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Abstract

Although gait speed changes are associated with various geriatric conditions, standard gait

analysis systems, such as laboratory-based motion capture systems or instrumented walk-

ways, are too expensive, spatially limited, and difficult to access. A wearable inertia sensor

is cheap and easy to access; however, its accuracy in estimating gait speed is limited. In this

study, we developed a model for accurately estimating the gait speed of healthy older adults

using the data captured by an inertia sensor placed at their center of body mass (CoM). We

enrolled 759 healthy older adults from two population-based cohort studies and asked them

to walk on a 14 m long walkway thrice at comfortable paces with an inertia sensor attached

to their CoM. In the middle of the walkway, we placed GAITRite™ to obtain the gold stan-

dard of gait speed. We then divided the participants into three subgroups using the normal-

ized step length and developed a linear regression model for estimating the gold standard

gait speed using age, foot length, and the features obtained from an inertia sensor, including

cadence, vertical height displacement, yaw angle, and role angle of CoM. Our model exhib-

ited excellent accuracy in estimating the gold standard gait speed (mean absolute error =

3.74%; root mean square error = 5.30 cm/s; intraclass correlation coefficient = 0.954). Our

model may contribute to the early detection and monitoring of gait disorders and other geri-

atric conditions by making gait assessment easier, cheaper, and more ambulatory while

remaining as accurate as other standard gait analysis systems.

Introduction

Gait speed is associated with numerous geriatric conditions such as frailty, disability, falls, cog-

nitive decline, and mortality [1–5]. However, standard gait analysis systems, such as labora-

tory-based motion capture systems or instrumented walkways, are too expensive, spatially

limited, and difficult to access for simply estimating gait speed in older adults. Although gait

speed can also be manually measured using a stopwatch, it is subject to human error and has
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limited precision [5]. To overcome these limitations, several studies have attempted to estimate

gait speed using wearable inertia sensors, which are far cheaper, less spatially constrained, eas-

ier to access than motion capture systems and instrumented walkways, and less susceptible to

human error than stopwatches [6]. However, the accuracy of gait speed estimation using a

wearable inertia sensor is still moderate because a wearable inertia sensor does not directly

measure gait speed but estimates it indirectly through direct integration of acceleration [7],

kinematic modeling and correction of gait motion [8], regression modeling of data [9, 10] or

hybrid methods [11, 12]. Although we previously reported a regression model for estimating

gait speed using a wearable inertia sensor in healthy older adults [10], our model had limited

accuracy in case of older adults whose gait speed was slower than 100 cm/s [10].

Gait speed is the product of cadence and step length. Because we have demonstrated that

cadence can be reliably and validly measured by a wearable inertia sensor over a wide range of

gait speeds [13], the limited accuracy of gait speed estimated by a wearable inertia sensor may

be attributed to the limited accuracy in estimating the gait features associated with step length.

Step length is the product of motions in torso, knees, and feet, and is associated with the body

weight that contributes to thrust power while walking [14, 15]. Therefore, we can improve the

accuracy of gait speed estimation using a wearable inertia sensor by including the features

associated with step length acquired from an inertia sensor, such as vertical height displace-

ment, roll angle, yaw angle of the center of body mass (CoM), and body weight in the regres-

sion model for estimating gait speed. In addition, we can further improve the accuracy of gait

speed estimation by stratifying the participants into sequential subgroups of step length and

developing a regression model within each subgroup because a linear regression model is vul-

nerable to the degree of homogeneity of a sample [16] and the step length may change consid-

erably with the health state in older adults [17].

In the current study, we developed step length subgroup-specific regression models for esti-

mating gait speed in healthy older adults using age, foot length, and the features associated

with step length acquired from a wearable inertia sensor placed at the CoM and examined

their accuracy using the gait speed estimated by an instrumented walkway system.

Methods

Participants

As summarized in Table 1, we enrolled 1,058 participants from two cohort studies: 759 from

the Korean Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD) [18] and 299

from the Korean Frailty and Aging Cohort Study (KFACS) [19]. The KLOSCAD and KFACS

are population-based prospective cohort studies of elderly Koreans. In the KLOSCAD, 6,818

Koreans aged 60 years and over who were randomly sampled from 13 districts across South

Korea have been followed every two years since 2009. In the KFACS, 3,000 Korean volunteers

aged 70–84 years were followed up every two years from 2016 to 2020. Among the 1,058 partic-

ipants, 759 community-dwelling healthy older adults (338 men aged 74.8±5.0 years old and

421 women aged 73.3±4.5) were included in the current analysis after excluding participants

with major psychiatric disorders, including mood disorders and neurocognitive disorders,

neurologic disorders including Parkinson’s disease and stroke, and musculoskeletal diseases

that may affect gait or balance at the baseline assessment or any follow-up assessment. We also

excluded participants whose Tinetti Performance Oriented Mobility Assessment (POMA)

score was below 25 [20].

All the participants provided written informed consent themselves or via their legal guard-

ians. This study was approved by the Institutional Review Board of the Seoul National Univer-

sity Bundang Hospital (IRB: B-2107-696-115).
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Clinical assessment

Geriatric psychiatrists or neurologists with expertise in dementia research performed face-to-

face, standardized diagnostic interviews; physical and neurological examinations; and labora-

tory tests, including complete blood counts, chemistry profiles, serological tests for syphilis,

echocardiography, and chest radiography. Research neuropsychologists or trained research

nurses administered the CERAD-K neuropsychological assessment battery (CERAD-K-N),

digit span test (DST), and frontal assessment battery (FAB) [21, 22].

We diagnosed dementia and other psychiatric disorders according to the DSM-IV [23]

diagnostic criteria and determined the global severity of cognitive disorders using the clinical

dementia rating (CDR) [24]. We evaluated gait and balance using the POMA. A higher POMA

score represents better gait and balance, with a maximum score of 28 [20].

Gait assessments

We measured the gait of each participant using an IMU (FITMETER1 [FitLife Inc., Suwon,

Korea] or ActiGraph1 [SMD solution, Seoul, Korea]) placed over the center of body mass

(CoM) and the GAITRite™ (CIR Systems Inc., Havertown, PA) simultaneously. The IMUs

were hexahedrons (35 × 35 × 13 mm [14 g]/30 × 40 × 10 mm [17 g]) with smooth edges and a

digital tri-axial accelerometer (BMA255, BOSCH, Germany) and gyroscope (BMX055,

BOSCH, Germany). They could measure tri-axial acceleration up to ± 8 g (with a resolution of

Table 1. Characteristics of the participants.

All (N = 759) Cohort Sex

KLOSCAD (N = 532) KFACS (N = 227) p Men (N = 338) Women (N = 421) p

Women (%) 55.5 53.4 60.4 .125

Age (year) 73.9 ± 4.8 73.2 ± 5.1 75.6 ± 3.4 <0.001 74.8 ± 5.0 73.3 ± 4.5 <0.001

MMSE (point) 27.4 ± 2.3 27.6 ± 2.3 26.8 ± 2.1 <0.001 27.5 ± 2.3 27.3 ± 2.3 0.160

POMA (point) 27.7 ± 0.6 27.7 ± 0.6 27.8 ± 0.6 0.748 27.8 ± 0.6 27.7 ± 0.6 0.449

Height (cm) 159.8 ± 8.1 160.2 ± 8.1 159.0 ± 8.1 0.155 166.5 ± 5.8 154.4 ± 5.1 <0.001

Weight (kg) 61.6 ± 9.0 61.7 ± 9.0 61.2 ± 9.1 0.935 66.9 ± 8.3 57.3 ± 7.0 <0.001

BMI 24.1 ± 2.6 24.0 ± 2.6 24.2 ± 2.7 0.239 24.1 ± 2.7 24.0 ± 2.6 0.896

Overweight (%)� 34.7 34.8 34.4 .987 36.4 33.3 .665

Underweight (%)† 1.8 1.9 1.8 1.8 1.9

Foot length (cm) ‡, ¶ 23.4 ± 1.4 23.4 ± 1.4 23.4 ± 1.4 0.949 24.5 ± 1.0 22.6 ± 0.9 <0.001

VHD (cm) §, ¶¶ 3.29 ± 0.77 3.27 ± 0.75 3.36 ± 0.83 0.034 3.55 ± 0.83 3.08 ± 0.65 <0.001

Cadence (steps/min) ¶ 115.5 ± 9.4 114.8 ± 9.8 117.2 ± 8.3 0.001 113.0 ± 8.7 117.6 ± 9.5 <0.001

Gait speed (cm/s) ¶ 114.4 ± 17.9 113.3 ± 18.7 117.0 ± 15.7 0.002 116.0 ± 18.4 113.1 ± 17.4 0.056

Step length (cm) ¶ 58.6 ± 7.0 58.4 ± 7.0 59.3 ± 7.1 0.037 60.8±7.3 56.9±6.2 <0.001

Roll angle (◦)¶¶ 6.4 ± 2.4 6.1 ± 2.4 7.0 ± 2.4 <0.001 5.3 ± 1.9 7.2 ± 2.5 <0.001

Yaw angle (◦)¶¶ 12.2 ± 3.6 12.2 ± 3.7 12.3 ± 3.4 0.762 12.6 ± 3.7 12.0 ± 3.5 0.046

KLOSCAD, Korean Longitudinal Study on Cognitive Aging and Dementia; KFACS, Korean Frailty and Aging Cohort Study; MMSE, Mini Mental Status Examination;

POMA, Tinetti Performance Oriented Mobility Assessment; VHD, vertical height displacement; BMI, body mass index

All values, except the percentages of women, overweight participants, and underweight participants, are presented as mean ± standard deviation.

�BMI� 25, †BMI < 18.5, �mean length of both feet
§ Mean difference between the maximum and minimum vertical height of the center of mass within a step
¶measured using the GAITRite™
¶¶ Estimated using an inertia measurement unit

https://doi.org/10.1371/journal.pone.0275612.t001
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0.004 g) and tri-axial angular velocity up to ±1,000˚/s (with a resolution of 0.03˚/s) at 250 Hz.

We fixed an IMU to each participant at the 3rd– 4th lumbar vertebrae using Hypafix, a soft,

stretchable, non-woven polyester material that adapts well to body contours. We asked each

participant to walk back and forth three times on a 14 m flat straight walkway at a comfortable

self-selected pace, and to start turning after passing the 14 m line. We placed the GAITRite

electronic mat in the middle of the walkway to measure steady-state walking.

The GAITRite is a portable gait analysis walkway system connected to the USB port of a

computer that measures temporal and spatial gait parameters via an electronic walkway at 100

Hz. Its walkway size is 520 (L) × 90 (W) × 0.6 cm (H), and it has an active sensing area of 427

(L) × 61 cm (W). It contains 16,128 sensors placed with a spatial accuracy of 1.27 cm.

Development of the gait speed estimation models

To measure steady-state walking, we analyzed the data of the central 10m of 14m flat straight

walkways, after eliminating the 2m-long walk prior to the start and each turn.

As illustrated in Fig 1, we preprocessed the IMU signals, selected features, and identified

each step, as described in detail in our previous work [10]. We obtained the comparative gold

standard gait speed from the GAITRite™. We then estimated the gait speed using IMU signals

according to our previous regression model (Model 0) [10]. Model 0 included age, sex, sole

length, cadence, and VHD. We then developed a new model (Model 1) by adding the roll and

yaw angles at the CoM and body weight to Model 0. Step length is the product of motions in

the torso, knees, and feet. The roll and yaw angles of the CoM reflect the angular motion of the

torso and peripherals. The roll and yaw angles of the CoM were calculated and re-oriented to

Cartesian coordinates from the sensor data from the IMU (Fig 1). Step length is also associated

with body weight, which is related to the thrust power [14, 15].

Then, we divided the participants into three subgroups by k-means clustering of the nor-

malized step length (NSL) and developed the subgroup-specific regression models (Model 2)

with the features included in the Model 1. We estimated the step length by dividing the gait

Fig 1. Acquisition and preprocessing of the signals from a wearable inertia sensor. (a) Three-dimensional acceleration signals were acquired from an

inertia sensor placed at the center of body mass and re-oriented into Cartesian coordinates to correct the angular misplacement. (b) Hanning filter was

applied to the raw acceleration signals and then each step was identified (indicated by crosses). The sides of steps (left or right) were determined by the yaw

index at each step.

https://doi.org/10.1371/journal.pone.0275612.g001
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speed obtained from the Model 1 by the cadence and calculated the NSL by dividing the step

length by the height. The characteristics of the three NSL subgroups are summarized in

Table 2. For all the regression models, only the features with a variation inflation factor (VIF)

below 2.5 were included.

Statistical analyses

Continuous variables were compared using a student’s t-test or analysis of variance (ANOVA)

and categorical variables were compared using the chi-square test between groups. We calcu-

lated the intraclass correlation coefficient (ICC), mean error (ME), mean absolute error

(MAE), and root mean square error (RMSE) of the gait speed estimated from the gait speed

estimation models and compared them to those measured by the Gaitrite™. We then compared

the ICC, ME, MAE, and RMSE of the estimated gait speeds obtained with the gait speed esti-

mation models using repeated measures ANOVA. All the statistical analyses were performed

using the Statistical Package for the Social Sciences version 25.0 (International Business

Machines Corporation, Armonk, NY).

Results

As summarized in Table 3, Model 2 included all features of Model 1, roll angle, yaw angle, and

body weight, except the feature in Model 0, sex of the participants. Although Model 0 esti-

mated the gait speed measured by the Gaitrite™ quite well (R = 0.935, R2 = 0.875, adjusted R2 =

0.874, F = 1051, p< 0.001), Model 1 estimated it better (R = 0.953, R2 = 0.908, adjusted R2 =

0.908, F = 1064, p< 0.001). When we developed the NSL subgroup-specific gait speed

Table 2. Characteristics of the subgroups classified by normalized step length.

Short NSL (N = 188)a Medium NSL (N = 378)b Long NSL (N = 193)c Statistics�

F P posthoc

NSL .324±0.019 .370±.014 .418 ±.019 1362 < .001 a < b < c

Women (%) 51.4 57.2 56.6 .430 .651

Age (year) 76.7 ± 5.1 73.2 ± 4.3 72.6 ± 4.3 37.9 < .001 a > b, c

Height (cm) 159.7 ± 7.9 160.4 ± 8.2 158.8 ± 8.2 3.09 .046 b > c

Weight (Kg) 62.3 ± 8.6 62.0 ± 9.0 60.1 ± 9.3 5.10 .006 a, b > c

Foot length (cm)† 23.0 ± 1.2 23.5 ± 1.4 23.7 ± 1.4 14.0 < .001 a < b, c

Gait speed(cm/s)† 95.1 ± 13.7 115.5 ± 12.2 130.9 ± 12.3 371 < .001 a < b < c

Cadence (steps/min) ‡ 109.9 ± 9.8 116.4 ± 8.2 119.2 ± 8.7 49.8 < .001 a < b < c

VHD (cm) ‡, § 2.53 ± 0.40 3.24 ± 0.47 4.14 ±0.69 408 < .001 a < b < c

Roll angle (◦) ‡,¶ 4.92 ± 1.67 6.42 ± 2.28 7.79 ± 2.53 71.5 < .001 a < b < c

Yaw angle (◦) ‡,¶ 9.56 ± 2.62 12.07 ± 2.93 15.15 ± 3.46 154 < .001 a < b < c

POMA (point) 27.5 ± 0.8 27.8 ± 0.6 27.9 ± 0.4 18.8 < .001 a < b, c

NSL, normalized step length grouped by k-means clustering; VHD, vertical height displacement (mean of the maximum and minimum vertical heights within a step);

POMA, Tinetti Performance Oriented Mobility Assessment

All values except the percentages for women are presented as mean ± standard deviation.

� Analysis of variance with Bonferroni post-hoc comparison
†measured by the GAITRite™;
‡estimated by an inertia measurement unit.
§ Mean of the maximum and minimum vertical heights within a step.
¶ Difference between the minimum and maximum yaw angles within a stride

https://doi.org/10.1371/journal.pone.0275612.t002
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estimation models using the features included in Model 1, all the features were selected as sig-

nificant predictors of gait speed in all the NSL subgroups with low VIF (Table 4). This NSL

subgroup-specific model (Model 2) estimates gait speed better than Model 0 and Model 1

(R = 0.955, R2 = 0.912, adjusted R2 = 0.912, p< 0.001). In all the NSL subgroups, the gait

speed estimates were satisfactory (adjusted R2 = 0.828, F = 129.545, p< 0.001 for the short

NSL subgroup; adjusted R2 = 0.801, F = 217.135, p< 0.001 for the medium NSL subgroup;

adjusted R2 = 0.836, F = 140.971, p< 0.001 for the long NSL subgroup).

Table 3. Development of the gait speed estimation model by employing the body weight and roll and yaw angles of the center of mass as additional predicting

features.

Model 0 [10]� Model 1

β (SE) B p VIF β (SE) B p VIF

Constant -113.2 (8.61) < .001 -106.0(6.13) < .001

Age (year) -.388(.050) -.104 < .001 1.09 -.328(.043) -.088 < .001 1.10

Sex 3.06(.676) .085 < .001 2.12

Cadence (steps/min) † 1.17(.026) .617 < .001 1.14 1.10(.023) .578 < .001 1.18

VHD (cm) † 12.1(.339) .521 < .001 1.28 10.1(.312) .436 < .001 1.48

Foot length (cm)‡,§- 3.25(.246) .250 < .001 2.15 3.29(.208) .253 < .001 2.10

Weight (Kg) -0.115(.029) -.058 < .001 1.69

Roll angle(◦)†,¶ 1.01(.089) .137 < .001 1.20

Yaw angle(◦)†,¶ 0.647(.064) .130 < .001 1.37

VIF, variation inflation factor; VHD, vertical height displacement (mean of the maximum and minimum vertical heights within a step).

Sex: coded (male = 1, female = 2)

� Gait speed estimation model developed in our previous study that did not include body weight and the yaw angle of the center of mass as predicting features
†estimated using an inertia measurement unit
‡measured using the GAITRite™
§ Mean length of both feet

https://doi.org/10.1371/journal.pone.0275612.t003

Table 4. Development of the normalized step length subgroup-specific gait speed estimation models.

Short NSL (N = 188) Medium NSL (N = 378) Long NSL (N = 193)

β (SE) B p VIF β (SE) B p VIF β (SE) B p VIF

Constant -95.6(12.6) < .001 -117.8(8.79) < .001 -121.4(13.3) < .001

Age -.462(.086) -.172 < .001 1.11 -.327(.067) -.116 < .001 1.58 -.272(.086) -.095 .002 1.06

Cadence� 1.06 (.043) .760 < .001 1.06 1.14(.035) .773 < .001 1.08 1.15(.050) .817 < .001 1.47

VHD�, † 13.3(1.10) .388 < .001 1.12 11.8(.692) .455 < .001 1.36 9.90(.622) .555 < .001 1.42

Foot length‡ 3.24(.451) .287 < .001 1.74 3.26(.301) .372 < .001 2.25 3.68(.386) .424 < .001 2.31

Weight -.154(.063) -.096 .016 1.71 -0.122(.044) -.090 .005 1.98 -.179(.050) -.136 < .001 1.70

Roll angle�,§ 1.27(.264) .155 < .001 1.13 1.14(.134) .212 < .001 1.19 1.04(.154) .213 < .001 1.18

Yaw angle�,§ .550(.164) .105 .001 1.07 .828(.097) .199 < .001 1.04 .620(.109) .174 < .001 1.10

NSL, normalized step length grouped by k-means clustering; VHD, vertical height displacement (mean of the maximum and minimum vertical heights within a step)

�estimated using an inertia measurement unit
† Mean of maximum and minimum vertical heights within a step
‡ Mean of the lengths of both feet measured using the GAITRite™
§ Difference between the minimum and maximum yaw angles within a stride

https://doi.org/10.1371/journal.pone.0275612.t004
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We then compared the accuracies of the gait speed estimations of the models by employing

the gait speed measured by the GAITRite™ as a comparative standard (Table 5). For all partici-

pants, Models 1 and 2 showed lower MAE, ME, and RMSE and better ICC than Model 0.

Model 2 showed a lower MAE than Model 1 (p = 0.007). We then grouped the participants

into three subgroups (fast, intermediate, and slow) using the gait speed measured by the GAI-

TRite™. Slow gait was defined as one standard deviation below the average (17.9 m/s) and fast

gait as one standard deviation above the average (114.4 m/s). The gait speed estimated by

Model 0 tended to be slower than that measured by the GAITRite™ in the fast gait speed sub-

group (p< 0.001) and faster in the slow gait speed subgroup (p< 0.001). Although this trend

persisted in the gait speeds estimated by Model1 and Model 2, the MAE in the gait speed

Table 5. Comparison of the accuracies of the three gait speed estimation models. The values predicted by the models were compared to the values obtained with the

GAITRite™.

Slow (N = 110)� Medium (N = 536)� Fast (N = 113) � All (N = 759)

Gait speed

GAITRitea 85.2 ± 9.2 114.6 ± 9.4 141.6 ± 8.9 114.4 ± 17.9

Model 0b 88.2 ± 10.4 114.8 ± 10.1 137.8 ± 9.2 114.4 ± 16.8

Model 1c 87.6 ± 10.3 114.7 ± 10.0 138.9 ± 8.8 114.4 ± 17.1

Model 2d 87.5 ± 10.4 114.7 ± 10.1 138.9 ± 8.6 114.4 ± 17.1

p† <0.001 0.728 <0.001 1.00

posthoc† a < b, c, d - a > c, d > b

ME

Model 0a 3.63 .268 -2.64 .323

Model 1b 2.92 .127 -1.85 .237

Model 2c 2.75 .144 -1.85 .225

p† .047 .462 .009 .691

posthoc† a > c - a < b, c

MAE

Model 0a 6.05 4.08 4.20 4.38

Model 1b 5.68 3.57 3.32 3.84

Model 2c 5.37 3.52 3.18 3.74

p† .043 < .001 < .001 < .001

posthoc† a > b, c a > b, c a > b > c

RMSE

Model 0 6.86 5.89 7.71 6.34

Model 1 6.16 5.03 6.34 5.42

Model 2 6.01 4.99 5.96 5.30

ICC

Model 0 .766 ± .088‡ .817 ± .027‡ .665 ± .133‡ .933 ± .009‡

Model 1 .806 ± .070‡ .866 ± .020‡ .753 ± .092‡ .952 ± .006‡

Model 2 .817 ± .065‡ .869 ± .019‡ .778 ± .089‡ .954 ± .006‡

IMU: inertia measurement unit; ME: mean error (%); MAE: mean absolute error (%); RMSE: root mean square error (cm/s); ICC: intraclass correlation coefficient.

� Gait speed measured by the GAITRite™.

The medium speed was defined as the gait speed within one standard deviation from the average (114.37 m/s±17.92). The slow and fast speeds were defined as slower

and faster than the medium speed, respectively.
† rmANOVA with Bonferroni post-hoc comparisons.
‡p < 0.001 by ICC [1, 3]

https://doi.org/10.1371/journal.pone.0275612.t005
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estimates obtained with an IMU and GAITRite™ were significantly reduced for the fast and

medium gait subgroups (p< 0.001).

Discussion

Gait speed estimation by linear regression is essentially a method for approximating the true

mathematical expression of human gait speed. A linear regression is a simplified function of

Taylor expansion form of the true mathematical expression of gait which may include higher

degree functions and number of variables. For usability, the features selected in a linear regres-

sion should be obtainable, and the Taylor 1st order local regression is a method for approxima-

tion. This study demonstrated that the accuracy of gait speed estimation using an IMU can be

significantly improved by employing features associated with step length in the linear regres-

sion model and optimizing the linear regression model in the NSL subgroups.

The three additional features selected in the new linear regression models were body weight

and the roll and the yaw angles of the CoM. The effect of body weight on gait speed is complex

[25]. Both weight loss and gain may reduce gait speed by reducing muscle power [15, 26, 27]

and/or inducing physical frailty [28]. However, in our older adult sample, a BMI of 25 or

higher, which is considered overweight, was more common than a BMI < 18.5, which is con-

sidered underweight, in both sexes (Table 1). This may be the reason why body weight was

selected in the models and why their coefficients were negative in the regression.

Body rotation was related to walking pattern. The yaw angle represents the three-dimen-

sional walking pattern. From the top view, the yaw rotation adds the CoM movement to the

forward ground motion of the stance leg when subjects rotate the waist in steps by each leg

moving forward [12]. In our models, the coefficient of the yaw angle was positive, indicating

that the roll angle may increase as the gait speed increases. However, there have been no previ-

ous studies on the relationship between the yaw angle of the CoM and gait speed. The roll

angle represents the movement related to mediolateral (ML) stability and is related to gait

speed. In our models, the coefficient of the roll angle was positive, indicating that the roll angle

may increase as the gait speed increases. This result is in line with that of a previous study. Lee

et al. also found that the roll angle increased as gait speed increased in normal older adults

[29].

Sex, which was included in our previous model (Model 0), was not selected in our new

models (Model 1 and Model 2). Among the three additional features in our new models, the

roll angle of CoM, which was selected in the new models, might have nullified the effect of sex

on gait speed. As shown in Table 1, women had a larger roll angle than men. However, the yaw

angle was not statistically different between the sexes.

The step length can be changed by body kinematics and muscle power [30–32], and reduces

with advancing age [15, 26]. Older adults may have various aging-associated problems to some

degree that may change their gait [33]. To maintain gait stability, older adults with musculo-

skeletal degenerative changes may have shorter step lengths than those without musculoskele-

tal degenerative changes [34]. Because gait speed is also influenced by step width and body

weight [25, 35] we employed the NSL to develop subgroup-specific models for gait speed esti-

mation in the current study. Human gait in the stance phase can be modelled as a spring-

loaded inverted pendulum (Fig 1) [36, 37]. The stance leg length is expressed as

ll ¼ b1ðtÞl1

where ll is the leg length, and β1 is the coefficient of leg bending.
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Considering the symmetry of motion, the step length and NSL can be calculated from the

kinematics as follows:

ls � 2l1b1ð0ÞsinðaÞ

NSL ¼
ls
h
�

2l1
h
b1ð0ÞsinðaÞ ¼ 2a1b1ð0ÞsinðaÞ

where m1 is the point mass equivalent to the body, ω1 is the angular velocity before contact, ll
is the leg length, ls is the step length, β1(0) is the leg-bending coefficient at the contact point, α
is the angle between the span leg and vertical line, which is assumed to be symmetric, and αi is

the human leg/height ratio. The step length is related to walking efficiency and external forces

[38]. Considering the conservation of angular momentum and point mass assumption, the

energy conserved after contact is as follows:

Econ ¼
1

2
m1l

2

l o
2

1
1 �

l2s
4l2

1

� �2
" #

From the conserved energy equation, the step length ls is critical for energy conservation

between steps. As the step length increases, the conserved energy decreases, which means that

a larger external energy/force is needed to maintain the gait speed and step length, which is

more dynamic and faster than that at small step lengths.

As shown in Table 4, the three subgroups may have different gait patterns associated with

different anthropometric characteristics. In Model 2, the coefficient of VHD was highest in the

short NSL subgroup and lowest in the long NSL subgroup, while B was smallest in the short

NSL subgroup, indicating that the short NSL subgroup had less dynamic gait and less effective

body rotation than the other NSL subgroups. In addition, the coefficient and B value of age

were lowest in the long NSL subgroup, suggesting that the gait of the long NSL subgroup may

be less affected by age.

This study has several limitations. First, all participants were healthy older adults. There-

fore, the performance of our gait speed estimation algorithm may be reduced in frail older

adults, who may have quite different gait patterns from healthy older adults. Second, a regres-

sion analysis was applied to the dataset. Although we divided the dataset into subgroups, the

subgroup-specific linear models may be subject to underfitting errors because of model sim-

plicity. Third, we used the signals from a single IMU. Although the IMU was placed at the

CoM, it may not be sufficient to capture the gait characteristics associated with gait speed.

Multiple sensors, such as sensor network systems, can improve the accuracy of gait estimation

[39–41]. Fourth, although we fixed an IMU to the CoM using Hypafix and reoriented the sig-

nals from the IMUs before developing our models, it is difficult to completely rule out the pos-

sibility that there is a modest difference in the position and/or angle of the IMU between the

participants because of inter-individual differences in body shape and human errors.

Despite these limitations, our model may contribute to improving the screening and moni-

toring of various geriatric conditions in older adults. Most smartphone models have recently

been equipped with inertia sensors. Therefore, without a separate external inertia sensor, the

smartphone itself can be used simultaneously as a sensor as well as a signal processing device.

This makes it possible to use our model easily, cheaply, and widely.
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