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Archimedes’ law explains penetration of solids into
granular media
Wenting Kang1, Yajie Feng1, Caishan Liu1 & Raphael Blumenfeld2,3,4

Understanding the response of granular matter to intrusion of solid objects is key to mod-

elling many aspects of behaviour of granular matter, including plastic flow. Here we report a

general model for such a quasistatic process. Using a range of experiments, we first show

that the relation between the penetration depth and the force resisting it, transiently non-

linear and then linear, is scalable to a universal form. We show that the gradient of the

steady-state part, Kϕ, depends only on the medium’s internal friction angle, ϕ, and that it is

nonlinear in μ= tan ϕ, in contrast to an existing conjecture. We further show that the

intrusion of any convex solid shape satisfies a modified Archimedes’ law and use this to:

relate the zero-depth intercept of the linear part to Kϕ and the intruder’s cross-section;

explain the curve’s nonlinear part in terms of the stagnant zone’s development.

DOI: 10.1038/s41467-018-03344-3 OPEN

1 State Key Laboratory of Turbulence and Complex System, College of Engineering, Peking University, 100871 Beijing, China. 2 Imperial College London,
London SW7 2AZ, UK. 3 University of Cambridge, Cambridge CB3 0HE, UK. 4 National University of Defence Technology, Changsha, Hunan 410073, China.
Correspondence and requests for materials should be addressed to C.L. (email: liucs@pku.edu.cn)

NATURE COMMUNICATIONS |  (2018) 9:1101 | DOI: 10.1038/s41467-018-03344-3 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

mailto:liucs@pku.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The ubiquity of dense granular matter in nature and the
important role it plays in human society cannot be over-
estimated. Its significance focused much attention for

centuries, but research into the fundamental science of granular
matter underlying its rich behaviour exploded in the past couple
of decades. In spite of the intensive activities, both the statics and
dynamics of granular matter are not well understood with many
remaining open problems1,2.

A canonical problem in the field is the modelling of the
penetration dynamics of a large object within a granular material
made of much smaller, but macroscopic particles. This problem
has been receiving growing attention in recent years for its
multiple applications, e.g., locomotion of terrestrial animals3,4,
robots working on granular substrates5–7, and crater formation in
geological and astrophysical fields8–10. Studies on this problem
also play significant roles in understanding static properties of
granular materials11,12, characterising the dynamics of granular
flows13,14, and understanding the response of perturbed granular
materials, such as shear banding15,16, sinking effect17, and the
jamming transition18–21.

The penetration dynamics is modelled usually using macro-
scopic laws of drag force exerted on the intruder22–24, which
describe the drag force as a combination of a hydrostatic-like
force Fz and a viscous force Fv. The hydrostatic-like force Fz
results from the frictional plasticity of the granular matter22,25,
and the viscous force Fv results from momentum transfer between
the grains26,27. To bridge between the developing knowledge of
static granular matter and its dynamic flow, we must understand
and construct a predictive model for the penetration process
under quasistatic conditions. Advancing such an understanding is
the main aim of this paper.

A number of experiments demonstrated that the force, Fz, is
hydrostatic-like, varying linearly with penetration depth h for
submerged or flat-bottom intruders5,25. Based on this observa-
tion, an empirical resistive force theory (RFT)3 has been proposed
for the resistance force on objects intruding granular media
quasistatically at different orientations. This approach proved
adequate to model the kinematics of slow-moving locomo-
tors3,6,28. It also agrees with a local friction force model (LFFM),
recently proposed in ref. 23

dF ¼ KϕPdS ¼ kμPdS: ð1Þ

In this relation, dS is an infinitesimal area element pointing
normal to the intruder surface, P= ρsgh is the hydrostatic-like
pressure proportional to the packing density ρs of the granular
matter, Kϕ is a coefficient (>1) proportional to the internal fric-
tion coefficient μ via a fitting parameter k.

Both RFT and LFFM are based on the assumption that the
friction of the granular tangential flow against the intruder’s
surface contribute negligibly to the resistance force. Askari and
Kamrin29 then showed by FEM simulations, in which the gran-
ular medium is modelled as a continuum of bulk density ρs and
internal friction coefficient μ, that these features are a con-
sequence of two properties: cohesionless and a friction yield
criterion.

Yet, existing models for the quasistatic resistance force have
two main deficiencies: they are mainly phenomenological, thus
providing little understanding of the physics of the penetration
process, and the parameters governing the force magnitude need
to be determined experimentally, undermining the model’s pre-
dictive power. It is essential to develop a physics-based quanti-
tative model for the quasistatic resistance force in cohesionless
dry granular matter.

Here, we address this issue both theoretically and experi-
mentally. First, we carry out experiments to measure the

resistance force on cylinders penetrating vertically into five
different granular materials. By varying the bottom area and
shape of the intruders, we find a unified dimensionless
pressure–depth curve. This curve consists of an initial non-
linear segment, extending to a similar depth (when properly
scaled) for all experiments, corresponding to a compression of
the granular material ahead of the advancing intruder, which
gives rise to formation of a stagnant zone (SZ). This transient is
followed by an extended linear region, whose gradient depends
only on the medium’s internal friction angle ϕ. This region
suggests that the medium yields in a fluid-like manner. We
then analyse the process, treating the granular matter as a
continuum at a critical state, characterised by parameters ρs
and ϕ. We conjecture that the initial penetration process gives
rise to a conical SZ below the cylinder, caused by shear jam-
ming5,29. Using the Mohr–Coulomb (MC) yield criterion and
the method of characteristics, we model the steady state of the
conical SZ and obtain theoretically an explicit expression for
the curve’s gradient. This gradient is found to be independent
of the intruder’s geometry and it provides the coefficient Kϕ in
Eq. (1). However, we find that this coefficient is not linear in μ
= tan ϕ, casting doubt on Eq. (1). This leads us to conclude
that the quasistatic force on any cylinder, whether its bottom is
flat, conical or half spherical, can be described universally by
Archimedes’ law, albeit scaled by the factor Kϕ > 1, which we
calculate. We then show that the Archimedes’ law can explain
the force–depth relation, including the dependence of the
constant term on medium nature and intruder cross-section
area, as well as the effective steady-state size of the SZ.

Results
Experiments. The experimental apparatus is sketched in Fig. 1a.
A cylindrical intruder was connected to a servo-controlled beam
through a force sensor that records the total axial force opposing
the downward motion. The intruder is pushed into a barrel of
diameter 45 cm, filled with granular material up to a height of 21
cm. Throughout the process, the cylinder was kept well away
from the barrel’s boundaries, eliminating boundary effects30,31.
For generality, several granular materials were used: three kinds
of glass beads, made of different particle size distributions, dry
quartz sand, and millet. Unlike the glass beads, the quartz sand
grains are much more angular and irregular, while the millet
grains are softer and less spherical. The physical parameters of
these materials are shown in Fig. 2f, where the internal friction
angle ϕ refers to the angle of repose, accurate to ±2°.

In the first set of experiments, we used four aluminium
cylinders of different radii, R= 15, 20, 25, and 35 mm, but the
same length L= 50 mm. The penetration depth, h, was limited to
be below L to avoid both end effects at the top of the cylinder and
jamming effects close to the bottom of the barrel. To ensure
velocity independent behaviour, the penetration velocity was
restricted to below a critical value32, vc ¼

ffiffiffiffiffiffiffiffiffi
2gdg

p
=10, where g is

gravity acceleration and dg is the mean diameter of granules. This
was tested by measuring the force on a R= 20 mm cylinder
penetrating into sand at velocities ranging from 10 mmmin−1 to
300 mmmin−1. Indeed, Fig. 1b verifies that the resultant
force–depth curves are hardly different. The velocities were then
limited to below 30 mmmin−1 in all experiments.

The experiments reported in refs. 5,23 demonstrated that the
friction between the intruder surface and grains is negligible
relative to the force required to push material below the cylinder
out of the way. This allowed us to define a mean pressure, pu= F/S,
where F is the measured vertical resistance force and S is the
cylinder’s cross-section area. To non-dimensionalise our results,
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as well as for reasons to be understood below, we scaled the mean
pressure, ~pu ¼ pu= ρsgR

� �
, and the penetration depth, ~h ¼ h=R.

Figure 2a–e shows the dependence of ~pu on ~h for the five
granular materials, when penetrated by the four different
cylinders. For each medium, the curves collapse onto a master
curve for all the different intruders. This result agrees with the
surface-level superposition rules postulated by RFT3 and LFFM23.

All the ~pu � ~h curves consist of an initial nonlinear regime,

~pu ¼ f1 ~h � ~h0
� �

, corresponding to material compression ahead

of the intruder, which culminates in a fully formed rigid SZ (see
below), followed by a much longer linear regime, in which
~pu � ~h. The nonlinear-to-linear crossover was determined, by

inspection, to be at ~h0 ¼ 0:15 ± 0:06. Identifying ~pu ~h0
� �

as the

crossover pressure to the steady state, we define the gradient of
the linear region beyond this point as Kϕ. The dimensionless
pressure–depth relation is then

~pu ¼ f1ð~hÞ ~h � ~h0
~p0 þ Kϕ

~h ~h>~h0

(
ð2Þ

Similar behaviours were also observed in previous resistance
force measurements5,24,27,33–35. Particle image velocimetry mea-
surements5,36,37 and discrete element method simulations38

showed that, during the transient nonlinear regime, a conical
SZ forms under the flat bottom of intruder segment, driven by a
local shear jamming process19. This region then advances as a
rigid cone ahead of the intruder39,40. While the cone formation
process is complex and not fully understood5,40, this analysis
provides a way to model it in terms of the intruder’s cross-section
area and the location of the crossover depth to steady state (see
below).

The conical SZ advances ahead of the intruder at the same
downward speed, parting the medium and wedging matter
sideways5,8,34. This means that the quasistatic resistance force on
the intruder is governed by the intergranular contact friction at
the cone advancing surface23. It follows that the slope of the linear
part, Kϕ, should depend on ϕ. In our experiments, the value of Kϕ

ranges very widely for different granular materials: from about 20
to more than 100.

To test whether Kϕ depends on intruder properties or is a pure
material constitutive parameter, we carried out a suite of
penetration experiments with flat-bottom prisms of four cross-
section shapes: square, equilateral triangle, rectangle, and right-

angled triangle, shown in Fig. 3a. The prisms were made of
aluminium and L= 120 mm long. The granular medium was the
type 1 glass beads. The depth and pressure scaling depend on the
intruder’s cross-section area, S and we define an equivalent radius
Re ¼

ffiffiffiffiffiffiffiffi
S=π

p
. This scaling indeed leads to a collapse of the steady

state of all the pressure–depth curves onto a unique master curve,
regardless of cross-section shape, as shown in Fig. 3b. Moreover,
this curve is identical to the one for the cylindrical intruder. This
establishes that Kϕ is indeed independent of the shape and size of
the intruder and, therefore, that it is a constitutive characteristic
of the granular material23,34. In the next section, we present a
theoretical model to predict this parameter. Moreover, there is
also a good collapse in the nonlinear regime when the aspect ratio
of the cross-sections is not too different than 1 (see Discussion
below).

Theoretical analysis. Quasistatically yielding cohesionless dry
granular media can be modelled as a continuum of bulk density ρs
and internal friction angle ϕ29. To model the stress field, the
mechanical equilibrium conditions are closed by a yield criterion,
for which there are several models. We choose here to use the MC
criterion41, τ=σnj j ¼ μ � tanϕ, where τ is the local shear stress
and σn is the corresponding normal stress. Several experiments
established that the penetration process gives rise to a conical SZ
ahead of the intruder, advancing as a rigid body36–38,42. Taking
this into consideration, the boundary conditions are sketched in
Fig. 4a and include the downward pressure at depth h and the
resistive force, Fz, on the intruder. We assume that the free sur-
face, left behind, is flat, which is a good assumption as long as any
deviation from flatness is appreciably smaller than the size of the
SZ. Supplementary Fig. 1 supports this assumption.

Expressing the stress components (Supplementary Fig. 2) in
terms of the mean of the major and minor principal stresses, σ0,
and the angle between the major principal stress and the radial
direction, α, gives a hyperbolic set of equations in these two
variables. The equations can be solved by characteristics
(Supplementary Note 1 and Fig. 3), which are paths in the plane
along which they reduce to two ordinary differential equations43.
The solution yields two families of characteristics, whose local
gradients are

κ± ¼ dz=dr ¼ tan α± βð Þ ; β ¼ π=4� ϕ=2: ð3Þ

Conveniently, the angle between two + and − characteristic
curves, passing at any one point in the rz plane, is always 2β.
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Fig. 1 Experimental setup and validation of the quasistatic regime. a Sketch of the experimental apparatus. An intruder is connected to the servo-controlled
beam through a force sensor. The intruder is inserted into the granular medium at constant low velocity, while the vertical displacement and total vertical
resistance force are continuously recorded. b The raw data for the vertical resistance force on a cylindrical of diameter D= 40mm and length L= 50mm,
penetrating quartz sand with different velocities, ranging from 10 mmmin−1 to 300 mmmin−1. The independence of the velocity indicating the quasistatic
state of the experiment. The red dashed line marks the end of the transient nonlinear regime
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Focusing on the steady state, when the SZ is fully formed, and
noting that α=−π/2 everywhere on the cone surface, we can
solve for σ0 along a characteristic path:

σ0 ¼ P
1� sinϕ

Aðη; ϕÞeπ tanϕ; ð4Þ

where 0 ≤ η ≤ 1 parameterises the cone surface and runs from its
apex to its base (see Fig. 4b) and A(η, ϕ) is derived in the Methods
section. This analysis is in good agreement with the observations
in refs. 36–38,42.

Obtaining σz from σ0 and integrating it along the cone surface
to obtain Fz (Supplementary Note 2), we finally identify the
coefficient of h:

Kϕ ¼ 2ð1þ sinϕÞ
ð1� sinϕÞ eπ tanϕ

Z 1

0
ηAðη; ϕÞdη: ð5Þ

This result is significant. It shows that: (i) Kϕ depends only on
ϕ and on no property of the intruder; (ii) Kϕ is not linear in tan ϕ,
in contrast to the proposed relation (1)23. In Fig. 5a, we plot the
values of Kϕ, computed numerically from Eq. (5), as a function of
ϕ and compare them with the experimental measurements for the
five granular media. The agreement between the model prediction
and the experimental values is excellent. From the data reported
in ref. 23 for glass beads with ϕ= 22°, we calculate Kϕ= 13.36.
This also agrees very well with their measured result, which is
equivalent to Kϕ= 14 ± 2. There is also a good agreement with
ref. 5, in which force–depth data are reported for intrusion of
‘foot’ objects into assemblies of poppy seeds at various volume
fractions. We can compare their results with our data for
cylindrical intruders into millet, the internal angle of which
should be close to that of poppy seeds. From their data, we can

estimate our ~h, ~h0, and ~pu. Translating our ~h0 to their notations,
using the different normalisation methods, we find that it
corresponds to their δ= 3.8 mm, which is well within the range
shown in the inset in their Fig. 3b. Specifically, using their fit in
that inset, we get that this value corresponds to a packing fraction
0.600 ± 0.002. Comparing then the slope of their linear steady-
state region in that packing fraction with our millet data, we find
that it corresponds to our Kϕ= 60 ± 2. Using now our relations
(5) and (2), we obtain that internal friction angle of their medium
should be 32.3° ± 0.3°, in excellent agreement both with the
literature value and with the value we measured for our millet,
32° ± 2°. The wide range of values of ϕ in our tests covers most
common granular materials, implying that our theoretical model
has a broad application.

Equation (5) makes it also possible to derive the relation
between Kϕ and μ, which is shown in the inset of Fig. 5a. This
relation is clearly superlinear, raising questions about the
assumption of its linearity in the LFFM. The quality of the
agreement between model and experiments also supports the
prediction of Eq. (5) that Kϕ is a constitutive property of the
granular medium alone, an issue explored extensively in
penetration experiments5,23,34,37.

Modified Archimedes’ law in granular matter. Within the
LFFM23, the resistance force arises from local forces acting nor-
mal to the intruder surface. Defining �bz as the direction of
gravity, with bz a unit vector in the z direction, we determine the
total resistance force on a convex intruder, advancing slowly in
this direction, by using Eqs. (1) and (5), as well as Gauss law for
inversion from a surface to a volume integral:

Fz ¼
I I

S
bz � dF ¼ Kϕρsg

Z
V
div hbzð ÞdV ¼ KϕρsgV; ð6Þ
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with V the volume of the displaced granular materials. This
expression is equivalent to Archimedes’ law44 in fluid mechanics,
in which Kϕ= 1. The order-of-magnitude larger value of Kϕ in
granular media is due to an effective interaction of the intruder
with the entire cyan region shown in Fig. 4b.

For flat-bottom intruders, Eq. (2) includes ~p0, a constant term
also observed by others23,27. As we show below, this is because the
volume V in relation (6) should include the developing volume of
the SZ, which gives rise to the initial nonlinear regime. We
calculate this volume explicitly below.

For the non-flat intrusions (see Fig. 6), the quasistatic
resistance force may be estimated directly from Eq. (6)23. We
test four aluminium cones with head angles 2θ of 52°, 60°,
62.3°, and 67.8°, all to ±0.1°, and four aluminium spheres with
radii of 15, 20, 25, and 50 mm, all to 0.01 mm, in two granular
materials (glass beads 2–3). The experimental measurements

are plotted in Fig. 7 and compared with the corresponding
theoretical calculation of the resistance force from Eq. (6). The
excellent agreement between all the theoretical and experi-
mental results has two significant implications. One is that the
quasistatic resistance force on a moving intruder satisfies Eq.
(6). The other is that the agreement for all intruder shapes
within a given medium with the same value of Kϕ establishes
that this parameter is a pure constitutive property of the
granular medium. These conclusions can be used to derive
theoretically the constant term in Eq. (2), which we proceed to
do next.

Prediction of ~p0 and the SZ growth. Establishing the validity of
the modified Archimedes’ law (6) for any intruder convex shape,
allows us to derive the value of ~p0, as well as the dynamic
development of the SZ ahead of flat-bottom intruders. Consider
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an intruding prism of cross-section S, with a convex-shaped
bottom of volume V0 and extension h0 in the penetration direc-
tion. For example, for a cylinder of radius R¼ ffiffiffiffiffiffiffiffi

S=π
p

with either a
half-spherical bottom or a cone of head angle 2θ, (h0, V0)= (R,
2πR3/3) or (R/tanθ, πR3/(3 tanθ)), respectively.

The intrusion volume is

V ¼ V0 þ Sh; ð7Þ

where h is measured from the medium’s surface to the bottom of the
linear part of the prism or cylinder. Substituting into the modified
Archimedes’ law and rewriting it in terms of the normalised depth,
~h ¼ ffiffiffiffiffiffiffiffi

π=S
p� �

h, and pressure, ~pu ¼
ffiffiffi
π

p
Fz= ρsgS

3=2
� �

, we obtain

~pu ¼ ~p0 þ Kϕ
~h ¼

ffiffiffi
π

p
KϕV0

S3=2
þ Kϕ

~h: ð8Þ

Comparing to Eq. (2), the first term on the right-hand side is
exactly ~p0, which appears to depend on both the medium,
through Kϕ, and the intruder shape parameters. Testing this
result against measurements of conical and spherical intruders,
we find an excellent agreement with the theory, as shown in
Fig. 7.

Next, we apply this result to model the dynamic development
of the SZ ahead of flat-bottom intruders. As discussed above,
such intruders develop SZs that propagate ahead of them,
parting the medium. The SZ buildup starts when the intruder
enters the medium and ends once the SZ has reached an
established steady-state shape. This dynamic process, illustrated
in Fig. 6c, is the cause for the initial nonlinear dependence of ~pu
on ~h.

To understand better this dynamic process, we model the
developing SZ as an effective cone or polyhedron, whose apex is

at ~H ¼ ffiffiffiffiffiffiffiffi
π=S

p� �
H ahead of the intruder. Initially, H= 0 and it

reaches a steady-state value, H=Hss at the end of the nonlinear

regime. The volume of this zone is V0= SH/3 and, using Eq. (8),
we have

~H ¼
~pu=Kϕ � ~h
� �

3
: ð9Þ

Fitting now a functional form to f1(h) in Eq. (2), we can express
~pu in terms of ~h in this regime, which provides the dependence of
H on depth. Since the insertion of the intruder is at constant
speed, this also provides the time evolution of the SZ.

In particular, we can find its steady-state size, ~Hss, for each
granular material by substituting the crossover point values: ~h ¼
0:15 and ~pu ~h ¼ 0:15

� �
(see Fig. 2). We find ~Hss = 1.0 ± 0.1, 1.6 ±

0.3, 1.5 ± 0.2, 0.7 ± 0.3, and 3.1 ± 0.8 for glass beads types 1–3,
sand, and millet, respectively. The error bars are the standard
deviation of the measurements of ~p0 in the different experiments.

Discussion
In summary, we have proposed and tested a general model for the
quasistatic penetration dynamics of convex solid objects into
granular media. This is a key problem in granular science, rele-
vant to diverse phenomena, such as animal and robotic loco-
motion3–7, crater formation8–10, granular flow dynamics13,14, and
granular response to external loading15–21. A cone penetration
test is also the standard for characterising soils.

First, by measuring experimentally the resistance forces on flat-
bottom cylindrical and prismatic intruders, we find that all the
force–depth curves can be generally collapsed onto a dimen-
sionless pressure–depth master curve. This curve crosses over
from a short initial nonlinear regime to a long steady-state linear
one. Next, assuming a solid granular SZ, propagating ahead of the
intruder, we construct a parameter-free model for the steady-state
rate of the linear increase and show that this rate, Kϕ, depends
only on the internal friction angle, ϕ, and is therefore a con-
stitutive property of the granular medium. Our calculation fits all
our observations, as well as all the reports we could find in the
literature, which provided data we could compare with. Our
results also call into question a conjecture in the literature that the
gradient of the linear part is proportional to the internal friction
coefficient23.

Then, using non-cylindrical intruders, cones and spheres, we
show that the force–depth curves of all convex intruders satisfy a
modified Archimedes’ law in that the resistance force is propor-
tional to the hydrostatic-like pressure, the volume of the
intruding object, and a proportionality coefficient Kϕ. The value
of the latter is the only real difference between Archimedes’ law
for ordinary fluids and dense granular matter. Significantly, the
value of Kϕ can be calculated theoretically, which renders our
derived relation parameter-free! The validation of the model for
the non-cylindrical intruders allowed us to derive the force–depth
relation explicitly in terms of the medium’s constitutive property
and the intruder’s geometry.

Specifically, in our model, the initial nonlinearity is a result of
the growth process of the SZ, while the linear part corresponds to
the SZ having reached a steady-state size, after which the effective
volume of the intruder and the SZ does not change. This also
explains the dependence of the gradient of the linear part only on
the medium, since the resistance force is dominated by the nor-
mal force between the plastically flowing medium and the jam-
med SZ, both of which are made from the same material. This we
have validated successfully by measurements on materials with
internal frictional angles ranging from 22° to 36.5°.

Using this picture, we solve for the stress in the plastic zone
around the SZ, using, for simplicity, the MC yield criterion
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Fig. 5 Validation of the calculation of Kϕ. Kϕ, calculated from Eq. (5)
(solid line), and its measured values. The black marks, from all our
experiments, and the red mark, from refs. 5,23, fall squarely on the
predicted curve. Error bars represent one standard deviation about the
mean. All our experimental values (black points) incur a horizontal error
bar of ±2°, which was omitted to avoid clutter. Inset: the relationship
between Kϕ and μ= tanϕ is clearly superlinear, challenging the
assumption of linearity in the LFFM. The error bars represent one
standard deviation about the mean. Using the data reported in ref. 5, we
estimate the internal friction angle of their poppy seed granules as 32.3°
± 0.3°. The quality of the fit between the experimental points and the
theoretical curve is R2= 0.996
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model. This solution made it possible to calculate the total force
on the intruder and the gradient Kϕ explicitly as a function of ϕ.
The solution agrees excellently with all the available experimental
observations, ours and others’. Indeed, resistance force mea-
surements on prisms of different cross-section shapes, confirm
that Kϕ is a constitutive property of the granular material alone.

The penetration may be affected strongly by the presence of
container boundaries30,31,33,34, in particular by the side walls
parallel to the intruder’s motion. Our theoretical model indicates
that these effects arise from the interference between the stress
field in the plastic zone and the walls. Theoretically, for avoiding
such effects, the minimum container radius (MCR) is the hor-
izontal extent of the longest characteristic, which is the green line
in Fig. 4b, the length of which depends on R and ϕ. In Supple-
mentary Table 1, we list the calculated MCR values for the five
granular materials and four cylinder radii in our experiment. For
some of the thick cylinders, it is larger than the container size we
used. Nevertheless, the excellent collapse for all cases suggest no
boundary effects. We conclude that the theoretical calculation,
based on the MC criterion, provides an upper bound for the
MCR. This is discussed in detail in Supplementary Note 3.

The modified Archimedes’ law also allows us to model quan-
titatively the SZ growth and predict its effective steady-state size.
As a case study, we considered a flat-bottom cylinder, intruding at
a constant speed below the critical value. On intruding, the
volumes of both the immersed cylinder and a growing SZ, Vsz,
increase with depth. This gives rise to the initial nonlinear regime,

in which the total volume increase is V(h)= Sh+ Vsz(h). Vsz

increases slower than linearly until it reaches a steady-state value.
Generally, assuming that the SZ is a cone throughout its growth
(or pyramid-like for non-cylinders) of height H(h), we have
Vsz(h)= SH(h)/3, independent of the intruder’s cross-section
shape. The inset in Fig. 3b displays a magnification of the non-
linear regimes for the different cross-sections. These all appear to
collapse to a master curve, except when the cross-section aspect
ratio is considerably different than one (see below).

Based on this insight, we used the nonlinear-to-linear crossover
to estimate the steady-state height of the SZ. The errors of the
estimates, for the different media, ranged from 10% to 40% and
could stem from: (i) measurement errors of ϕ, which gives rise to
errors in Kϕ and ~p0; (ii) error in estimating the nonlinear-to-linear
transition point ~h0; (iii) an inaccurate yield criterion in the initial
nonlinear regime. The latter may also be the reason for an
overestimate in the horizontal extent of the response region in the
granular medium (cyan in Fig. 4). We also note that the SZ may
be blunted at its edges and apex, making our estimates of its
steady-state volume an upper bound.

To conclude, we have derived a parameter-free model for the
penetration of solid objects into granular media, showing that the
behaviour can be fully understood in terms of a modified
Archimedes’ law. This understanding should shed more light on a
wide range of practical issues, including the standard cone
penetration test in soil mechanics in civil engineering, locomotion
of animals or robots in sand, digging on Earth and extra-
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terrestrially, and crater formation, to name a few. It is also useful
for furthering fundamental understanding of plastic flow of
granular matter, e.g., in shear banding, the jamming transition, as
well as bridging between the current different models for low-
and high-velocity penetration regimes.

Methods
Experimental methods. Samples preparation: Before each penetration experiment,
the granular medium was stirred by hand vigorously for 60 s. Then the free surface
was flattened carefully by passing a trowel across it. Finally, two bubble levels were
placed perpendicularly to one another to determine flatness of the surface. The
same person prepared all samples to minimised personal variability. The pene-
tration speed was controlled by a servo system to an accuracy of ±0.5% and
displacement precision 0.001 mm. The resistance force was measured by a sensor
to accuracy of ±0.5% and recorded by a software at sampling frequency of 20 Hz.
The intruder was positioned about 3 mm above the flat surface and accelerated to
reach a constant speed before it touched the granular surface. For flat-bottomed
intruder, recording of the vertical resistance force and displacement started the
instant the axial force exceeded 0.03 N, which was defined as the beginning of
penetration. After checking that the data was independent of velocity (see Fig. 1),
all the data was collected at an intrusion velocity of 30 mm min−1. Each experi-
ment was carried out on a number of freshly prepared samples. The sample sizes
for the experiments shown in Fig. 2, were: 13, 26, and 27, for the glass beads types
1–3, respectively, 26 for the sand, and 21 for the millet. For Fig. 3, we measured the
intrusion force on three samples for each cross-section. The error bars represent
the standard deviation over the samples and the fits qualities were: R2 >0.997,
0.992, 0.998, and 0.993, respectively, for the square, rectangle, equilateral triangle,
and right-angle triangle. Similarly, the measurements on the non-cylindrical
intruders, shown in Fig. 7, were taken on three samples for each of the four
experiments, with the error bars in the figure also representing the standard
deviation over the samples. The fits qualities in these cases were: R2 >0.991, 0.993,
0.993, and 0.995, respectively, for: (i) cones with four different head angles pene-
trating into glass beads type 2; (ii) same as (i) but into glass beads type 3; (iii)
spheres of four different radii penetrating into glass beads type 2; (iv) same as (iii)
but into glass beads type 3.

Data processing. The experimental value of Kϕ was determined by scaling the
force–depth curves into a dimensionless form first and then using the first-order
polyfit command in MATLAB to least-squares fit the linear slope. Figure 5 shows
the results, with the points and error bars representing the mean and spread values
of the slopes for the specific granular materials.

Computation of A(η, ϕ) of Eq. (5). The characteristic paths, shown in Fig. 4b,
consist of a curved, DE, and linear, CD, parts, with the latter’s slope being tanβ.
Defining the distance from the cone apex along the path OB as η∈ [0, 1], we have

l0ðηÞ � BE ¼ ð1�ηÞR
sinβ and lψðηÞ � BJ ¼ l0ðηÞeψ tanϕ (see Fig. 4). The positions of

points C, D, E are:

rC ; zCð Þ ¼ R 1þ 2 1�ηð Þ
tanβ e

π
2tanϕ; 0

� �
;

rD; zDð Þ ¼ R 1þ R 1�ηð Þ
tanβ e

π
2tanϕ; 1� ηð Þeπ2tanϕ

� �
;

rE ; zEð Þ ¼ R η; �η
tan β

� �
:

ð10Þ

Focusing, for example, on the “+” family of Eq. (3), we have

dσ0
σ0

¼ �tanϕ 2dαþ cosϕ
r

dr þ 1� sinϕ
r

dz

� �
ð11Þ

and integrating Eq. (11) along the characteristic curve CDE from C to E gives

ln
σ0;E
σ0;C

	 

¼ tanϕ π þ cosϕ ln

rC
rE

þ ð1� sin ϕÞ tanβ ln
rC
rD

þ
Z rD

rE

dz
r

� �	 

: ð12Þ

The rightmost term in this relation can be calculated noting that: (i) the position of
any point along the curve DE can be expressed in terms of variable ψ:

rðψÞ; zðψÞð Þ ¼ Rþ lψðηÞsinðψ � βÞ;�lψðηÞcosðψ � βÞ� � ð13Þ

and (ii) ψ∈ [0, π/2] between points D and E:

Z �
Z rD

rE

dz
r
¼
Z π=2

0

�ð1� ηÞeψ tanϕcosðψ þ βÞ
cosϕ sinβþ ð1� ηÞeψ tanϕsinðψ � βÞ½ � dψ: ð14Þ

Substituting this into Eq. (12), we obtain finally for the mean stress at point E

σ0;E ¼ σ0;C e
π tanφ r1þtan2β

C

rtan
2β

D rE

 !sinϕ

esinϕ tanβZ � σ0;C e
π tan ϕAðη; ϕÞ; ð15Þ

where Aðη; ϕÞ � r1þtan2β
C

rtan
2β

D rE

� �sinϕ

esinϕ tanβZ and σ0;C ¼ ρsgh
1�sinϕ, corresponding to the

stress boundary condition at point C.

Data availability. The data are available from the corresponding author on
request.
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