in moderate-scale whole-genome sequencing

studies (<50,000 samples; >80,000k variants). It addition-

ally allows for inference based on multiple knockoffs for

improved power, stability, and reproducibility. However,

these existing approaches are not scalable to the generation

of multiple knockoffs for hundreds of thousands of samples

and millions of genetic variants.

Here we propose an extension of knockoff-basedmethod,

KnockoffScreen-AL, for the analysis of biobank-scale WGS/

WG-imputed studies of hundreds of thousands of samples

and millions of genetic variants. Since most genome-wide

data are unphased, and phasing rare variants is particularly

challenging, we propose knockoff-based inference directly

using unphased genotype data. To improve the computa-

tional efficiency while retaining the advantages over con-

ventional association tests, KnockoffScreen-AL uses a

shrinkage algorithmic leveraging14 (AL) technique to select

a subset of ‘‘informative’’ samples to estimate intermediate

parameters during the knockoff generation, which makes

biobank-scale WGS/WG-imputed studies feasible within

the knockoff framework. We also propose low-rank regres-

sion and memory-efficient matrix operation to further

improve the computational efficiency.Wehave additionally

developedagene-based inferencebasedonthe summary sta-

tistics of KnockoffScreen-AL that leverages external tran-

scriptome and epigenome information to help prioritize

causal genes nearby.

We applied KnockoffScreen-AL to 388,051 WG-imputed

samples from the UK Biobank and identified 31 distinct

loci (common variants or rare variant windows) associated

with AD, including 14 loci that are missed by conventional

association tests on these data. The identified loci corre-

spond to 43 proximal genes. We attempted to replicate

these significant findings in an independent meta-analysis
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of clinically diagnosed AD with 94,437 samples. To gain

further insights into the potential causal role of the

candidate genes at these loci, we leveraged single-cell

RNA-sequencing data with 143,793 single-nucleus tran-

scriptomes from 17 control subjects and AD-affected indi-

viduals and proteomics data from 735 control subjects and

individuals with AD and related disorders. We observed

that 34/43 (79.1%) of the proximal genes exhibit a sugges-

tive effect in either scRNA-seq or proteomics analyses, sub-

stantially higher than background genes (46.2%; p ¼ 1.83

10�5 by Fisher’s exact test). The results demonstrate that

KnockoffScreen-AL can identify weaker signals, particu-

larly rare variant loci that are missed by conventional asso-

ciation tests yet with possible functional effects on AD.
Material and methods

We propose a scalable multiple-knockoff based method, Knock-

offScreen-AL, to perform whole-genome analysis of unphased

genetic data at biobank scale. The idea of knockoff-based inference

is to generate a synthetic sequence for each sample while preserving

the overall sequence correlation structure. Specifically, for each ge-

netic variant, a knockoff version is created that does not directly

affect the trait of interest. By contrasting the original and synthetic

data, the knockoff-basedmethod allows the selection of genetic var-

iants/windows related to the phenotype of interest while control-

ling the false discovery rate (FDR). Like other multiple knockoff-

based approaches, the proposed method has several appealing fea-

tures, including: (1) prioritization of causal variants over associa-

tions, (2) ability to distinguish the signal due to rare variants from

shadow effects of significant common variants nearby, and (3)

improved stability and reproducibility due to multiple knock-

offs.12 We present the technical details in Appendix A.

KnockoffScreen-AL uses state-of-the-art algorithmic leveraging,

matrix decomposition techniques, and memory-efficient matrix

operations to substantially improve the computational efficiency

and memory usage. KnockoffScreen-AL contains four main steps:

(1) generate multiple knockoffs per variant; (2) calculate the

feature importance score for the original variants and the knockoff

variants; (3) calculate the feature statistic by contrasting feature

importance scores for the original and their knockoff counter-

parts; and (4) apply knockoff filter to select significant variants/

windows with FDR control. The workflow is shown in Figure 1.

In step 1, KnockoffScreen-AL augments each genetic variant

withmultiple synthetic variants (knockoffs) by a sequential condi-

tional independent tuples (SCIT) algorithm.12,14
where Gj denotes the jth variant; G�j denotes all genetic variants

except for the jth variant;M is the number of knockoffs per variant;
nal of Human Genetics 108, 2336–2353, December 2, 2021 2337



Figure 1. Overview of KnockoffScreen-AL
(A) The KnockoffScreen-AL method.
(B) The application of KnockoffScreen-AL to UK biobank data.
(C) Venn diagrams showing the number of identified loci that overlap with known AD loci or being replicated (p < 0.05). Common,
common variant loci; rare, rare-variant loci; overlap with known AD loci, overlap with Jansen et al.15 and Kunkle et al.;16 replication,
replication p value < 0.05 based on summary statistics from Kunkle et al.16

(D) Venn diagrams showing the number of implicated genes that are significant (p < 0.05) in scRNA-seq or proteomics analysis; KS-AL
only: the additional genes identified by KnockoffScreen-AL but missed by conventional association tests; ProteomicsAging: p value <
0.05 in the proteomics analysis of age effect; ProteomicsADvsHC: p value < 0.05 in the proteomics analysis comparing Alzheimer dis-
ease-affected individuals to healthy control subjects; scRNA-seq: p value < 0.05 in the scRNA-seq analysis for at least one cell type.
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and LðGj

���G�j; ~G
1

1:ðj�1Þ;/; ~G
M

1:ðj�1ÞÞis the conditional distribution of

Gj given G�j and f ~Gm

1:ðj�1Þg1%m%M . The SCIT algorithm ensures

that all original variants and synthetic variants are simultaneously

exchangeable to each other, i.e., the joint distribution of

ðG; ~G1
;.; ~G

MÞ remains the same if one swaps any subset of vari-

ants with their counterparts.

The SCIT algorithm above requires iteratively fitting regression

models to estimate the conditional distribution, which can be

time consuming when the sample size and/or the number of var-

iants are large, as is the case for biobank-scale WGS/WG-imputed

studies. To make such studies feasible, we developed several opti-

mization strategies to make the generation of multiple knockoffs

practical for biobank-scale data. First, the naive conditional auto-

regressive model has been replaced by a low-rank approximation,

which will leverage the facts that the covariance matrices used for

different iterations largely overlap, and that the knockoffs are

highly correlated with the original variants due to the exchange-

ability property. Second, we have implemented a shrinkage algo-

rithmic leveraging technique, a sampling method to reduce the

data size in order to substantially improve the computational effi-

ciency.14 Third, we have implemented memory-efficient matrix

operation using shared memory and memory-mapped files.

Details are provided in Appendix A.

In step 2, single-variant tests for common variants (MAF R 1%)

and window-based tests for rare variants (MAF < 1% and MAC R

25) are conducted to scan the genome. Since in the UKBB rare var-

iants are imputed, the imputation quality may be low and thus we

chose a relatively conservative threshold for the variants included

in the analyses. The window-based tests are applied to every 2 kb

window, with half of each window overlapping with adjacent win-

dows of the same size. p values are calculated for the original var-

iants/windows and all the corresponding knockoff counterparts.

Feature importance scores are generally defined as

T ¼ � log 10 p;

where a larger T indicates a more significant association. Knock-

offScreen-AL is very flexible and can incorporate p values from a va-

riety of tests for rare and common variants. For rare-variant win-

dows, KnockoffScreen-AL performs the aggregated Cauchy

association test17 (ACAT-O) method by default which combines

burden, sequence kernel association test18 (SKAT), and single-

variant test for rare variants for enhanced power. For single variants,

KnockoffScreen-AL performs score test for quantitative outcomes

and the saddle point approximation for binary outcomes which

is robust to unbalanced case-control ratio,19 a common issue for an-

alyses with biobank data.We note that the feature importance score

is not restricted to p values. We use this definition here as it can

serve as a wrapper method to flexibly use p values from existing

or future association tests to construct feature importance scores.

In steps 3 and 4, KnockoffScreen-AL uses the same definition of

feature statistic and knockoff filter as in KnockoffScreen to select

significant variants/windows with rigorous FDR control. The

feature statistic is defined as

W¼
�
T �median

1%m%M
Tm

�
ITR max

1%m%M
Tm ; ðEquation 1Þ

and all common variants and rare-variant windows with feature

statistic W > t are selected, where t is calculated by the knockoff

filter described in Appendix A. Specifically, we select those variants

and windows with the original feature importance score having

higher value than any of the M knockoffs, and with the gap
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with the median of knockoff importance score being above

some defined threshold. A q value as in the Benjamini-Hochberg

procedure20 can also be computed for each variant/window. Vari-

able selection with q%a will ensure genome-wide FDR%a.

We show in the next section that KnockoffScreen-AL with algo-

rithmic leveraging andmemory-efficient operation exhibits equiv-

alent or slightly higher power than the ‘‘exact’’ SCIT algorithm,

but with much lower computational and memory costs, for both

quantitative and dichotomous traits.
Results

KnockoffScreen-AL is computationally and memory

efficient for biobank-scale data

To evaluate the computational performance of Knock-

offScreen-AL, we performed simulations to empirically

evaluate the computational time and memory usage for

the different methods, varying the sample size and num-

ber of variants. We note that the computational cost is re-

ported for the generation of multiple knockoffs for un-

phased genotype data (as opposed to phased haplotype

data). We simulated genetic data using the SKAT package,

with varying sample sizes and number of genetic variants.

The computing time andmemory usage were evaluated on

a single CPU (Intel Xeon CPU E5-2640 v3 @ 2.60 GHz).

We benchmarked the proposed shrinkage algorithmic

leveraging, the proposed method with memory-efficient

matrix operation (KnockoffScreen-AL), SCIT with the

‘‘exact’’ linear model (naive SCIT; KnockoffScreen v.1.0),

and SCIT with low-rank regression (Low-rank approxima-

tion; the revised implementation of KnockoffScreen

v.1.1) to generate 5 knockoffs (Figure 2).

The computing time is plotted in Figure 2A. For a study

with 100,000 individuals, we observed that the method

with shrinkage algorithmic leveraging took 268.48 s to

generate 5 knockoffs for 2,000 variants, which is �9 times

faster than the SCIP approach with ‘‘exact’’ linear model

(2,396.46 s). The additional memory-efficient matrix oper-

ation added negligible computing time to the base method

(212.74 versus 267.36 s for 100,000 individuals; 1,428.67

versus 1,450.82 s for 500,000 individuals). An important

advantage of our knockoff generation is that it is based

on unphased genotype data, unlike existing HMM-based

knockoff generators that require phased haplotype data.

Indeed, phasing is computationally expensive and accu-

rately phasing rare variants beyond reference panels is

challenging. For example, the computing time for phasing

10,000 individuals with 2,000 variants via fastPHASE21

(number of states 12 as used in KnockoffZoom10) is

1,571.2 s. Therefore, the phasing step can take a substantial

fraction of the total computing time for knockoff genera-

tors that require phased haplotypes, such as the HMM

knockoff generator in KnockoffZoom. Furthermore,

increasing the number of states to achieve a higher

phasing accuracy can lead to substantial increases in

computational time (Table S1; e.g., 23,584.8 s when the

number of states is 50). This demonstrates the advantage
nal of Human Genetics 108, 2336–2353, December 2, 2021 2339



Figure 2. Computing time, peak
random-access memory (RAM) use, po-
wer, and FDR of different knockoff gener-
ators
(A and B) The computing time and RAM
were evaluated based on 2,000 variants,
varying the sample size from 1,000 to
500,000. Naive SCIT, sequential condi-
tional independent tuples (SCIT) with the
‘‘exact’’ linear model; BM, memory-effi-
cient matrix operation. The shrinkage
algorithmic leveraging BM method corre-
sponds to the proposed KnockoffScreen-
AL. The computing time for naive SCIT is
truncated at sample size 100,000 because
it cannot be applied to larger sample size.
We also benchmark the computing time
for phasing 10,000 samples via fastPhase
with number of states K ¼ 12.
(C andD) Power/FDR comparison between
KnockoffScreen-AL and the naive SCIT.
(E and F) Power/FDR comparison between
KnockoffScreen-AL (SCIT multiple knock-
offs þ ACAT-O) and other existing
knockoff generators and feature impor-
tance score calculations. The different
colors indicate different knockoff genera-
tors. The different types of lines indicate
different tests to define the importance
score.
of the proposed method which directly generates knock-

offs for genetic data without phasing. A direct comparison

with the HMM method can be found in Table S1.

Memory usage is plotted in Figure 2B. The memory cost

for all methods is linear with sample size; the memory-effi-

cient operation reduces the memory cost as the number of

variants increases. For a study with �500,000 individuals

like the UK Biobank, KnockoffScreen-AL requires �20 GB

while the base procedure without the memory-efficient

matrix operation requires�60 GB. The results demonstrate

that the memory-efficient operation substantially reduces

the memory cost, with nearly equivalent computational

cost.

We also conducted simulation studies to evaluate the po-

wer and FDR of the proposed method, KnockoffScreen-AL,

and perform comparisons to the ‘‘exact’’ SCITmethod (Fig-

ures 2C and 2D). We found that both power and FDR

are nearly equivalent to the naive SCIT method, but
2340 The American Journal of Human Genetics 108, 2336–2353, December 2, 2021
with substantially reduced computa-

tional andmemory cost.We addition-

ally present comparisons with other

knockoff methods (second-order

knockoff generator proposed by Can-

des et al.11 and HMM knockoff gener-

ator) and other tests for defining

feature importance scores (SKAT and

burden tests) in Figures 2E and 2F.

We show that KnockoffScreen-AL

outperforms other methods in terms

of power, particularly at low FDR level
because of the implementation of multiple knockoffs.

More extensive comparisons have been performed previ-

ously in He et al.12

KnockoffScreen-AL discovers additional loci associated

with AD beyond the conventional analyses

We applied KnockoffScreen-AL to the UK Biobank data in

order to identify loci associated with AD. The UK Biobank

data include 488,377 participants, who were genotyped

on single-nucleotide polymorphism (SNP) microarrays

and imputed at high resolution based on the reference

panels from Haplotype Reference Consortium (HRC)

and the UK10Kþ1000Genomes.2 After pre-processing

steps described in the supplemental material andmethods,

we focused on 388,051 unrelated participants and

39,091,537 variants with an imputation quality score R

0.7. We did not restrict the analysis to British individuals

since the KnockoffScreen method was shown to be robust



A

B

Figure 3. Genome-wide analysis of Alzheimer disease in UK Biobank
(A) The Manhattan plot of p values (truncated at 10�50 for clear visualization) from the conventional common-variant and rare-variant
association tests with conventional GWAS threshold (p < 5 3 10�8) for FWER control.
(B) TheManhattan plot of KnockoffScreen-AL with target FDR at 0.10. The names of those loci previously reported by GWASs are shown
in purple; names of discoveries not included in Jansen et al.15 and Kunkle et al.16 are shown in red (FDR ¼ 0.05) and blue (FDR ¼ 0.10).
to population stratification in practice.12 We used the AD-

proxy score defined in Jansen et al.15 which combines the

self-reported parental AD status and the individual AD sta-

tus. The analyses were adjusted for age at last visit, sex, gen-

otyping array, assessment center, and the first 20 principal

components of genetic ancestry as provided by the UK Bio-

bank. We present the workflow in Figure 1. More details on

the UK Biobank data and the analyses are available in the

supplemental material and methods.

We considered single common variants (MAFR 1%) and

2 kb rare-variant windows (MAF < 1% and MAC R 25)

across the genome.22 For each variant/window, we

computed the p value for the original variant/window

and its five knockoffs. Then we defined the feature impor-

tance score T ¼ �log 10 p and applied the knockoff filter.
The American Jour
We compared the results from conventional association

tests (i.e., the same combination of single variant and win-

dow-based tests as implemented in KnockoffScreen-AL,

but with a conventional GWAS threshold of 5 3 10�8 for

family-wise-error-rate (FWER) control to the results from

KnockoffScreen-AL at an FDR threshold of 0.1 (Figure 3).

We note that the comparison is in favor of conventional

association tests because the threshold of 5 3 10�8 does

not account for the additional rare-variant windows. In-

spection of QQ-plots of all tests shows that the type I error

rate is well controlled (Figure S1). Tables 1 and 2 summarize

the lead variant/window per locus. Known AD loci are

named based on their commonly used names in the litera-

ture. For other loci, we name them based on the proximal

gene(s). The locus and gene annotations can be found in
nal of Human Genetics 108, 2336–2353, December 2, 2021 2341



Table 1. Lead common variant at each locus associated with Alzheimer disease in the UK Biobank at FDR ¼ 0.05 and FDR ¼ 0.10

Chr Start RSID Locus Gene p q W MAF Direction p. replication

chr1 161186243 rs11585858 ADAMTS4 ADAMTS4 2.0E�08 0.052 5.869 22.7% þþ 2.7E�02

chr1 207512620 rs4562624 CR1 CR1 7.7E�11 0.076 5.493 17.3% þþ 1.8E�15

chr2 127135234 rs6733839 BIN1 (BIN1-NIFKP9) 7.5E�37 0.003 25.981 39.1% þþ 4.0E�28

chr4 11026145 rs4613558 CLNK/HS3ST1 (LINC02498-MIR572) 2.1E�07 0.055 5.780 26.6% þþ 3.9E�05

chr6 32615369 rs4959105 HLA (HLA-DRB1-HLA-
DQA1)

3.3E�08 0.038 6.135 30.6% – 1.3E�04

chr6 47627419 rs1385742 CD2AP (CD2AP-ADGRF2) 1.6E�06 0.066 5.664 35.4% þþ 2.2E�08

chr7 54848587 rs75061358 SEC61G-EGFR (SEC61G-EGFR) 1.8E�08 0.020 7.492 7.5% – 4.7E�02

chr7 100374211 rs1859788 PILRA/NYAP1 PILRA 1.8E�10 0.024 6.769 31.7% – 4.2E�05

chr8 27607747 rs35500730 CLU/PTK2B CLU 4.4E�10 0.014 8.854 47.2% – 1.7E�16

chr8 144103704 rs34173062 SHARPIN SHARPIN 2.1E�08 0.024 6.965 7.0% þþ 3.6E�02

chr10 59882255 rs536782446 CCDC6/ANK3 CCDC6 1.0E�06 0.055 5.781 44.9% þ N/A

chr11 60303473 rs55777218 MS4A MS4A4A 9.9E�12 0.010 10.762 37.6% – 4.0E�14

chr11 86157598 rs3851179 PICALM (RNU6-560P-
LINC02695)

9.8E�13 0.010 11.694 36.8% – 5.8E�16

chr11 121564744 rs529960410 SORL1 SORL1 2.8E�07 0.093 5.310 5.1% – 2.6E�08

chr13 70473040 rs145238220 RNU6-54P-
MTCL1P1

(RNU6-54P-MTCL1P1) 1.6E�08 0.020 7.493 2.0% þ- 9.5E�01

chr14 73461266 rs546214077 NUMB-HEATR/
PSEN1

(NUMB-HEATR4) 1.8E�06 0.064 5.696 40.1% þ N/A

chr15 58723762 rs6494036 ADAM10 ADAM10 1.1E�10 0.021 7.280 30.7% – 1.1E�04

chr15 63343279 rs145859269 APH1B CA12 1.3E�06 0.055 5.816 47.9% – 1.2E�01

chr17 49219935 rs616338 ABI3/ACE ABI3 9.6E�07 0.069 5.599 1.1% þ N/A

chr19 1043639 rs3752231 ABCA7 ABCA7 4.3E�08 0.024 6.866 25.6% þþ 7.4E�08

chr19 8065354 rs7351083 CCL25-FBN3 (CCL25-FBN3) 3.3E�06 0.096 5.289 38.3% – 2.6E�01

chr19 44906745 rs769449 APOE APOE <1E�323 0.003 inf 12.3% þþ 0.0Eþ00

chr19 54173120 rs34564463 TMC4/LILRB2 TMC4 8.7E�07 0.070 5.543 43.9% þþ 3.5E�01

For each locus, we present the representative variant/window with the largest W-statistic. The physical positions of each variant/window are given in build hg38.
The replication p value is based on summary statistics from Kunkle et al.16 For variants that cannot bematched to Kunkle et al.,16 we report the lead variant in LD (r2

> 0.4) if there is any. We assigned each significant variant to its overlapping gene(s) or intergenic region (‘‘gene’’ column). If it is within a gene, we report the
gene’s name; if it is intergenic, we report the upstream and downstream genes. The ‘‘locus’’ column presents the locus name corresponds to the one used in these
previous GWASs when it is applicable, which often corresponds to the likely causal gene. NA, not applicable.
the supplemental material and methods and Table S2.

Additional comparisons to the Benjamini-Hochberg (BH)

procedure for FDR control can be found in Figure S2.

Although there are many more associations when using

the BH procedure, we have shown in He et al.12 that the

BH procedure does not properly control for complex corre-

lations among genetic variants, which can lead to inflated

FDR.

The KnockoffScreen-AL analysis identified 23 common-

variant loci and 9 rare-variant loci at FDR < 0.1, corre-

sponding to 31 unique loci. APOE locus is the only one

that has both common-variant and rare-variant signals

(Tables 1 and 2), although conditional analyses adjusting

for APOE-ε2 and APOE-ε4 dosages show that the com-

mon-variant and rare-variant signals at the APOE locus

are mainly attributed to their LD with the APOE alleles ε2
2342 The American Journal of Human Genetics 108, 2336–2353, Dec
and ε4. Seventeen loci were genome-wide significant (p <

5 3 10�8) in the analysis using our variant/window-based

tests. All 17 genome-wide significant loci were also FDR sig-

nificant in the KnockoffScreen-AL analysis.

Among the 31 loci, 13 were previously reported in Jan-

sen et al. and Kunkle et al.,15,16 3 others were reported in

a recent large AD GWAS in Bellenguez et al.23—including

NCK2, SEC61G-EGFR, and SHARPIN (Table S2)—and 1 lo-

cus has not been reported before and is located between

RNU6-54P and MTCL1P1. The knockoff-based analysis

based on KnockoffScreen-AL identified 14 additional

loci. These included four previously reported15,16 AD loci

(CLNK/HS3ST1, CD2AP, SORL1, ABI3/ACE), two loci

(CCDC6/ANK3 and TMC4/LILRB2) recently reported in

Bellenguez et al.,23 as well as one locus located in the vicin-

ity (within 500 kb) of a gene associated with early-onset AD
ember 2, 2021



Table 2. Lead rare-variant window at each locus associated with Alzheimer disease in the UK Biobank at FDR ¼ 0.05 and FDR ¼ 0.10

Chr Start End Locus Gene p q W p. replication Lead variant

chr1 211680001 211682001 NEK2-LPGAT1 (NEK2-LPGAT1) 2.3E�06 0.069 5.58 7.3E�02 rs532925975

chr2 8271001 8273001 LINC00298 LINC00298, LINC00299 2.0E�09 0.016 8.53 N/A rs577011164

chr2 105749001 105751001 NCK2 NCK2 1.3E�06 0.089 5.34 6.1E�05 rs143080277

chr3 57873001 57875001 SLMAP SLMAP 3.2E�06 0.084 5.41 4.5E�01 rs546538267

chr4 24552001 24554001 DHX15 DHX15 1.2E�18 0.003 17.54 7.4E�01 rs181718679

chr6 41161001 41163001 TREM2 TREM2 3.4E�07 0.038 6.15 4.4E�11 rs75932628

chr9 88852001 88854001 MIR4289-PCNPP2 (MIR4289-PCNPP2) 6.9E�07 0.044 5.96 7.8E�01 rs577667049

chr15 46118001 46120001 SQOR-MTND5P40 (SQOR-MTND5P40) 3.1E�39 0.003 33.25 7.7E�01 rs372825762

chr19 45050001 45052001 APOE CLASRP 2.3E�06 0.069 5.58 5.6E�02 rs559118614

For each locus, we present the representative variant/window with the largest W-statistic. The physical positions of each variant/window are given in build hg38.
The replication p value is based on summary statistics from Kunkle et al.,16 aggregating all variants within the window via Cauchy’s combination test. Lead variant
corresponds to the strongest association with the AD proxy among the rare variants (MAF < 1%, MACR 25) in the window in the UK Biobank. We assigned each
significant window to its overlapping gene(s) or intergenic region (‘‘gene’’ column). If it is within a gene, we report the gene’s name; if it is intergenic, we report
the upstream and downstream genes. The ‘‘locus’’ column presents the locus name corresponds to the one used in these previous GWASs when it is applicable,
which often corresponds to the likely causal gene. NA, not applicable.
(NUMB-HEATR4/PSEN1) but for which no common variant

associations with late-onset AD have been reported. The

remaining seven loci included six loci identified through

rare variant window association tests (NEK2-LPGAT1,

LINC00298, SLMAP, DHX15, MIR4289-PCNPP2, SQOR-

MTND5P40) and one locus identified with common

variant association: CCL25-FBN3.

Replication based on an independent meta-analysis of

clinically diagnosed AD

For the 23 common-variant loci and 9 rare-variant loci sig-

nificant in the KnockoffScreen-AL analysis (31 unique loci

in total; APOE locus has both common-variant and rare-

variant signals), we assessed their replication using

GWAS summary statistics available from Kunkle et al.,16

an independent meta-analysis of clinically diagnosed AD

with 94,437 samples. We evaluated whether the lead

variant/window per locus (with largest W feature statistic

in the knockoff-based analysis) reached nominal signifi-

cance (p < 0.05) or a more stringent replication threshold

p < 0:05
23þ9 ¼ 0:0016 based on a Bonferroni correction. For

the single common variants, we also evaluated the

concordance in the direction of effects. For six common

variants which were not present in the replication

study, three of them could be linked to a proxy variant

(r2 > 0.4) in the replicated study: CLU (rs35500730–

rs1532276, r2 ¼ 0.62), SORL1 (rs1385742–rs11218343,

r2 ¼ 0.89), and APH1B (rs145859269–rs1039289, r2 ¼
0.40). For rare-variant windows, we calculated the replica-

tion p value for the same window but based on summary

statistics from Kunkle et al.,16 aggregating all rare variants

(MAF < 0.01) within the window via Cauchy’s combina-

tion test.

Among the 23 common variants significant in the

KnockoffScreen-AL analysis, 20 could be tested for replica-

tion and 16 (80%) were found to replicate at p < 0.05 with
The American Jour
a concordant direction of effect (Table 1) (13/20 reached

the more stringent replication threshold p < 0.0016).

Among the ones which did not reach significance, two

loci, LILRB2 and APH1B, were recently reported in Bellen-

guez et al.23 Among the three variants that could not be

tested, two were previously published (CCDC6 and

ABI3).15,24 For the rare variant window associations, only

2 out of 8 (25%) windows tested reached nominal replica-

tion (p < 0.05; same 2/8 reached the more stringent

replication threshold p < 0.0016), using the Cauchy’s

combination test to aggregate p values of rare variants in

each window based on Kunkle et al.16 summary statistics

(Table 2). This is not unexpected given the challenges

in replication of rare variant signals. For the Kunkle

et al.16 study, data were imputed based on the 1000 Ge-

nomes Project reference panel including a combination

of technologies such as low-coverage whole-genome

sequencing (mean depth 7.43), high-coverage whole-

exome sequencing (mean depth 65.73), and microarray

genotyping as opposed to high-resolution WGS reference

panels.25 The 1000 Genomes Project (1000G) has a smaller

sample size than the imputations panels used by the UK

Biobank (HRC and UK10kþ1000G).2 Thus, the imputation

of variants with MAF below 1% is of lower quality

compared to that based on the UK Biobank data.

Using ToppFun,26 we have also tested whether the

candidate genes in Tables 1 and 2 are enriched in particular

Gene Ontology (GO) molecular function, biological pro-

cess, and cellular component. Interestingly, identified

genes were significantly enriched for (1) molecular func-

tion (complement component C3a binding, amyloid-

beta binding), (2) biological process (amyloid-beta forma-

tion, metabolic process as well as amyloid precursor

protein catabolic and metabolic process), and (3) cellular

component (cell surface, protein complex, clathrin coated

vesicle, high-density lipoprotein particle, and endosome)
nal of Human Genetics 108, 2336–2353, December 2, 2021 2343



Figure 4. Single-cell RNA-seq data (n ¼ 143,793) analysis of the 43 proximal genes
For each gene, we present the differentially expressed genes (DEG) analysis, comparing Alzheimer disease-affected individuals (AD) with
healthy control subjects.
(A) All 43 proximal genes.
(B) The additional genes identified by KnockoffScreen-AL but missed by conventional association tests. Each dot represents a gene.
Colors represent different cell types. The black dashed lines present p value cutoff at 0.05; the gray dashed lines present p value cutoff
at 0.05/43 (number of candidate genes). For visualization purpose,�log10(p) was capped at 15 and abs(log2(fold change)) was capped at
1.0. Positive log2 fold change corresponds to higher expression level in AD.
(Table S3). These results are consistent with previous re-

ports in Jansen et al.15

Single-cell transcriptomics differential expression

analyses validate proximal genes

For the genes corresponding to the loci in Tables 1 and 2,

we performed differentially expressed gene (DEG) analyses

using single-cell RNA sequencing data (scRNA-seq) from

143,793 single-nucleus transcriptomes from 17 hippocam-

pus samples (8 control subjects and 9 AD-affected individ-

uals) and 8 cortex samples (4 control subjects and 4 AD-

affected individuals).27 We observed that 43 out of 59

genes are present in the scRNA-seq dataset, with 21/43 cor-

responding to the additional loci identified by Knock-

offScreen-AL. We performed the DEG analysis stratified

by 14 cell types, spanning major brain cell types (e.g., neu-
2344 The American Journal of Human Genetics 108, 2336–2353, Dec
rons, astrocytes, microglia)—but also including cell types

previously missed in prior analyses28–30 that reside in the

vascular, perivascular, and meningeal compartments.

These include endothelial cells, pericytes and smoothmus-

cle cells, fibroblasts, and perivascular macrophages and

T cells. We included age, batch, and cellular detection

rate as covariates.We additionally adjusted for within-sam-

ple correlation by including sample dummy variables as

covariates. We used this fixed effect model instead of a

random effect model because the number of clusters is

small relative to the total number of cells. We considered

p value threshold 0.05 for suggestive signals and a more

stringent Bonferroni correction 0.05/43 ¼ 0.0012 for

significant signals. Results are reported in Figure 4. More

details on the data and the analyses are available in the

supplemental material and methods.
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We describe here genes with both large log2 fold change

and high statistical significance. The results stratified by

brain regions can be found in Figure S3. Overall, we

observed that 31/43 (72.1%) genes exhibit suggestive

signal (p < 0.05) in at least one cell type, a significantly

higher proportion compared with the rest of the genes

(41.7%; p ¼ 7.2 3 10�5 by Fisher’s exact test). Among the

21 genes at loci only identified by KnockoffScreen-AL,

15/21 (71.4%) exhibit suggestive signals (p < 0.05), similar

to the proportion for the genes identified by the conven-

tional association tests (16/22; 72.7%). ANK3, SORL1,

PSEN1, NUMB, CD2AP, LPGAT1, SLMAP, and DHX15

show significant difference in expression (p < 0.05/43 ¼
0.0012) in at least one cell type (Figure S3). Interestingly,

LPGAT1, SLMAP, and DHX15 correspond to rare-variant

loci that could not be replicated above based on the Kunkle

et al.16 summary statistics.

The scRNA-seq analysis also provides insights into the cell

type-specific functional effectsofknownADgenes, including

APOE, ADAMTS4, BIN1, PICALM, CLU, and two recently re-

ported genes, NCK2 and EGFR.23 Notably, ADAMTS4 is the

most significant genewith affected individuals having lower

expression in smoothmuscle cells (SMCs) and inpericyte cell

types in both hippocampus and cortex tissues. APOE,

PICALM,CLU, and SORL1 showhigher expression in affected

individuals in SMCs, as well as arterial cells forCLU and peri-

cytes forAPOE.APOE expression in astrocytes is significantly

lower in affected individuals which is interesting, given that

astrocytes are themain cell types inwhichAPOE is expressed

in the brain.31NCK2 expression inmicroglial cells are signif-

icantly higher in affected individuals compared with control

subjects. EGFR expression is significantly lower in affected

individuals in pericytes (cortex tissue) and in veinous and

capillary cells (hippocampus tissue).

Differential proteomic analyses: Age effect and

differential abundance across neurodegenerative

diseases and stages

In addition, we performed differential protein level analysis

of the proximal genes at the 31 significant loci using Stan-

ford ADRC plasma proteomics data on individuals with

neurodegenerative disorders (AD, Parkinson disease, Lewy

body dementia, mild cognitive impairment) and healthy

control subjects (HC) (see Appendix A). We observed that

a relatively small proportion of genes can be linked to pro-

teins. For example, among the 43 genes in the scRNA-seq

dataset, 21 can be linked to a protein in this dataset, 8 of

which are at the loci identified only by KnockoffScreen-

AL. Since the variants at the significant loci may regulate

the expression of other nearby genes and thus affect the

protein levels, we expand the analysis to include all genes

within a 5200 kb region for each locus. For each protein,

we regressed the log2 transformed protein level on neuro-

degenerative disorders status and age, adjusting for sex,

visit, storage days, total protein levels per sample, and 5

principal components calculated by singular value decom-

position of the residuals. Since there are multiple visits per
The American Jour
sample, we additionally included a random intercept to ac-

count for within-subject correlation. Figure 5A shows the

results for all proteins available in this dataset that are

linked to genes within 5200 kb of our candidate loci (78

linked genes in total).We performed the differential protein

level analysis comparing AD to HC. We also evaluated the

effect of aging on protein levels. We considered p value

threshold 0.05 for suggestive signals and a more stringent

Bonferroni correction 0.05/78¼ 0.00064 for significant sig-

nals. More details on the data and the analyses are available

in the supplemental material and methods.

For the analysis comparing AD to HC, we observed that

CD2AP, TREM2, EGFR, HS3ST1, and PTK2B exhibit sugges-

tive signal (p < 0.05), with CD2AP and HS3ST1 corre-

sponding to the loci identified only by KnockoffScreen-

AL. CD2AP, EGFR, HS3ST1 and PTK2B also show suggestive

signal in the scRNA-seq analysis. Particularly, the lower

protein levels for EGFR in AD-affected individuals versus

control subjects (p ¼ 0.0003) is consistent with the find-

ings from the scRNA-seq data. CD2AP (p ¼ 0.0079) corre-

sponds to a locus identified by KnockoffScreen-AL only;

it shows significant replication p value in Kunkle et al.16

(Table 1) and significant difference in expression in the

scRNA-seq analysis (Figure 4).

For the analysis of age effect, SEC61G, NUMB, NCK2,

TREM2, EGFR, and LILRB2 exhibit suggestive association

with aging (p < 0.05). NUMB, NCK2, and EGFR also

show suggestive signal in the scRNA-seq analysis. Notably,

we found that EGFR (p ¼ 3.43 10�5 for AD versus HC; p ¼
2.6 3 10�29 for age effect) and TREM2 (p ¼ 0.013 for AD

versus HC; p ¼ 2.0 3 10�21 for age effect) exhibit consis-

tent association with AD and aging, with EGFR protein

levels significantly decreasing with age across considered

neurodegenerative disorders (Figure 5E) and TREM2 pro-

tein levels significantly increasing with age (Figure 5F). In

addition to the 43 proximal genes, we also observed addi-

tional genes associated with AD or age (p < 0.05) within

the 5200 kb region of the 31 significant loci, e.g., USF1

(near ADAMTS4), APOC1 (near APOE), CFD and POLR2E

(near ABCA7), and CR2 (near CR1).

In summary, the scRNA-seq and proteomic analyses

show that 79.1% of all proximal genes exhibit at least sug-

gestive signal (p < 0.05) in the scRNA-seq and/or prote-

omics analyses, a substantially higher fraction than for

background genes (79.1% versus 46.2%; p ¼ 1.8 3 10�5

by Fisher’s exact test). Similarly, 76.2% of the ones identi-

fied only by KnockoffScreen-AL exhibit at least suggestive

signal (76.2% versus 46.2%; p ¼ 0.0074). These results

taken together demonstrate that KnockoffScreen-AL is

able to identify weaker signals, particularly rare variant

loci, that are missed by conventional association tests

and that are supported by evidence from expression and

proteomic analyses for a potential functional effect on AD.

Colocalization between EGFR and gene expression traits

Given the consistent findings on EGFR in our UK Biobank,

scRNA-seq, and proteomics analyses, we sought to
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A

D

B

E F

C

Figure 5. Proteomics data analysis of genes at the 31 significant loci
In addition to the 43 proximal genes, we additionally include genes within 5200 kb at each significant loci that can be matched with
proteomics profile.
(A and D) We present the differential abundance analysis comparing Alzheimer disease (AD)-affected individuals with healthy control
subjects (HC) (A) and evaluated the age effect (D). Each dot presents a gene. Different colors represent different types of significance. NS,
not significant; log2FC: |log2 fold change|R 0.05; p value: p value% 0.05; p value and log2FC: |log2 fold change|R 0.05 and p value%
0.05. The dashed gray lines correspond to the Bonferroni correction p value threshold 0.05/78 ¼ 0.00064.
(B and C) Differential abundance analysis of EGFR/TREM2.
(E and F) Age effect analysis of EGFR/TREM2. MCI, mild cognitive impairment; LBD, Lewy body dementia.
investigate the possible colocalization between brain eQTL

p values and our single variant p values at EGFR and nearby

genes (Figures 6 and S4).We report the posterior probability

of colocalization (PP4) andpvaluecomputedwithRpackage

coloc.32We found that theGWAS signal at the SEC61G-EGFR

locus colocalizes with an eQTL associated with decreased

EGFR expression in the largest brain eQTL meta-analysis

available33 that included1,433 individualswithbraincortex

tissues from ROSMAP, MAYO, MSBB, and CommonMind

(PP4¼ 1, eQTL p¼ 1.03 10�27) and inmultiple GTEx brain

tissues, notably cortex (PP4 ¼ 0.99, eQTL p ¼ 4.6 3 10�9),

cerebellum (PP4 ¼ 1, eQTL p ¼ 4.63 10�9), anterior cingu-

late cortex (PP4 ¼ 0.72, eQTL p ¼ 2.5 3 10�5), and caudate

(PP4 ¼ 0.81, eQTL p ¼ 3.0 3 10�5). Note that the EGFR

lead SNP in Table 1, rs75061358, was not included in

GTEx. Thus, the eQTL p values are reported for the lead

variant rs6979446 in high linkage disequilibrium with

rs75061358 (r2 ¼ 0.87, in the 1000G EUR25). None of the

other nearby genes at this locus showed significant colocal-

ization in any of the eQTL datasets considered.
Discussion

We propose a computationally efficient method, Knock-

offScreen-AL, for simultaneous genome-wide locus discov-
2346 The American Journal of Human Genetics 108, 2336–2353, Dec
ery and prioritization of causal variants in biobank-scale

WGS/WG-imputed studies. KnockoffScreen-AL can priori-

tize causal variants over associations due to linkage

disequilibrium and integrate multiple knockoffs for

improved power, stability, and reproducibility. It allows

flexible incorporation of state-of-the-art and future associ-

ation tests in order to achieve the benefits of knockoff-

based inference.

KnockoffScreen-AL builds upon previously developed

KnockoffScreen method and uses a shrinkage algorithmic

leveraging (AL) technique and several optimization strate-

gies to make the knockoff generation feasible for biobank-

scale WGS/WG-imputed studies where both the sample

size and the number of variants is exceedingly large. Via

simulation studies, we have demonstrated that it leads to

equivalent power as the ‘‘exact’’ SCIT algorithm with

much lower computational and memory costs. Unlike the

HMM knockoff generator in KnockoffZoom that requires

first phasing haplotypes and then converting the generated

knockoffhaplotypesback to genotypes,KnockoffScreen-AL

is able to directly generate knockoffs based on unphased ge-

notype data. Therefore, KnockoffScreen-AL can be easily

applied to whole-genome studies without the need to

phase, a substantial advantage given the high computa-

tional cost of phasing and the challenges in accurately

phasing rare variants beyond reference panels.
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Figure 6. Colocalization analysis of EGFR
(A) Colocalization analysis of EGFR and nearby genes with the brain eQTLs meta-analysis and GTEx brain tissue eQTLs.
(B) Colocalization analysis of EGFRwith the brain eQTLsmeta-analysis. The lead variant rs75061358 and its LD linked variant rs6979446
are highlighted (red and purple, respectively).
Even though the current AD application is based

on a smaller sample size compared to recent AD

GWAS,15,23,24,34,35,36 it demonstrates the ability of the pro-

posed Knockoffscreen-AL method to handle large biobank-

scale data. Compared to the analysis of the UK Biobank data

in Jansen et al.,15 the data version we used (March 2021 up-

date of the UK Biobank resource) contains more reported

AD-affected individuals (ICD10 code) and more reported

parental AD (due to 2nd visits for some participants), so

our single-variant/window analysis is better powered. Our

analyses are also including more individuals based on

different ancestry inclusion criteria. We were able to iden-

tify additional loci, such as EGFR, NCK2, and SHARPIN

which achieve nominal p values in the replication study.

Head-to-head comparisons of the conventional and

knockoff-based analyses emphasize the higher statistical

power of Knockoffscreen-AL which highlighted additional

loci, including known AD loci such as CLNK/HS3ST1,

CD2AP, ABI3/ACE, and SORL1. Therefore, re-analysis of

large datasets such as that in de Rojas et al.34 or other recent

AD datasets23,35,36 has great potential to discover additional

loci, and the proposed optimization of computing time and

memory usage makes such analyses feasible.

Our independent replication based on Kunkle et al. sum-

mary statistics16 shows that in total 20/31 (64.5%) loci can

be replicated (p< 0.05). Among them, 80% of the common

variant associations are replicated with concordant direc-

tion of effect (Table 1). The 11 loci that cannot be replicated

include common variants that are not present in the repli-

cation cohort (3/11) and rare variants not being considered

by the replication study (6/11). These ‘‘unreplicated’’ com-

mon variant loci are likely due to the relatively low statisti-

cal power to replicate weak associations. Another plausible

explanation is phenotypic heterogeneity. The UK Biobank

AD-proxy, with self-reported parental AD status, is likely
The American Jour
more heterogenous than the clinical diagnosis used in Kun-

kle et al.16We note that these loci are worth investigating in

larger datasets. For example, ABI3/ACE is a known AD locus

although its lead variant did not have a high-LD proxy in

our replication study. CCDC6/ANK3 was reported as

genome-wide significant in recent large AD GWAS in

Bellenguez et al. and Schwartzentruber et al.23,24 Our differ-

ential expression analysis using scRNA-seq data provided

additional support to the CCDC6/ANK3 locus by showing

that AD-affected individuals have significantly higher

ANK3 expression relative to control subjects in multiple

cell types in cortex tissue. Additionally, Knockoffscreen-AL

enabled analysis of rare variants which were not considered

by other GWASs. As such, the identified rare-variant win-

dows (Table 2) are harder to replicate based on the consid-

ered Kunkle et al.16 summary statistics. However, our

scRNA-seq analysis shows that several of the corresponding

genes exhibit significant differences in expression (LPGAT1,

SLMAP, and DHX15). These associations require additional

validations in future whole-exome or whole-genome

sequencing studies at scale.

We observed a high proportion of proximal genes iden-

tified by KnockoffScreen-AL exhibit suggestive effect in

either scRNA-seq or proteomics analyses (Figures 4

and 5). Notably, our DEG analysis of scRNA-seq data high-

lighted a known main effect of APOE in astrocytes31 and a

significant reduced expression of ADAMTS4 in AD-affected

individuals compared with control subjects in pericyte

cells within brain tissues. Proteomics analyses highlighted

a rare variant locus, TREM2. The TREM2 protein was more

abundant in AD-affected individuals, although we did not

observe significant TREM2 DEG in scRNA-seq. This effect

was also observed inmild-cognitively impaired (MCI) indi-

viduals but not when comparing Parkinson disease (PD)-

affected individuals to control subjects. Interestingly
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Appendix A

Overview of the multiple-knockoffs procedure

KnockoffScreen-AL is based on the multiple sequential

knockoffs generator proposed in KnockoffScreen (M is

the total number of knockoffs), which we describe below.

Algorithm 1. Sequential conditional independent tuples
(multiple knockoffs)

j ¼ 1

while j%p do

Sample ~G
1

j ;/; ~G
M

j independently from

LðGj

���G�j; ~G
1

1:ðj�1Þ;/; ~G
M

1:ðj�1ÞÞ
j ¼ jþ 1
End

where G�j denotes all genetic variants except for the jth

variant; LðGj

���G�j; ~G
1

1:j�1; /; ~G
M

1:j�1Þ is the conditional dis-

tribution of Gj given G�j and ~G
1

1:ðj�1Þ; /; ~G
M

1:ðj�1Þ. We

consider the genetic sequence as a Markov chain with

memory and approximate LðGj

���G�j; ~G
1

1:j�1; /; ~G
M

1:j�1Þ by
LðGj

���Gk˛Bj
; ~G

1

1%k%j�1;k˛Bj
; /; ~G

M

1%k%j�1;k˛Bj
Þ, where the

index set Bj defines a subset of genetic variants ‘‘near’’ the

jth variant, as defined in KnockoffScreen to include ‘‘K-

nearest’’ genetic variants within a 100 kb window (5100

kb from the target variant)47 using the absolute sample cor-

relation coefficient
��rjk�� as a similarity measure. Specifically,

we include top K variants with
��rjk�� > 0:05 up to K ¼ n1=3,
TREM2 protein levels were significantly increased with age

across neurodegenerative disorders. These findings likely

reflect the microglial responses which are more preponder-

ant with age and AD pathology. In addition, although

many of the additional loci identified by KnockoffScreen-

AL are not replicated in Kunkle et al.,16 76.2% of the corre-

sponding genes exhibit suggestive signal (p < 0.05) in the

scRNA-seq or proteomics analysis. This proportion is

similar to that of the genes identified by conventional asso-

ciation tests and the known AD genes. The result demon-

strates that KnockoffScreen-AL is able to identify weaker

signals, particularly rare variant loci that aremissed by con-

ventional association tests yet potentially have a func-

tional effect on AD.

Lastly, we characterized in more detail one genome-wide

significant locus located between SEC61G and EGFR. This

association with AD colocalizes with an EGFR eQTL in

both the largest brain eQTL meta-analysis33 and GTEx.4

Our scRNA-seq DEG and proteomics analyses support a

role for EGFR in AD pathology. Specifically, EGFR expres-

sion is significantly reduced in AD-affected individuals

compared to control subjects in capillary and pericyte cells

in brain. Similarly, we noted that EGFR protein levels are

significantly reduced in AD-affected individuals compared

to control subjects; a similar direction of effect was

observed when considering MCI or Lewy-body dementia-

affected individuals compared to control subjects. Further-

more, EGFR protein abundance was found to significantly

decrease with age. In contrast to our observation, the

Accelerating Medicine Partnership in AD (AMP-AD) re-

ported, based on bulk RNA-seq data, that EGFR expression

was significantly increased in AD-affected individuals

compared to control subjects (Figure S5A). Additionally,

the AMP-AD database (Figure S5B) also reports significant

associations between EGFR expression level and both

Braak stage and CERAD score. Interestingly, the two associ-

ations are in opposite direction: EGFR expression is nega-

tively correlated with Braak stage, quantifying tau pathol-

ogy, and positively correlated with CERAD score,

quantifying neuritic plaques aggregates and the likeliness

to have pathology corresponding to AD.

EGFR is a known oncogene with existing inhibitory ther-

apeutics designed to curb proliferative potential and

induce autophagy.37,38 In neurodegenerative diseases, up-

regulation of transcriptomic and proteomic EGFR in multi-

ple brain tissues has been associated with increased AD

risk.39,40 Mixed results of treating AD with EGFR inhibitors

have been observed in animal models, often hinging on

their ability to penetrate the blood-brain barrier, resulting

in a reduction of reactive astrogliosis and activation of

autophagy.37,41,42 Several single-cell types implicated in

maintaining the blood-brain barrier43,44 show significant

AD-associated loss of EGFR. Coupled with age-related loss

of EGFR in plasma being more pronounced in AD-affected

individuals versus control subjects, EGFR appears to play

diverging roles, and its inhibition could negatively impact

cell types supporting blood-brain barrier integrity.45
2348 The American Journal of Human Genetics 108, 2336–2353, Dec
Conversely, therapeutics that increase levels of EGFR

outside of the brain may improve blood-brain barrier

integrity but could pose an oncogenic risk. These results

further highlight the importance of EGFR in AD progres-

sion and demonstrate that understanding spatial and

cellular context of EGFR signaling will be crucial for tar-

geted therapeutic development.

There are several limitations to the current study. First,

the proposed method is developed for unrelated samples.

Given the increasing number of studies that include

related samples, it would be important to extend the

method to handle related samples. A simple modification

is to use p values from methods that account for sample

relatedness, such as STAAR.46 However, it is unclear how

that affects the FDR and power because the knockoff gen-

erationmay also need to bemodified to account for sample

relatedness. Second, the current UKBB analysis only con-

siders genetic variation on the autosomes. The current

method would need to be adapted for future analyses of

X chromosome. Finally, it would be interesting to consider

data-adaptive window sizes and to integrate functional

scores to improve the power of UKBB analysis, as described
ember 2, 2021



where the choice of K ensures that the coefficient estima-

tions achieve asymptotic normality.48 To better account

for the tightly linked variants, we adopt the same practical

strategy in KnockoffScreen and perform a hierarchical clus-

tering such that variants from two different clusters do not

have a correlation greater than 0.75. We exclude variants

from Bj if they are in the same cluster as the target variant.

To avoid over-fitting, we additionally apply an iterative

procedure to reduce the number of top variants included

in the Bj until the R2 of the prediction model is less than

0.75.

Knockoff filter to define the threshold t and

Q-value for FDR control. Similar to KnockoffScreen,

we define W ¼
�
T �median

1%m%M
Tm

�
ITR max

1%m%M
Tm and

t¼min

8><
>:t > 0 :

1
M
þ 1

M
#fkR1; tRtg

#fk ¼ 0; tRtg % q

9>=
>;;

(Equation A1)

where Tm ¼ � log pm; I is an indicator function,

ITR max
1%m%M

Tm ¼ 1 if TR max
1%m%M

Tm and 0 otherwise; k ¼
arg max
0%m%M

Tm denote the index of the original (denoted as

0) or knockoff feature that has the largest importance

score; t ¼ T ð0Þ �median
1%m%M

T ðmÞ denote the difference be-

tween the largest importance score and the median of

the remaining importance scores. In addition, we define

the Q-value for a variant/window with statistics k ¼ 0

and t as

q¼min
t%t

1
M
þ 1

M
#fkR1; tRtg

#fk ¼ 0; tRtg ; (Equation A2)

where
1
Mþ 1

M#fkR1;tRtg
#fk¼0;tRtg is an estimate of the proportion of false

discoveries if we are to select all windows with feature sta-

tistic k ¼ 0;tRt, which is the knockoff estimate of FDR. For

variants/windows with ks0, we define q ¼ 1 and they will

never be selected. Selecting variants/windows with W > t

where t is calculated at target FDR¼ a is equivalent to se-

lecting variants/windows with q%a.

Low-rank regression with shared covariance structure

Based on the general SCIT algorithm described above, we

iteratively fit linear regressions to estimate

bGj ¼ ba þ
X

ksj;k˛Bj

bbkGk þ
X

1%m%M

X
k%j�1;k˛Bj

bgm
k
~G

m

k :

We calculate the residual bεj ¼ Gj � bGj and its M permu-

tations bε�1j ;.;bε�Mj , and then define the knockoff feature for

Gj to be ~G
m

j ¼ bGj þ bε�mj . This iterative procedure can be

time consuming when both the sample size and the num-

ber of variants is large. For simplification of notations, we

assume that Gj and ~G
m

k are already centered at 0. The

least-squares estimate for regression coefficients is

�ba; bbT
; bgT

�T

¼
h
cov

�
1;GBj

; ~GBj

�i�1�
1;GBj

; ~GBj

�T

Gj

where GBj
and ~GBj

correspond to the original genetic var-

iants Gk, ksj; k˛Bj and all existing knockoffs ~G
m

k , k%j�
1;k˛Bj,

cov
�
1;GBj

; ~GBj

�
¼

0
BBB@

1 0 0

0 GT
Bj
GBj

GT
Bj

~GBj

0 ~G
T

Bj
GBj

~G
T

Bj

~GBj

1
CCCA

It is worth noting that G is a sparse matrix and GT
Bj
GBj

is

a submatrix of GTG, which only needs to be calculated

once prior to the iterations. We can efficiently calculate

covð1; GBj
; ~GBj

Þ for different j, especially for the early itera-

tions where the number of existing knockoffs is small. To

calculate the inverse, we approximate ½covð1; GBj
; ~GBj

Þ��1

by spectral decompositionh
cov

�
1;GBj

; ~GBj

�i�1

zVD�1VT

where V contains the leading eigen vectors and D is a diag-

onal matrix with leading eigen values in decreasing order.

We choose V to explain 99.9% variation in covð1; GBj
; ~GBj

Þ.
This low-rank approximation leverages the fact that the

original genetic variants and the knockoffs are highly

correlated, and it further reduces the computing cost.

Shrinkage algorithmic leveraging

One popular method for dealing with data with ultra-large

sample size is sub-sampling. We propose to implement a

shrinkage algorithmic leveragingmethod in SCIT to reduce

data size before performing computations. It samples and

rescales rows (samples) according to an importance sam-

pling distribution based on the empirical statistical

leverage scores.14 In estimating ðba; bbT
; bgT Þ, we perform

the following steps:

1. Randomly sample r rows (samples) of ð1;GBj
; ~GBj

Þ
and the corresponding elements of Gj, using an

importance sampling distribution fpigni¼1.

2. Rescale each sampled individual by 1
r
ffiffiffiffi
pi

p to form a

weighted linear regression problem.

3. Solve the weighted linear regression to estimate ðba;bbT
; bgT Þ.

We adopt the shrinkage leveraging estimator14 to choose

pi ¼0:5pLev
i þ 0:5pUnif

i

where p
Unif
i corresponds to a uniform distribution and pLev

i

corresponds to a distribution defined by empirical statisti-

cal leverage scores. Specifically,

pLev
i ¼ hiiP

hii

;
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where hii ¼
Pp
j¼1

U2
ij ; p is the total number genetic variants

and U can be the orthogonal singular vectors of ð1; GBj
;

~GBj
Þ. In practice, we calculate the leverage scores based

on ð1; GÞ to quantify the overall sample importance. The

same leverage scores are used across SCIT iterations. To effi-

ciently calculate the leverage scores, we compute the par-

tial singular value decompositions by the augmented

implicitly restarted Lanczos bidiagonalization algorithm

of Jim Baglama and Lothar Reichel.14,49 We propose to

use the leading
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p log p

p
singular vectors to calculate the

leverage scores, and we show that this practical choice con-

trols FDR well in empirical simulation studies. To choose

the number of individuals being sampled, we utilize the

asymptotic results of Ma et al.14 that the relative error in

estimating ðba; bbT
; bgT Þ and bGj can be bounded if r ¼

OðK log KÞ, where K is the number of variants in Bj

described above. In practice, we combine this with the

choice of K ¼ n1=3, and choose r ¼ 10n
1
3 log n. We perform

this subsampling procedure once per 200 kb region prior to

the iterations. For ultra-rare variants (minor allele counts%

25) where a prediction model cannot be properly fitted, we

compute direct permutations of the original genotype as

knockoffs.

Memory-efficient matrix operation

One challenge for analyzing biobank-scale data is the huge

memory cost to extract and store large genotype matrix

prior to the computation. This is particularly challenging

for the analysis with multiple knockoffs, where each

knockoff is a copy of the original genotype matrix. We im-

plemented memory-efficient matrix operation using

shared memory and memory-mapped files based on the

bigmemory R package.49,50 During the SCIT procedure to

generate knockoffs, the newly generated knockoffs are

directly allocated to memory-mapped files, which can be

efficiently accessed and manipulated in downstream com-

putations. We also utilized the sparse nature of the geno-

type matrix to further reduce the memory cost.

Empirical power and FDR simulation

Each replicate consists of 10,000 individuals with genetic

data on 1,000 genetic variants from a 200 kb region, simu-

lated using the SKAT package. The SKAT haplotype dataset

was generated using a coalescent model (COSI), mimicking

the linkage disequilibrium structure of European ancestry

samples. The simulations include both rare and common

variants. Since the simulations here focus onmethod com-

parison for locus discovery to identify relevant clusters of

tightly linked variants, we simplify the simulation design

by keeping one representative variant from each tightly

linked cluster. Specifically, we applied hierarchical clus-

tering such that no two clusters have cross-correlations

above a threshold value of 0.75 and then randomly choose

one representative variant from each cluster to be included

in the simulation study. We set 0.5% variants in the 200 kb

region to be causal, all within a 10 kb signal window. Then

we generated the quantitative/dichotomous trait as

follows:

Quantitative trait : Yi ¼Xi1 þ b1g1 þ.þ bsgs þ ε
Q
i ;

Dichotomous trait : gðmiÞ¼ b0 þ Xi1 þ Xi2 þ b1g1 þ.

þ bsgs;

where Xi1 � Nð0;1Þ, εQi � Nð0;3Þ, Xi2 � Nð0;1Þ and they

are all independent; Xi1 is the observed covariate that is

adjusted in the analysis; Xi1 is the unobserved covariate;

both ε
Q
i and Xi1 reflect unobserved variation (e.g., unmea-

sured environment factors that affect the disease risk);

ðg1;.; gsÞ are selected risk variants; gðxÞ ¼ log
�

x
1�x

�
and mi

is the conditional mean of Yi ; for dichotomous trait, b0
is chosen such that the prevalence is 10%.We set the effect

bj ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mj ð1�mjÞ

p , where mj is the MAF for the jth variant. We

define a such that the variance due to the risk variants,

b21varðg1Þ þ.þ b2s varðgsÞ, is 0.03. We applied Knock-

offScreen-AL to the region as described before, to analyze

single common variants and 2 kb rare-variant windows.

A window is considered causal if it contains at least one

causal variant. For each replicate, the empirical power is

defined as the proportion of detected variants/windows

among all causal variants/windows; the empirical FDR is

defined as the proportion of non-causal variants/windows

among all detected variants/windows. We simulated 1,000

replicates and calculated the average empirical power and

FDR. We present the comparison between naive SCIT and

the proposed modifications in Figure 2. We also present

method comparison with other existing knockoff genera-

tors (second-order, HMM) and existing tests (SKAT,

burden).

Transcriptome and epigenome informed gene-based

analyses

The KnockoffScreen-AL framework allows leveraging tran-

scriptome and epigenome information for a gene-based

analyses based on the genome-wide summary statistics

(p values) from KnockoffScreen-AL.51 Specifically, for

each gene, we extracted p values in our UK Biobank anal-

ysis for all variants and windows overlapping with the

gene and its predicted enhancer regions. We also extracted

our p values for all cis-eQTL variants for 49 tissues in a 2Mb

nearby region (51 Mb from the transcription start site).

The cis-eQTLs were identified by a previous analysis of

GTEx v.8 data using an elastic-net model as in the Tran-

scriptome Prediction Model Repository (PredictDB).52 We

aggregated all p values using the Cauchy’s combination

test to compute a combined p value for the gene,

pintegrative. We also compute a p value restricted to those var-

iants/windows overlapping with the gene body itself (i.e.,

the interval between the transcription start site and the

2350 The American Journal of Human Genetics 108, 2336–2353, December 2, 2021



end of 30 UTR), pgene. We defined the feature importance

score for a given gene as

T ¼ � log 10pgene 3 Ipgene >a� � log 10pintegrative 3 Ipgene%a�;

where a� is a threshold on the gene-based p value that can

be used if we are interested only in identifying those genes

that have at least some suggestive evidence of association

based on the variation in the gene body itself. We set

a� ¼ 0:0001 in our applications. We note that this is a rela-

tively conservative threshold as it filters out those genes

that are not significant by themselves but could be signif-

icant if eQTLs or variants in predicted enhancers were

included. To include all genes, we can simply use a� ¼ 1

(see Figure S6 for comparison).

We computed the feature importance score for the orig-

inal genetic data and its knockoff counterparts, and then

applied a knockoff filter to select the genes significant at

an FDR threshold of 0.1 (Table S4, Figure S6). The gene-

based analysis identified similar associations as the

genome-wide screening, and notably emphasized as lead

genes ADAMTS4, CR1, BIN1, TREM2, PILRA, APOE,

NCK2, and SHARPIN at their respective loci. It additionally

highlighted SDF2 and CASP6 which were not part of loci

identified in our genome-wide screening and CASP6 was

not identified by the conventional p value-based Bonfer-

roni correction (p < 2.5 3 10�6). We calculated replication

p value usingMAGMA gene-based analysis using summary

statistics of common and rare variants from Kunkle et al.16
in He et al.12 and already implemented in the Knock-

offScreen-AL software package.
Data and code availability

The manuscript used data from existing studies from the UK Bio-

bank available at https://biobank.ndph.ox.ac.uk/showcase/ and

AD GWAS summary statistics available at https://www.niagads.

org/datasets/ng00075. The single-cell RNA-seq data for the candi-

date genes are available at https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc¼GSE163577. The proteomics data for the candi-

date genes are available upon request and will soon be published

on its own and made publicly available.

We have implemented KnockoffScreen-AL in a computationally

efficient R package that can be applied generally to the analysis

of other large biobank dataset or whole-genome sequencing

studies. The package can be accessed at https://cran.r-project.

org/web/packages/KnockoffScreen/index.html.
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