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Abstract

Mirror protein structures are often considered as artifacts in modeling protein structures.

However, they may soon become a new branch of biochemistry. Moreover, methods of pro-

tein structure reconstruction, based on their residue-residue contact maps, need methodol-

ogy to differentiate between models of native and mirror orientation, especially regarding

the reconstructed backbones. We analyzed 130 500 structural protein models obtained

from contact maps of 1 305 SCOP domains belonging to all 7 structural classes. On aver-

age, the same numbers of native and mirror models were obtained among 100 models

generated for each domain. Since their structural features are often not sufficient for differ-

entiating between the two types of model orientations, we proposed to apply various energy

terms (ETs) from PyRosetta to separate native and mirror models. To automate the proce-

dure for differentiating these models, the k-means clustering algorithm was applied. Using

total energy did not allow to obtain appropriate clusters–the accuracy of the clustering for

class A (all helices) was no more than 0.52. Therefore, we tested a series of different k-

means clusterings based on various combinations of ETs. Finally, applying two most differ-

entiating ETs for each class allowed to obtain satisfying results. To unify the method for dif-

ferentiating between native and mirror models, independent of their structural class, the two

best ETs for each class were considered. Finally, the k-means clustering algorithm used

three common ETs: probability of amino acid assuming certain values of dihedral anglesΦ
andΨ, Ramachandran preferences and Coulomb interactions. The accuracies of clustering

with these ETs were in the range between 0.68 and 0.76, with sensitivity and selectivity in

the range between 0.68 and 0.87, depending on the structural class. The method can be

applied to all fully-automated tools for protein structure reconstruction based on contact

maps, especially those analyzing big sets of models.

Introduction

Mirror-image proteins may soon become a mile stone in biochemistry. Mirror reflection of a

native protein may function in the same way as the native protein, however they may be
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resistant to viruses and molecules which are not compatible with mirror-image structures. The

first step in the mirror-image biochemistry has been already made. Mirror polymerase, which

copies left-handed DNA, was created [1]. Also molecular dynamics studies showed that mirror

proteins may be competitive forms in nature, due to their thermodynamic stability [2,3,4].

Moreover, some types of proteins may have the same properties in both orientations. For

example, antimicrobial peptides, which may be next-generation therapeutics for drug-resistant

bacteria [5], have similar binding affinity to the membrane in both forms, independent of their

chirality [6].

The mirror aspect of a protein may relate to an ideal reflection of a native protein which

could be built from D-amino acids instead of L-amino acids. It may also concern a mirror

arrangement of the domains (tertiary structure), as in the study by Noel et al. [2], or a second-

ary structure of a protein, for example reversed handedness of a helix. The last case is well

known from modeling unknown protein structures from contact maps.

Protein structures whose backbones are mirror images of each other generate identical con-

tact maps between Cα or Cβ atoms in the protein backbone [7]. Notably, both orientations

may be chemically stable although only one exists in the nature. It poses a problem for meth-

ods using contact maps for protein modeling. Computational methods for protein structure

modeling based on contact maps usually generate a set of tentative models which belong to

both orientations. It is not always obvious which models should be filtered out with regard to

their orientation, especially if the procedure is supposed to be fully automatic and applicable to

large sets of models.

Development of the methods based on contact maps improves modeling of unknown pro-

tein structures but it still has not brought satisfying approach capable of differentiating

between native and mirror models [8–12]. Some methods of model generation use chirality-

related terms, which help to avoid left-handed helices [13,14]. However, these methods are not

useful for proteins rich in beta-sheets. Another idea was based on torsion angles and modify-

ing a structure according to the allowed values of the torsion angle [15]. Another group of

methods compare models to their native structures, using root mean square deviation

(RMSD), clustering [16], or ranking models [9]. These methods, however, require the knowl-

edge of the native protein structure. Moreover, this approach can influence the assessment of

the reconstruction method, because it rejects the worst models, but not necessarily mirror

models. Therefore, another method differentiating between both types of model orientations

is needed. In our previous preliminary study [17] we showed that energy terms (ETs) from

PyRosetta could be suitable to address this problem for selected proteins rich in alpha-helices.

However, proteins rich in beta-sheets are harder cases for straightforward differentiation

between native and mirror models. The GDFuzz3D tool [12] proposed to use a scoring func-

tion of different tools to choose the appropriate chirality of the model. However, Pietal et al.

[12] mentioned about a mismatch between global and local handedness of models which may

deteriorate the effect.

In this study we made a thorough systematic analysis of protein structures—representatives

of all different structural classes, including alpha-helices and beta-sheets. We used 1 305 SCOP

protein domains, each represented by 100 models. The models were obtained using knowl-

edge-based potentials deduced from known protein structures. As this is a usual case in this

kind of modeling, the result includes also protein models with backbones of the mirror orien-

tation although other parts of the proteins are oriented correctly.

Our main goal was to propose an automated method able to differentiate between native

and mirror models, based on their energy terms ETs, and independent of the class of their sec-

ondary structures.

Separation of mirror protein models
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Results and discussion

Structural characteristic of mirror models in relation to native models

The problem of generating a variety of models from their contact maps is illustrated in Fig 1. A

lot of tools for protein reconstruction from contact maps use known structures from databases.

This solution is less time-consuming than classical de novo modelling. The Cα-traces obtained

from such modeling may have a native or a mirror form, but the rest of the protein structure is

usually built from rotamers or different fragments of the known proteins. Therefore, the mir-

ror models regarded here are not ideal reflections–the mirror orientation concerns only a

Fig 1. Exemplary models of the domains: a) A class d1tx4a_, b) B class d1osya_. The yellow structures are natively

oriented models (left), the blue structures are SCOP structures (middle), and the green structures are mirror models

(right). Their Ramachandran plots are presented below the structures. Red area is the general favored region, yellow area is

the allowed region, and black points denote residues.

https://doi.org/10.1371/journal.pone.0196993.g001
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secondary structure (more details about our protein structure reconstruction from contact

maps in Materials and Methods).

Two protein domains, presented in the middle of the picture (blue structures), were mod-

eled. Since contact maps are identical for two chiral forms of a protein, we obtained native

models (left, yellow structures) and mirror models (right, green structures). The domain from

class A (Fig 1A) is rich in alpha-helices, which is also seen in the Ramachandran plot. The orig-

inal SCOP structure and the model with the native orientation have right-handed helices,

while the mirror model has left-handed helices. Based on the criteria described in Methods,

97% of residues of the original SCOP structure locate in the favored region, 1.0% in allowed

and 2.0% in the outliers region. Most of the residues are placed in right-handed helices. A

majority of residues of the natively oriented model locate nearby the region of the right-

handed helices in the Ramachandran plot, which means allowed and favored regions. Con-

versely, the residues of the mirror model place in different regions of the Ramachandran plot.

Many residues from the region of negative dihedral angles (3rd quarter) are moved to the

region of positive dihedral angles (1st quarter). As a result more residues locate in the region of

left-handed helices, which is marked by the green ellipse. The structure from class B (Fig 1B),

as well as its models, are similar to each other while assessed visually. We did not observe a sig-

nificant transition of the residues from the 3rd quarter to the 1st quarter in the Ramachandran

plots as it was the case for the models rich in alpha-helices. Moreover, both models of the beta-

sheets had similar numbers of the residues in outliers’ regions. These results suggest that struc-

tural features are not sufficient for selection of the mirror models of all types of structures.

In the analyses we used protein models, so we verified differences in contact maps of finally

generated and refined models in relation to their original SCOP structures. We observed that

the models from class B preserved more contacts of their original SCOP domains than class A

(S1 Table). The median differences (diff) between maps of models and their original SCOP

domains was 0.4% for class B and 0.9% for class A. 16% of models in class B maintained their

original contact maps, while only 5% in class A. This shows that models with beta-sheets were

better fitted to the original contact maps than the models with alpha-helices. We did not

observe any significant differences between contact maps of the native and mirror models.

For comparative analysis we needed to know if the ratio of mirror models was constant.

Using C2Sv2.0 we obtained that both orientations of models were equally likely. Mirror mod-

els constituted ca. 50% of all models, when median was considered. However, in each SCOP

class we observed outliers. There were domains whose ratio of mirror models was close to 0 or

1. Only 2.5% of domains had only one type of model orientation: 1% of domains did not have

any mirror models and 1.5% of domains had only mirror models. The distribution of the ratio

of the mirror models for all domains was Gaussian, which was supported by the Jarque-Bera

test. There were no correlations between the ratio of mirror models and other features of the

domains, such as a domain length (number of residues), a difficulty in modeling the structure

(RMSD of native models to the original SCOP structure), and a structural difference between

the original SCOP structure and its mirror image (RMSD of the original SCOP structure to its

mirror).

In our study we worked with 130 500 models, so visual assessment of each model would

need a huge amount of time. For this reason we used RMSD of models to compare the struc-

tures. The histogram of RMSDs of each domain may demonstrate structural differences

between both types of model orientations. However, three histogram types were observed (Fig

2). The first histogram (Fig 2A) shows the domain whose native and mirror models were the

most distinct. The shape of the RMSD histogram hints at two separate distributions. The sec-

ond type of RMSD histogram has two overlapping distributions (Fig 2B). The native and mir-

ror models may be still separated. However, some models are in the ‘gray area’ and it is hard to

Separation of mirror protein models
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assess if they are natively oriented or mirror. The third histogram (Fig 2C) shows the most

indistinguishable models. The single unimodal RMSD histogram does not indicate which

models are natively oriented and which are mirror. Moreover, the more difficult was the struc-

ture for modeling, the more alike were RMSDs of natively oriented and mirror models.

The mean RMSD of models was calculated for each domain. The mean value of domains

for each class is shown in Table 1. The mean RMSD of all models compared to their original

SCOP structures was 8.9 Å ± 5.3 Å. The lowest mean RMSD value was observed for G class,

which was related to the shortest sequences of the domains. The highest mean RMSD values

were recognized for E and F classes. E class included the longest sequences of the domains.

However, the high mean RMSD and the highest differentiation in qualities of the models for F

class, which contained the domains of membrane and cell surface proteins and peptides, sug-

gested that some of the domains were difficult to reconstruct.

Assessing quality of models by comparing the mirror models to their original SCOP struc-

tures may be misleading. Dividing the set of the models into two groups of model orientations,

the mean values of RMSD was lower for natively oriented models (5.6 Å ± 5.4 Å) than for mir-

ror models (12.3 Å ± 5.1 Å). Therefore, the mirror models should be assessed separately in

relation to the mirror image of the original SCOP structure. The mean RMSD of the mirror

models to the SCOP mirror was the same as the mean RMSD of the natively oriented models

to the original SCOP structure (5.6 Å). Additionally, almost in each class the mean RMSD val-

ues of both model types were the same (S1 Fig).

Therefore, we confirmed theoretical considerations about random chirality of models

obtained from contact maps presented in [18]. The results showed that 50% of models are usu-

ally natively oriented and, moreover, the quality of their structural features is the same as that

of the mirror models. However, the number of natively oriented models of some proteins may

Fig 2. Histograms of RMSD models to the SCOP structures demonstrating structural differences between native and

mirror models: a) different (domain d1hx1b_), b) similar (domain d1boua_) and c) very similar (domain d1a9xa1).

https://doi.org/10.1371/journal.pone.0196993.g002

Table 1. The mean RMSD of models of each class.

SCOP class All models to SCOP Mirror models to SCOP Native models to SCOP Mirror models to mirror SCOP

A 9.4 ± 5.0 11.9 ± 4.7 6.8 ± 5.4 6.8 ± 5.4

B 8.5 ± 4.5 12.7 ± 4.1 4.4 ± 3.8 4.5 ± 4.4

C 9.5 ± 3.6 14.7 ± 2.4 4.1 ± 2.4 4.1 ± 2.4

D 8.4 ± 3.7 12.1 ± 3.1 5.0 ± 3.6 5.0 ± 3.6

E 11.5 ± 5.5 16.8 ± 3.3 7.0 ± 4.7 7.6 ± 5.0

F 12.1 ± 12.3 13.7 ± 12.2 10.3 ± 12.6 10.2 ± 12.4

G 6.6 ± 5.3 8.7 ± 5.3 4.7 ± 5.4 4.7 ± 5.8

All 8.9 ± 5.3 12.3 ± 5.1 5.6 ± 5.4 5.6 ± 5.5

https://doi.org/10.1371/journal.pone.0196993.t001
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be different than 50%. Therefore the post-generating procedure applied by Darute et al. [9],

which always retains one-third of the models with the lowest RMSD as natively oriented mod-

els, may give a bias in the final results.

Ramachandran plots for natively oriented and mirror models

In the analysis of differences between natively oriented and mirror models, the Ramachandran

plots were considered. Residue coverages of the favored, allowed and outlier regions were cal-

culated for each model and mean values for each domain were calculated. The histograms of

the residue coverage are presented in Fig 3 (only A, B, C and D classes are shown).

The mean residue coverage of the allowed region, for all models, was in the range from

21.1% to 28.3%. Four classes (C, D, E, and G) had similar proportions between the mean resi-

due coverage of the favored (ca. 40%) and outlier regions (30%). However, this proportion was

different for three other classes (A, B and F). Class A, which included all-alpha domains, and

class F which included membrane and cell surface proteins had more residues in the outlier

regions (ca. 40%), and fewer in the favored regions (ca. 30%). Conversely, the mean residue

coverage in class B was the highest for the favored region (51.6%). Only 26.9% of residues in

class B were in the outlier region.

The Ramachandran plot analysis may answer the question if the distributions of the residue

coverages are different for natively oriented and mirror models (red and blue bars in Fig 3).

We observed that there was no uniform rule for all classes. The residue coverages of the

favored region were similar for natively oriented and mirror models in class A. The reason for

this was the fact that the left-handed helices are also deposed in the databases. However, in

case of B, C and D classes they were higher for natively oriented models than for mirror mod-

els. In the allowed region the residue coverage was higher for mirror models in class B, while

this relation was opposite for class A. For C and D classes the differences were minor. On the

other hand, the outlier regions of all classes were dominated by the mirror models.

Fig 3. Mean differences in Ramachandran plots between natively oriented (blue bars) and mirror models (red

bars) of domains in A, B, C and D classes. Histograms of mean percentages of residues in favored (left), allowed

(middle) and outlier (right) regions.

https://doi.org/10.1371/journal.pone.0196993.g003
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Due to the diversity of Ramachandran plots for different classes their use for discriminating

between natively oriented and mirror models is limited. Therefore, the methods based on

adjustment of torsion angles to specific values [15,16] are insufficient.

PyRosetta energy terms as an indicator of mirror models

Since structural features are not sufficient to distinguish between natively oriented and mirror

models, we applied ETs from PyRosetta to this problem. The total energy of a protein model

did not indicate the model orientation in each case. We observed a wide range of percentages

of domains for which the total energy was differentiating between two model orientations,

according to the structural class of the protein. In classes A and F the total energy was statisti-

cally different between natively oriented and mirror models only for 37% and 22% of domains,

respectively. On the other hand, in classes B, C and D the total energy was differentiating for

more than 75% of domains. For that reason we studied each ET in each structural class of pro-

teins to test if it is significantly different for natively oriented and mirror models.

In the set of ETs several energy terms were significantly different for more than 60% of

domains in each structural class. We observed that some empirical potentials (e.g. hack_elec,
fa_rep) were differentiating for both types of the model orientations, similarly to some knowl-

edge-based potentials (e.g. rama, p_aa_pp). Fig 4 shows the ratio of domains for which the

ETs were significantly different between natively oriented and mirror models. Fig 4 includes

domains from classes A, B, C and D. The results for the domains from classes E, F and G are

presented in Supplementary Materials (S2 Fig).

Fig 4. Bar graph showing the ratio of domains for which the ET was significantly different in the groups of

natively oriented and mirror models. Graph includes also F+ ratio.

https://doi.org/10.1371/journal.pone.0196993.g004
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For domains from class A the most differentiating terms were ETs describing electrostatic

interactions (hack_elec), which were different for more than 77% of domains, and dihedral

angles (p_aa_pp– 68%, and rama– 64%). Notably, in class B the number of the ETs which were

differentiating for more than 60% of domains was twice as high as in class A. Moreover, the

ratio of the domains for which the ETs were significantly different between natively oriented

and mirror models was higher in class B than in class A. More than 89% of domains in class B

had significant differences in Ramachandran preferences (rama). The differences between

classes A and B for rama may be an effect of the structures deposited in databases, where we

can also find left-handed alpha-helices. Another ET related to the dihedral angles (p_aa_pp)

was also useful for more than 80% of domains. Furthermore, the Lennard-Jones repulsive

(87%) and attractive (79%) terms were significantly different for domains from class B. Con-

versely than in class A, we did not notice significant changes of electrostatic interactions

(hack_eleck) for mirror models in relation to the natively oriented models. Three structural

classes C, D and E included alpha-helices and beta-sheets, so for them we noted similar usabil-

ity of the same ETs as in class B, including also electrostatic interactions typical of class A. Clas-

ses F and G were the hardest to find their differentiating ETs. We did not obtain any ET which

was different for more than 60% of domains in class F and we found that only rama was differ-

ent for 60% of domains in class G.

We tested if natively oriented models had lower values of these ETs which were significantly

different. The histogram of the relation between energy terms RETs (see Eq 4 in Materials and

Methods) of the most reliable ETs for class A and B is shown in Fig 5. The RETs histograms of

the rest of classes are shown in the Supplementary Material (S3–S5 Figs). The domains for

which ETs were statistically different for native and mirror models are colored in red. The

domains for which ETs were not statistically different for both types of model orientations are

colored blue. The majority of domains from class A and B had lower values of ETs for natively

oriented models, which means that they were more stable (RET lower than 1). Only a few

domains had higher values of ETs for natively oriented models, and most of them were colored

blue, for them there were no significant differences between natively oriented and mirror

models.

We studied if the number of the ETs which were significantly different for natively oriented

and mirror models was dependent on the structural features of proteins (Fig 6). We observed a

week correlation (τ = 0.30) between the number of differentiating ETs and the length of the

protein sequence. If a protein was more difficult in modeling, expressed by RMSD of natively

oriented models to the original SCOP structure, fewer ETs were differentiating between native

and mirror models (τ = −0.40). Nonetheless, the correlation was weaker for class B (τ = −0.23)

than for class A (τ = −0.47). We also observed a weak correlation between the number of dif-

ferentiating ETs and RMSD of the original SCOP structure to its mirror. More ETs were differ-

entiating when the RMSD had a greater value (τ = 0.28).

In our study we also used another method for differentiating two types of model orienta-

tions in order to validate the approach based on ETs. We applied the unsupervised k-means

clustering algorithm, based on the differentiating ETs, in order to classify the data set into mir-

ror and native models. The mean accuracies, specificities, sensitivities, F1 and MCC of cluster-

ing for all classes are shown in Table 2.

When all ETs were involved, the highest accuracy was noted for class B (0.75) and the lowest

accuracy for class A (0.53). The accuracies for clustering in classes C and D were between the

results of classes A and B. Then, we limited ETs to these which were significantly different for

more than 60% of domains. The accuracy of clustering was better for class A (0.68), but the

accuracies for different classes did not change. Next, we used only two most differentiating

ETs. The results were higher for classes A and C. However, the accuracies for B and D classes

Separation of mirror protein models
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were the same as in the case with all ETs. Therefore, using only two most differentiating ETs in

k-means clustering for each class allowed us to obtain two groups of models with accuracy

between 0.68–0.78, specificity 0.73–0.87, and sensitivity 0.66–0.81, depending on the class.

Fig 5. The histograms of RET for the three best ET in distinguishing native and mirror models. Left column is class A and right column is

class B, red bars mean the domain for which the ET was significantly different and blue bars mean the domain for which the ET was not

significantly different.

https://doi.org/10.1371/journal.pone.0196993.g005
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However, we did not find one common ET for all classes (ETs for class A: hack_elecl and

p_aa_p, for class B: rama and total, for class C: rama and hack_elec and for class D: rama and

p_aa_p).

We addressed a question if using only total energy would allow obtaining appropriate clusters.

The accuracy of the clustering for class A was only 0.52, while the accuracies of clustering models

in classes B and D were more acceptable (0.67–0.76). Next, we evaluated if clustering based only

on one ET (best for each class) would be sufficient for distinguishing between natively oriented

and mirror models. For class A we used hack_elec, for class B, C and D rama. The results for clas-

ses A and D were the same as in the case with two most differentiating ETs. However, the accura-

cies of clusterings for classes B and C were slightly better in the case of two ETs.
Our idea was to find common ETs for all structural classes of proteins. For that reason out

of all ETs which were used in clustering, two most differentiating ETs for classes A, B, C and D

were selected. Despite the fact that total energy was one of two most differentiating ETs for

class B, we excluded it, because of the low accuracy in class A. As a result we obtained three

common ETs for all classes: hack_elec, p_aa_p, and rama. The mean accuracy of clustering

with three ETs for classes A, B, C and D was 0.71 (details in Table 2). Clustering with two most

differentiating ETs for each class and clustering with three common ETs gave similar results.

Therefore, using the same ETs for all domains allow to simplify the automated method for dif-

ferentiating natively oriented and mirror models.

The clustering results for classes E, F and G are included in Supplementary Materials (S2

Table).

The models were divided into 2 classes. Only domains with at least 3 mirror and 3 native

models were included. Squared Euclidean distance was used. ACC denotes accuracy (Eq 5),

SPC denotes specificity (Eq 6), SN denotes sensitivity (Eq 7), MCC denotes Matthews correla-

tion coefficient (Eq 8), and F1 denotes F1 score (Eq 9).

Fig 6. Scatter plot of differentiating ETs to all ETs vs. protein length, mean RMSD of native models (mean by

domains) and RMSD between SCOP structure and its mirror: Red is class A, blue is class B.

https://doi.org/10.1371/journal.pone.0196993.g006
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Conclusions

The visual assessment of the structures rich in alpha-helices and their Ramachandran plot may

give a clue which model has the native orientation of its secondary structure and which is

closer to the mirror image. However, the a priori knowledge about chirality of the original heli-

ces is necessary. Proteins rich in beta-sheets are harder cases for visual differentiation between

native and mirror models. Moreover, total energies of the structures are not always helpful.

Therefore, we proposed the automated method for differentiating both types of model orienta-

tions independent of their secondary structures.

We analyzed protein models of a set of SCOP domains from seven structural classes. On

average the same numbers of natively oriented and mirror models were obtained, and the dis-

tribution of the ratio of mirror models to all models was Gaussian. This confirms the assump-

tion about the same probability of both types of model orientations proposed in [18], when no

extra chirality terms are used in the tool for protein structure reconstruction from contact

maps. We showed that the structures rich in beta-sheets preserved more original contacts dur-

ing reconstruction process than those with predominant alpha-helices. To assess the models,

Table 2. Mean accuracy of the k-means clustering using energy terms.

SCOP class A B C D

All ETs ACC 0.53 0.75 0.67 0.68

SPC 0.50 0.74 0.67 0.67

SN 0.59 0.81 0.74 0.73

MCC 0.08 0.51 0.36 0.36

F1 0.53 0.75 0.65 0.68

ETs different for > 60% domains ACC 0.68 0.76 0.67 0.68

SPC 0.72 0.74 0.67 0.67

SN 0.69 0.82 0.74 0.74

MCC 0.38 0.52 0.36 0.37

F1 0.66 0.75 0.65 0.69

2 most differentiating ETs ACC 0.71 0.75 0.78 0.68

SPC 0.73 0.75 0.87 0.76

SN 0.72 0.81 0.77 0.66

MCC 0.43 0.51 0.59 0.38

F1 0.69 0.75 0.75 0.66

1 most differentiating ETs ACC 0.71 0.72 0.72 0.68

SPC 0.69 0.81 0.84 0.76

SN 0.77 0.69 0.70 0.66

MCC 0.43 0.45 0.50 0.39

F1 0.70 0.69 0.68 0.66

1 ET: total ACC 0.52 0.76 0.67 0.68

SPC 0.47 0.75 0.67 0.67

SN 0.59 0.82 0.74 0.73

MCC 0.05 0.52 0.36 0.36

F1 0.52 0.75 0.65 0.68

3 ETs: hack_elec, p_aa_p, rama ACC 0.68 0.70 0.76 0.70

SPC 0.72 0.77 0.87 0.78

SN 0.69 0.69 0.74 0.68

MCC 0.38 0.42 0.56 0.42

F1 0.66 0.68 0.72 0.68

https://doi.org/10.1371/journal.pone.0196993.t002
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their RMSDs to the original SCOP structures were used. We observed three types of RMSD

histograms of the models: separated bimodal distribution, overlapping bimodal distribution,

and unimodal distribution. All of them present three levels of difficulty in structural differenti-

ation between natively oriented and mirror models.

Since the structural features are not sufficient for differentiating between both types of

model orientations, we proposed to apply energy terms from PyRosetta. The total energy was

statistically different between natively oriented and mirror models only for 37% of domains

rich in alpha-helices, but for 89% of domains rich in beta-sheets. Therefore, we analyzed each

ET separately. For domains from class A the most differentiating terms were: hack_elec,
p_aa_p and rama, which describe Coulomb interaction, probability of amino acid at defined

values of dihedral angles and Ramachandran preferences. For domains from class B they were:

rama, p_aa_p, such as in class A, and fa_rep, fa_atr, which describe Lennard-Jones repulsive

and attractive interactions.

We applied k-means clustering algorithm based on the ETs. When we used total energy as a

single feature, the accuracy of clustering for class A was no more than 0.52, while the accuracy

for class B was much more, i.e. 0.76. For classes C and D, which include both types of second-

ary structures, the accuracies were between those of A and B. Using all ETs we obtained similar

results. Therefore, we decided to unify the method for all structural classes. We combined two

most differentiating ETs from each class and considered them as common indicators for all

classes. As a results, the k-means clustering algorithm used three common ETs: probability of

amino acid at F and C, Ramachandran preferences and Coulomb interactions. The accuracies

of clustering with these energy terms were from 0.68 for class A to 0.76 for class C, with sensi-

tivity and selectivity in the range from 0.68 to 0.87.

A great advantage of our approach is using the same methodology to all classes of protein

structures. Clustering based on the common ETs does not even require the knowledge about

the secondary structure. The models may be ranked in two clusters separately, allowing to

choose the best natively oriented and mirror models for further analysis. The method can be

applied to all fully-automated tools for protein structure reconstruction based on contact

maps, especially those analyzing big sets of models.

Materials and methods

Data set

The data set was built from representatives of SCOP [19] superfamilies. 1961 domains were

downloaded from on-line SCOP server (http://astral.berkeley.edu/scopseq-1.75.html as of

20.09.2012). The domains with special proteinogenic amino acids, such as selenocysteine, in

the middle of the chain were eliminated. Some domains had missing residues or heavy atoms

in the middle of the chain. They were also rejected from the further analysis. If the special

amino acids were at the beginning or end of the chain, the domain was modified by the reduc-

tion of the chain. The same procedure was applied in the case of absence of heavy atoms at the

beginning or end of the chain. Finally, 1305 domains from 7 classes, which constitutes 67% of

the data set, were used in the experiment (Table 3).

To build the data set of models with two orientations and various qualities, we used the pro-

cedure of modeling a structure from its contact map. For each domain the contact map was

generated with PconPy [20] with the following parameters: the cutoff of distance between Cα
atoms was 8 Å, and separation between residues was 1. Next, the contact maps were used as an

input for C2Sv2.0 [10,8,21,22] to reconstruct structural models. C2Sv2.0 uses REMO [21] to

backbone reconstruction. Therefore the models are obtained using knowledge-based
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potentials deduced from solved protein structure, which are oriented correctly, hence the

models are not ideal mirror reflections of natively oriented domains.

For each of the selected domains 100 models were generated.

Structural features

For structural assessment of the models the root mean square deviations (RMSDs) between

Cα atoms were calculated. The RMSD is sensitive to global changes in the structure so it

should be effective to assess the symmetric differences, such as mirror images. The structural

correctness was also evaluated with the number of positive dihedral angles F. The F+ ratio was

calculated as a ratio of the number of positive dihedral angles, F+, to all dihedral angles, F. All

calculations were made with Biopython [23,24].

The models could have two orientations: native or mirror. The orientation of a model was

assessed based on its superposition to its original SCOP structure and to the mirror image of

the SCOP structure. The mirror image of the SCOP structure was obtained by geometric, sym-

metric reflection. We used the superposition algorithm from Biopython. Only Cα atoms were

superposed and RMSDs between Cα atoms were calculated. The orientation class of the model

was assigned depending on the lower RMSD value of these two superpositions.

The Ramachandran plots of the models were made with ramachandran function [25] of

Matlab R2013a Bioinformatics toolbox. Calculations of the residues occupancy in different

regions of Ramachandran plots were carried out based on the Top500 angle data [26]. Top500
angle data is a selection of 500 files from the Protein Data Bank prepared by the Richardson

lab from Duke University [27]. The list of proteins is available at the website: http://kinemage.

biochem.duke.edu/databases/top500.php. The classification of regions was made based on the

Richardson lab guidelines. Density levels were classified by the fraction of data points

excluded. The favored, allowed and outliers regions were defined with the minimum occu-

pancy grid values (pFC):

favored ¼ p�c � 0:02 ð1Þ

allowed ¼ p�c < 0:02 ^ p�c � 0:0005 ð2Þ

Table 3. Descriptions of data set.

SCOP

class

Class description Domains for structural

analyses

Domains for energy analyses: at least 3

mirror and 3 native models

Mean sequence

length ± std

A All-alpha 343 329 124 ± 86

B All-beta 233 218 153 ± 98

C Alpha/beta
(mainly parallel beta sheets—beta-alpha-beta units)

149 140 228 ± 105

D Alpha+beta
(mainly antiparallel beta sheets—segregated alpha and

beta regions)

368 352 132 ± 74

E Multi-domain
(alpha and beta—folds consisting of two or more

domains belonging to different classes)

21 15 354 ± 183

F Membrane and cell surface proteins and peptides
(does not include proteins in the immune system)

78 74 137 ± 126

G Small proteins
(usually dominated by metal ligand, heme, and/or

disulfide bridges)

113 113 57 ± 24

All 1305 1241 142± 101

https://doi.org/10.1371/journal.pone.0196993.t003
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outliers ¼ p�c < 0:0005 ð3Þ

In structural analysis of the models we tested if contact maps of the models remained the

same as the original contact maps from which the models were reconstructed. For each model

the contact map was generated with PconPy with the following parameters: cutoff distance

between Cα atoms was 8 Å, and separation between residues was 1. They included the matrix

representation of contact maps, where 1 means contact and 0 means non-contact. All normali-

zations were made comparing to the original SCOP domains. The normalized differences

(diff) in the contact number between a model and its original SCOP domain were calculated.

Energy terms

After investigation of the structural differences between native and mirror models, we verified

if methods based on the ETs may be suitable for distinguishing between two orientations of the

models. PyRosetta package [28] was selected to calculate the energy stability of a protein struc-

ture. We used talaris2013 energy score function [29], where the total energy of a model is the

weighted sum of 16 ETs. The ETs, along with their short descriptions, are listed in Table 4.

Some energy terms describe empirical potentials (e.g. Coulomb interaction, Lennard-Jones

potentials) and some of them are knowledge-based potentials (e.g. Ramachandran preferences,

probability of an amino acid at F and C).

Assessment of energy terms usability

The basic hypothesis to be verified was whether a certain ET is significantly different in

natively oriented and mirror models of a protein domain. The statistical analyses were per-

formed with Matlab R2013a. The schema of the statistical analysis of ETs between native and

mirror models is shown in Fig 7. Each analysis was preformed individually for each domain.

Next, the ratio of domains, for which the differences between natively oriented and mirror

Table 4. Description of the energy terms from PyRosetta used in the analysis.

ET shortcut ET description

fa_atr Lennard-Jones attractive

fa_rep Lennard-Jones repulsive

fa_sol Lazardis-Karplus solvation energy

fa_intra_rep Lennard-Jones repulsive between atoms in the same residue

hack_elec Coulomb interaction

pro_close proline ring closure energy

hbond_sr_bb backbone-backbone hydrogen bonds close in primary sequence

hbond_lr_bb backbone-backbone hydrogen bonds distant in primary sequence

hbond_bb_sc sidechain-backbone hydrogen bond energy

hbond_sc sidechain-sidechain hydrogen bond energy

dslf_fa13 disulphide bonds energy

rama Ramachandran preferences

omega omega dihedral in the backbone

fa_dun internal energy of sidechain rotamers as derived from Dunbrack’s statistics

p_aa_p probability of amino acid at F and C

ref reference energy for each amino acid

total final score (total energy)

https://doi.org/10.1371/journal.pone.0196993.t004
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models were statistically significant, was calculated for each ET. Furthermore, F+ ratio was

included to the ETs analysis in the same way.

After analysis of statistical differences between ET values of native and mirror models, the

relation between ETs was calculated:

RETn
m
¼

ETn
ETm

ð4Þ

ETn – mean or median of an ET of native models of a domain,

ETm – mean or median of an ET of mirror models of a domain.

Clustering models based on energy terms

We proposed an automatic method to distinguish between native and mirror models. For this

purpose we clustered models based on their ETs. In the first part of the study we tested which

energy terms are significantly different for native and mirror models. Using statistical tests we

compared the medians or means of native models of one domain and mirror models of the

same domain. Next, we repeated this procedure for all domains from each class and calculated

the ratio of domains in which the energy term was significantly different. In the second part of

the study, we used the energy terms as features in k-means clustering. We clustered 100 models

from each domain and compared results with the actual model orientation. Then, we calcu-

lated accuracy, specificity, and sensitivity. We repeated procedure for all domains from each

class, and calculated the mean of accuracy, specificity, and sensitivity.

Clustering was performed with kmeans function of Matlab R2013a. The data set of models

of each domain was divided into 2 clusters with sqeuclidean measure. First, for the clustering

we used all ETs as features of all the structural models. Next, we carried out a series of analyses

with selected ETs, dividing the data set into two clusters. The cluster with a lower mean value

of tested ETs was assumed as the native cluster, and the other one as the mirror cluster. To

assess the clustering results, the accuracy (ACC), specificity (SPC), sensitivity (SN), Matthews

correlation coefficient (MCC) and F1 score (F1) were calculated:

ACC ¼
TP þ TN

TP þ TN þ FP þ FN
ð5Þ

SPC ¼
TP

TPþ FN
ð6Þ

SN ¼
TN

TN þ FP
ð7Þ

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð8Þ

F1 ¼ 2 �
1

1

SN þ
TPþFP
TP

ð9Þ

where TP is a number of true positives, which are models with the native orientations of their

Fig 7. Statistical analyses of the energy terms in the groups of natively oriented and mirror models. The finally tested hypothesis was

if the energy term of native and mirror models were the same.

https://doi.org/10.1371/journal.pone.0196993.g007
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structures assigned to the cluster classified as native; TN is a number of true negatives, which

are mirror models in the mirror cluster; FP is a number of false positives, which are mirror

models in the native cluster; FN is a number of false negatives which are native models in the

mirror cluster.

The parameters can assume values between 0 and 1, where 1 denotes the ideal clustering

case in which all structural models are in the right cluster. ACC, SPC, SN, MCC and F1 were

calculated for each domain and finally averaged over all domains.
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