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Abstract
Identifying	 the	environmental	drivers	of	 the	global	distribution	of	 succulent	plants	
using	 the	Crassulacean	 acid	metabolism	pathway	of	 photosynthesis	 has	previously	
been	investigated	through	ensemble-	modeling	of	species	delimiting	the	realized	niche	
of	the	natural	succulent	biome.	An	alternative	approach,	which	may	provide	further	
insight	into	the	fundamental	niche	of	succulent	plants	in	the	absence	of	dispersal	limi-
tation,	 is	to	model	the	distribution	of	selected	species	that	are	globally	widespread	
and	have	become	naturalized	far	beyond	their	native	habitats.	This	could	be	of	inter-
est,	for	example,	in	defining	areas	that	may	be	suitable	for	cultivation	of	alternative	
crops	resilient	to	future	climate	change.	We	therefore	explored	the	performance	of	
climate-	only	species	distribution	models	(SDMs)	in	predicting	the	drivers	and	distribu-
tion	of	two	widespread	CAM	plants,	Opuntia ficus-	indica and Euphorbia tirucalli. Using 
two	different	algorithms	and	five	predictor	sets,	we	created	distribution	models	for	
these	exemplar	species	and	produced	an	updated	map	of	global	inter-	annual	rainfall	
predictability.	No	single	predictor	set	produced	markedly	more	accurate	models,	with	
the	basic	bioclim-	only	predictor	set	marginally	out-	performing	combinations	with	ad-
ditional predictors. Minimum temperature of the coldest month was the single most 
important	variable	in	determining	spatial	distribution,	but	additional	predictors	such	as	
precipitation	and	inter-	annual	precipitation	variability	were	also	important	in	explain-
ing	 the	 differences	 in	 spatial	 predictions	 between	 SDMs.	When	 compared	 against	
previous projections, an a posteriori	approach	correctly	does	not	predict	distributions	
in	areas	of	ecophysiological	tolerance	yet	known	absence	(e.g.,	due	to	biotic	competi-
tion).	An	updated	map	of	 inter-	annual	 rainfall	predictability	has	successfully	 identi-
fied	regions	known	to	be	depauperate	in	succulent	plants.	High	model	performance	
metrics	suggest	that	the	majority	of	potentially	suitable	regions	for	these	species	are	
predicted	by	these	models	with	a	limited	number	of	climate	predictors,	and	there	is	
no	benefit	in	expanding	model	complexity	and	increasing	the	potential	for	overfitting.
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1  |  INTRODUC TION

Identifying	the	environmental	conditions	under	which	a	species	can	
thrive	 is	an	 important	question	 in	biogeography	and	ecology	both	
to understand the environmental tolerances of individual organisms 
and	to	be	able	to	predict	their	distributions	across	current	and	future	
climates.	Many	parts	of	the	world	are	 likely	to	experience	warmer	
climates	and	reduced	and/or	more	variable	precipitation	in	the	de-
cades	ahead,	so	there	is	interest	in	determining	which	organisms	may	
be	relatively	well	adapted	to	these	future	climate	regimes.	A	group	
of	plants	that	are	particularly	characteristic	of	warm,	semi-	arid	parts	
of the world with strong seasonal rainfall patterns are succulents 
using	 the	specific	mode	of	photosynthesis	known	as	Crassulacean	
acid	metabolism	(CAM).	By	virtue	of	being	able	to	fix	most	of	their	
carbon	 dioxide	 from	 the	 atmosphere	 at	 night	 rather	 than	 during	
the	day	time,	CAM	plants	typically	show	high	water-	use	efficiency	
and	can	survive	 in	environments	with	high	daily	temperatures	and	
relatively	 limited	water	 availability	 (Cushman,	2001; Lüttge, 2010; 
Osmond, 1978;	Winter,	1985;	Winter	&	Smith,	1996).	The	environ-
mental resilience of these plants makes them attractive species for 
cultivation	on	marginal	land	for	a	variety	of	potential	uses,	such	as	
fodder,	bioethanol	production,	or	as	feedstock	for	anaerobic	diges-
tion	 (Acharya	et	al.,	2019; Borland et al., 2009; Davis et al., 2011; 
Hastilestari	et	al.,	2013;	Holtum	et	al.,	2011; Loke et al., 2011; Mason 
et al., 2015; Mwine et al., 2013;	Yan	et	al.,	2011).	Such	crops	may	
be	of	particular	value	in	semi-	arid	regions	most	likely	to	experience	
increased	drought	risk	(e.g.,	Marthews	et	al.,	2019; Otto et al., 2018).

The	growth	and	the	ecophysiological	controls	on	the	natural	dis-
tribution	of	CAM	species	have	been	widely	 studied	and	observed	
across	a	range	of	environments.	Broadly	speaking,	the	methods	pre-
viously	used	to	observe	the	distribution	of	specific	CAM	species	can	
be	split	 into	those	that	are:	observation	based;	growth/trial	based;	
and	those	that	are	based	on	models—	both	process	and	data-	driven	
(Ringelberg	et	al.,	2020).	However,	a	comparison	of	the	importance	
in	 different	 environmental	 parameters	 and	 derived	 indices	 in	 ex-
plaining	 the	variability	 in	CAM	plant	distribution	has	not	yet	been	
completed.	 Using	 existing	 studies	 published	 in	 the	 literature	 it	 is	
possible	to	compare	areas	of	expected	growth	and	productivity	suit-
ability	(i.e.,	the	locations	with	the	environmental	conditions	required	
for	specific	species	growth)	(Guisan	et	al.,	2017)	based	on	process-	
based	models	 (e.g.,	Owen	 et	 al.,	2015)	 or	 using	 climatic	 envelope	
methods	 (e.g.,	 Louhaichi	 et	 al.,	 2015).	 However,	 there	 is	 also	 the	
potential	to	use	methods	based	on	derived	environmental	parame-
ters	and	those	driven	by	a posteriori	models	(e.g.,	species	distribution	
modeling	(Guisan	et	al.,	2017))	to	identify	the	relationship	between	
known	observations	of	CAM	species	and	predictor	variables;	 thus	

projecting	maps	 of	 suitable	 biotic	 conditions	 for	 species	 to	 occur	
based	 on	 climatological,	 environmental,	 and/or	 biotic	 correlations	
(Aguirre-	Gutiérrez	et	al.,	2013;	Soberón	&	Nakamura,	2009).

Correlative	species	distribution	models	 (SDMs)	have	been	com-
monly	employed	as	predictive	tools	to	quantify	relationships	between	
species occurrence datasets and measurements of environmental 
variables	(Dormann	et	al.,	2012)	across	ecology,	but	seldom	applied	
to	the	specific	mapping	of	CAM	plants.	Equally,	as	noted	by	Bucklin	
et	al.	(2015),	there	remains	no	consensus	on	which	variables	should	
be	 included	 as	 predictors	 in	 SDM	 analysis	 more	 generally.	 While	
many	climate-	only	SDMs	 (i.e.,	using	only	climatic	parameters)	have	
been	highlighted	as	important	tools	for	both	projecting	current	and	
future	ecological	niches	(e.g.,	for	guiding	future	conservation	efforts	
(Elith	&	Leathwick,	2009)	 (Bucklin	et	al.,	2015)),	 some	studies	have	
criticized	this	approach	for	providing	only	an	 incomplete	 represen-
tation	of	complex	environmental	systems	(Araújo	&	Peterson,	2012; 
Bahn	 &	McGill,	 2007; Beale et al., 2008;	 Heikkinen	 et	 al.,	 2006).	
Using	different	combinations	of	bioclimatic	and	derived	environmen-
tal	indices,	this	study	tests	and	compares	the	relative	importance	of	
parameters	 in	 explaining	 the	 distribution	 of	 CAM	 plants,	 focusing	
specifically	on	Opuntia ficus-	indica	(L.)	Mill.	And	Euphorbia tirucalli L. 
as	 example	 species.	 In	 doing	 so,	 this	 study	 attempts	 to	 define	 the	
best,	minimal	predictors	of	plant	distribution	so	that	models	have	the	
greatest	predictive	power	without	being	over-	parameterized	(Merow	
et al., 2014;	Raes	&	Aguirre-	Gutiérrez,	2018).

Unlike	recent	analyses	which	have	ensemble-	modeled	numer-
ous	species	with	the	aim	of	identifying	the	wider	natural	succulent	
biome	distribution	(e.g.,	Ringelberg	et	al.,	2020),	this	study	takes	
an	alternative	approach	by	selecting	a	minimal	number	of	species	
of	 interest,	 but	 for	which	 their	 distribution	 is	 successfully	wide,	
occupying	 all	 available	 climatic	 niches,	 and	with	minimal	 disper-
sion limitations. There are numerous rare succulent species that 
have	very	restricted	ranges	on	account	of	being	dispersal-	limited	
for	which	this	analysis	would	not	be	appropriate.	By	comparison,	
O. ficus-	indica	 is	a	successful	 invasive	species	having	established	
itself	 across	 every	 continent	 (except	 Antarctica)	 (CABI,	 2019)	
and found across all latitudes. Opuntia ficus-	indica and E. tirucalli 
have	also	shown	great	potential	 suitability	 for	bioeconomic	uses	
(Hastilestari	 et	 al.,	2013; Mason et al., 2015);	 and	 are	 therefore	
suitable	test	species	to	use	for	this	analysis	which	is	interested	in	
exploring	the	possibility	for	these	plants	to	be	actively	grown	as	
a	crop—	highlighting	the	potential	that	can	be	achieved	with	CAM	
plantation	for	bioeconomic	and	 land	restorative	purposes.	While	
most	previous	distribution	modeling	exercises	have	been	built	on	
the	natural	 distribution	of	 native	 species,	 additional	 novel	 infor-
mation	might	be	obtained	 from	explicitly	 considering	 the	extent	
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and	spread	of	introduced	invasive	species,	once	they	are	given	the	
opportunity	to	spread	into	other	parts	of	the	“potential	niche.”

Specifically,	this	study	will	compare	different	sets	of	variables	
to	predict	zones	of	potential	suitability	for	Opuntia ficus-	indica and 
Euphorbia tirucalli	growth.	In	doing	so,	this	study	aims	to	first	pre-
dict	 the	 current	 locations	with	 suitable	 biotic	 conditions	 for	 the	
occurrences of O. ficus-	indica and E. tirucalli	using	different	SDMs	
tested	in	this	study.	Second,	the	results	will	help	identify	the	most	
important	 set	 of	 variables	 that	 help	 define	 the	 environmental	
niche	 of	 two	 CAM	 species	 of	 interest.	While	 the	 natural	 distri-
bution	of	both	species	has	generally	been	restricted	to	semi-	arid	
regions	as	outcompeted	by	other	plants,	 their	natural	 ecological	
requirements permit them growing in wetter areas, and compe-
tition	 factors	 have	 largely	 restricted	 the	 spread	 of	 the	 species	
to regions with annual rainfall <500	mm	(Luttge,	2004).	Opuntia 
ficus-	indica	is	a	successful	invasive	which	has	been	widely	sighted	
across	 regions	 outside	 of	 central	 America	 (e.g.,	 Africa,	 southern	
Europe),	while	E. tirucalli	is	native	to	Africa	(Palgrave,	1977;	Webb	
et al., 1984)	but	has	also	been	found	in	central	America,	Europe,	
and	other	locations	globally.	Given	the	successful	expansion,	but	
different origins of these two species, comparison of the potential 
regions	 through	which	 they	 could	 be	 successfully	 cultivated	 for	
bioeconomic	(e.g.,	biogas)	uses	across	a	region	(e.g.,	sub-	Saharan	
Africa)	 with	 low	 levels	 of	 energy	 access,	 increased	 agricultural	
pressure	 in	 the	 face	 of	 drought,	 and	 high	 climatic	 suitability	 for	
these	 species	 is	 particularly	 interesting	 (Buckland	 &	 Thomas,	
2021).	For	this	reason,	this	study	will	initially	calibrate	and	project	
models	based	on	a	global	view,	before	 taking	a	deeper	 focus	on	
Africa	as	a	potential	region	for	cultivation,	bioenergy	and	bioeco-
nomic uses.

2  |  MATERIAL S AND METHODS

Using	 SDM	 techniques,	 this	 study	 compares	 the	 relative	 perfor-
mance	of	five	SDMs	to	predict	the	potential	distribution	of	O. ficus-	
indica and E. tirucalli	based	on	current	climatic	conditions.	The	five	
SDMs	each	capture	different	 combinations	of	environmental	 vari-
ables	defined	in	the	WorldClim	2.1	bioclim	database	(Fick	&	Hijmans,	
2017)	and	derived	indices	or	parameters	that	have	previously	been	
cited	 as	 impacting	 upon	 the	 spatial	 distribution	 of	 CAM	 plants:	
the	 Hellmann–	Eberle	 quotient	 (a	 measure	 of	 inter-	annual	 rainfall	
predictability	used	by	Ellenberg,	1981),	 the	aridity	 index	 (the	 ratio	
between	 annual	 precipitation	 and	 potential	 evapotranspiration	
(PET)),	 cloud	cover	 (as	a	proxy	 for	 light	 intensity),	and	 the	R-	index	

(the	ratio	between	actual	and	PET)	(Yao,	1974).	As	noted	in	Title	and	
Bemmels	(2018),	the	inclusion	of	more	complex	climatic	indices	may	
characterize	environmental	conditions	that	are	more	directly	physi-
ologically	relevant	to	particular	species	than	more	primary	climatic	
parameters	(e.g.,	temperature,	precipitation).	Due	to	the	successful	
invasive	 nature	 of	 both	 species,	we	 have	 considered	 their	 expan-
sion	 to	be	 largely	 limited	by	environmental	 conditions	 rather	 than	
distribution-	limited,	 and	 thus	only	 climatic-	based	parameters	have	
been	used.

2.1  |  Predictor datasets

The	 choice	 of	 environmental	 variables	 selected	 should	 ideally	
be	based	on	the	known	ecology	of	the	species	(Title	&	Bemmels,	
2018),	 as	 this	 has	 previously	 demonstrated	more	 realistic	 SDMs	
(Rödder	et	al.,	2009;	Saupe	et	al.,	2012).	With	this	in	mind,	a	com-
bination	 of	 bioclim	 datasets	 from	 the	 WorldClim	 2.1	 catalogue	
(Fick	&	Hijmans,	2017)	 and	 derived	 environmental	metrics	were	
compiled	 and	 a	 sensitivity	 analysis	 (Pearson’s	 Correlation)	 was	
used	to	remove	highly	correlated	variables.	Inclusion	of	co-	variant	
parameters	 leads	to	over-	parameterization	of	the	model.	All	pre-
dictor	 datasets	 were	 bilinearly	 resampled	 to	 the	 same	 2.5	 min	
resolution.

2.1.1  |  Bioclim	datasets

Based	on	existing	research	of	the	parameters	impacting	the	growth	
and	 distribution	 of	 succulents	 and	 CAM	 plants	 more	 generally	
(Acharya	et	al.,	2019;	Inglese	&	Scalenge,	2009;	Le	Houérou,	1996; 
Louhaichi et al., 2015;	Masocha	&	Dube,	2018),	and	the	results	from	
covariance	 testing	 (Appendix	 A),	 four	 bioclim	 variables	 were	 se-
lected	for	use	as	explanatory	parameters	(Table 1).

2.1.2  |  Hellmann–	Eberle	quotient

The	Hellmann–	Eberle	quotient	provides	a	measure	of	inter-	annual	
precipitation	variability	and	 is	defined	as	 the	 ratio	between	pre-
cipitation	of	the	wettest	year	and	precipitation	of	the	driest	year	
over	an	extended	period	of	 time.	Ellenberg	 (1981)	 examined	 the	
distribution	pattern	of	 tall	 stem	succulents	 in	 relation	 to	climate	
and	 found	that	 they	 tended	 to	occur	 in	areas	where	 rainfall	was	
low	(i.e.,	<500	mm	per	annum),	but	regularly	received	(i.e.,	where	

Bioclim variable Environmental parameter

Bioclim 2 Mean	diurnal	temperature	range	(mean	of	monthly	(max	temp-	min	
temp))	(°C)

Bioclim 6 Minimum	temperature	of	coldest	month	(°C)

Bioclim 12 Annual	precipitation	(mm)

Bioclim 15 Precipitation	seasonality	(coefficient	of	variation)

TA B L E  1 Bioclim	parameters	(from	Fick	
&	Hijmans,	2017)	used	in	the	final	model	
iterations
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the	Hellmann–	Eberle	quotient	<5	over	a	series	of	years)	(Cowling	
et al., 1997).	 Ellenberg’s	 original	 study	 from	1981	was	 based	on	
35	years	of	observations	(1905‒	1940)	and	has	since	been	referred	
to	and	expanded	in	more	recent	studies	exploring	the	controls	on	
CAM	distribution	 (e.g.,	Holtum	et	 al.,	2016, 2017; Lüttge, 2010; 
Ringelberg	 et	 al.,	 2020).	 Using	 historical	 monthly	 weather	 data	
from	1960	to	2018	AD	from	the	CRU-	TS	4.03	dataset	(Harris	et	al.,	
2014)	downscaled	with	WorldClim	2.1	(Fick	&	Hijmans,	2017),	we	
calculated	a	more	recent	version	of	the	Hellmann–	Eberle	quotient	
based	 on	 annual	 historical	 precipitation	 levels	 at	 a	 2.5	min	 spa-
tial	 resolution	 (globally)	 to	compare	against	observational	occur-
rences of O. ficus-	indica and E. tirucalli	from	the	Global	Biodiversity	
Information	Facility	(GBIF.org,	2020).	Individual	GeoTiff	files	were	
analyzed	and	climate	rasters	were	produced	in	R	Studio	(RStudio	
Team, 2019),	 before	 being	 combined	 with	 observational	 occur-
rence	data	in	ArcGIS	Pro	2.4.1.

Precipitation	regime	alone,	however,	is	unlikely	to	explain	the	
distribution	of	these	species	as	it	does	not	include	the	impact	of	
minimum	temperatures,	which	 is	known	to	be	 limiting	for	partic-
ular	CAM	species	(Acharya	et	al.,	2019;	Herrando-	Moraira,	2020; 
Inglese	&	Scalenge,	2009;	Smith	et	al.,	2012;	Stock	et	al.,	1997).	
For	 this	 reason,	 combining	 the	 Hellmann–	Eberle	 quotient	 with	
other	bioclimatic	parameters	 in	the	SDM	analysis	has	the	poten-
tial	to	improve	our	distributional	understanding	of	key	species	of	
interest.

2.1.3  |  Aridity	index,	R-	index	and	cloud	cover

The	Aridity	 Index	 (AI)	 is	 commonly	considered	 to	provide	a	meas-
ure	of	overall	water	availability,	a	central	component	to	all	vegeta-
tive	growth.	Based	on	global	raster	data	from	1970	to	2000	AD,	a	
global	aridity	index	based	upon	the	implementation	of	the	Penman–	
Monteith	reference	evapotranspiration	equation	(Allen	et	al.,	1998)	
was	used	in	this	study	(Trabucco	&	Zomer,	2018).	The	R-	index	is	cal-
culated	 as	 the	 ratio	 between	 actual	 evapotranspiration	 (AET)	 and	
PET	and	is	a	measure	of	plant	water	supply	in	relation	to	plant	water	
demand	 (Yao,	1974).	 A	 global	 R-	index	 raster	was	 calculated	 using	
the	average	annual	AET	and	PET	rates	available	via	the	Consultative	
Group	 for	 International	Agricultural	 Research	 (Trabucco	&	Zomer,	
2018).	 Finally,	 as	 a	 proxy	 for	 photosynthetically	 active	 radia-
tion, cloud cover was included as a potential parameter that could 
be	 inversely	 related	 to	 plant	 growth.	 CAM	 plant	 growth	 shows	 a	
saturation-	type	relationship	to	light	intensity	(Nobel,	1988;	Nobel	&	
Valenzuela,	1987)	with	the	three	main	environmental	limitations	on	
CAM	plant	growth	considered	water,	light,	and	temperature	(Nobel,	
1988; Owen et al., 2015).	Process-	based	models	have	thus	included	
a	proxy	for	light	intensity	as	a	measure	to	predict	the	variability	in	
spatial	productivity	of	CAM	plant	species	in	existing	literature	(e.g.,	
Owen et al., 2015).	In	this	study,	a	global	raster	of	mean	annual	cloud	
cover	based	on	15	years	(2000–	2014	AD)	of	twice-	daily	satellite	ob-
servations	was	used	 from	the	EarthEnv	data	 repository	 (Wilson	&	
Jetz,	2016).

2.1.4  |  Pearson’s	correlation	coefficient

A	 total	 of	 five	 combinations	 of	 environmental	 parameters	 and	 bi-
oclim	 parameters	 (Fick	&	Hijmans,	2017)	were	 used	 to	model	 the	
relationship	 between	 environmental	 conditions	 and	 the	 observed	
distribution	of	O. ficus-	indica and E. tirucalli	 (Table	2).	Prior	to	final	
environmental	parameter	selection	for	each	of	the	five	SDM	com-
binations,	Pearson’s	correlation	coefficient	tests	were	conducted	to	
test	 for	 covariance	between	 the	variables	 (Appendix	A).	Based	on	
the results, and on an understanding of the main climatic parameters 
that	 influence	CAM	distribution,	4	bioclim	variables	were	selected	
for	use	in	the	final	model	fitting	(Table 1)	alongside	a	combination	of	
derived environmental indices.

2.2  |  Occurrence data

Opuntia ficus-	indica and Euphorbia tirucalli were the two species of 
interest	 selected	 for	analysis	 in	 this	 study.	The	 former	 is	 an	espe-
cially	suitable	test	species	for	this	analysis	since	its	occurrences	are	
already	occupying	most	of	its	geographic	range	allowing	us	to	model	
a	potential	distribution	closer	 to	 its	 fundamental	niche	 (i.e.,	all	 the	
environmental	 conditions	where	 a	 species	 could	 potentially	 exist)	
as	opposed	to	the	realized	niche	(i.e.,	those	conditions	in	which	the	
species	 currently	does	exist)	 (Chase	&	Leibold,	2003;	Hutchinson,	
1957).	By	comparison,	often	the	current	distributions	of	localized	or	
very	rare	species	are	restricted	by	dispersal	limitations	and	species	
interactions;	in	such	cases	the	realized	niche	will	be	smaller	than	the	
fundamental	niche,	and	we	cannot	independently	test	the	impact	of	
different climatic and environmental parameters on defining areas 
suitable	for	species	occurrence.

Opuntia ficus-	indica and E. tirucalli occurrence data were down-
loaded	 from	 the	GBIF	 data	 repository	 (GBIF.org,	2020)	 (Accessed	
09/06/2020)	 and	 cleaned	 according	 to	 the	 method	 described	 in	
Zizka	(2019).	Species	occurrence	data	from	both	the	native	and	in-
troduced	ranges	was	used	for	both	species.	One	of	 the	main	aims	
of	this	study	is	to	identify	regions	which	could	support	the	cultiva-
tion	of	these	species	under	current	climatic	conditions	(i.e.,	to	map	
the	fundamental	niche	of	the	species).	As	such,	we	do	not	need	to	
limit	the	training	dataset	to	the	native	distribution,	rather	observa-
tions	of	the	species	across	a	range	of	geographic	zones	are	useful	in	
identifying	the	scope	of	environmental	settings	which	are	suitable.	
Spatial	bias	of	occurrence	datasets	has	the	potential	to	distort	the	
interpretation	of	large-	scale	biodiversity	patterns	(Ballesteros-	Mejia	
et al., 2013; Beck et al., 2014; Boakes et al., 2010; Varela et al., 2014; 
Yang	et	al.,	2013),	and	SDMs	are	sensitive	to	the	spatial	bias	of	spec-
imen	records	(Dudík	&	Phillips,	2005;	Lintz	et	al.,	2013; Phillips et al., 
2009).	 Spatially	biased	data	would	have	a	 two-	fold	 impact	on	dis-
torting	SDMs:	first,	 through	biasing	the	present	data	used	to	train	
and	evaluate	model	performance	(Hijmans	et	al.,	2017);	second	in	bi-
asing	the	surface	range	envelope	model	used	in	the	pseudo-	absence	
dataset	 generation	 (see	 below)	 and	 therefore	model	 performance	
metrics.	With	this	in	mind,	we	applied	a	geographic	sampling	filter,	
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selecting	up	to	five	occurrence	data	points	from	each	1°	×	1°	grid	
cell—	reducing	 our	 datasets	 to	 2721	 and	 1085	 occurrences	 (from	
8061	and	2313)	of	O. ficus-	indica and E. tirucalli,	respectively	(Figures 
1 and 2).

2.3  |  Pseudo- absences

Unlike	“presence”	datasets,	“absence”	datasets	are	not	often	read-
ily	 available.	 Since	 some	 SDM	 algorithms	 require	 both	 datasets,	
pseudo-	absence	 (PA)	 datasets	 are	 created	 as	 a	 replacement	 for	
true	absence	records	(Raes	&	Aguirre-	Gutiérrez,	2018).	The	use	of	
PA	data	is	widely	accepted	and	has	been	shown	in	the	SDM	litera-
ture	to	be	a	useful	approach	to	calibrate	SDMs	(Chefaoui	&	Lobo,	
2008;	Iturbide	et	al.,	2018;	Václavík	&	Meentemeyer,	2009;	Wisz	
&	Guisan,	2009).	PA	data	are	generated	by	sampling	background	
areas	 from	 which	 presence	 records	 have	 not	 been	 identified	
through a range of different strategies, including: random, surface 
range	envelope	 (SRE),	or	based	on	a	minimum	(or	maximum)	dis-
tance	from	known	presence	points.	The	sensitivity	of	SDM	algo-
rithms	to	the	sample	of	PA	when	projecting	under	future	climates	
varies	between	models	and	creates	a	source	of	SDM-	dependent	
uncertainty	that	should	be	considered	when	deciding	on	initial	PA	
sampling	and	accounted	for	in	SDM	ensemble	modeling	(Iturbide	
et al., 2018).

Based	 on	 the	 recommendations	 of	 the	 findings	 in	 Barbet-	
Massin	et	al.	(2012)	and	Iturbide	et	al.	(2018),	an	equal	number	of	
PAs	were	selected	to	presences	with	multiple	PA	realizations	(five)	
to	reduce	overall	uncertainty.	Studies	based	on	a	single	realization	
of	PAs	have	the	potential	to	mask	results	from	poorly	performing	
SDMs	(Iturbide	et	al.,	2018).	Hence,	five	PA	realizations	were	used	

to	reduce	the	dependence	on	poorly	performing	SDMs	and	to	en-
sure	model	fits	were	not	dependent	on	a	single	realization	where	
PAs	 have	 been	 biasedly	 generated	 from	 regions	with	 few	 noted	
presences	 rather	 than	 few	 true	 presences	 (Barbet-	Massin	 et	 al.,	
2018).	 PAs	 were	 generated	 from	 all	 areas	 outside	 the	 suitable	
area	estimated	by	a	surface	range	envelope	model	(SRE)	(Thuiller	
et al., 2014).	SRE	models	are	based	on	presence-	only	data	(Barbet-	
Massin et al., 2012);	 SRE	 quantile	 refers	 to	 the	 quantile	 used	 to	
remove	 the	most	extreme	values	of	each	environmental	variable	
for	determining	tolerance	boundaries	(quantile	0.025	~ 95% confi-
dence	interval)	(Hallgren	et	al.,	2019).

2.4  |  Model fitting

There	are	numerous	options	 for	algorithms	to	use	 in	SDM	studies	
(summarized	in	Raes	&	Aguirre-	Gutiérrez,	2018),	but	there	is	often	
no	model	of	“best”	choice	(Qiao	et	al.,	2015).	Fitting	the	data	with	the	
same	algorithm	over	multiple	repeats	would	yield	different	results,	
as would fitting the data across multiple algorithms. Overfitting oc-
curs	when	an	overly	flexible	model	 learns	the	noise	in	the	training	
dataset	 to	 a	 level	 that	 negatively	 impacts	 the	performance	of	 the	
model	when	introduced	to	new	input	data.	By	comparison,	inflexible	
models	do	not	have	 the	 flexibility	 to	 fit	 complex	 relationships	be-
tween	parameters	and	predictor	datasets.	As	such,	inflexible	models	
may	not	have	the	capacity	to	accurately	fit	the	training	dataset,	nor	
to	generalize	well	 to	new	unseen	data	 (e.g.,	projecting	over	a	new	
time	 period	 or	 geographic	 location).	 In	 SDM,	 and	 machine	 learn-
ing	more	 generally,	 we	 seek	 to	 find	 a	 balance	 in	 creating	models	
with	the	capacity	to	fit	variance	but	also	avoid	bias.	Equally,	defin-
ing	 “best”	model	 is	 largely	 dependent	 on	 the	 choice	 of	 evaluative	

F I G U R E  1 Final	2721	Opuntia ficus-	indica	occurrences	downloaded	from	the	GBIF	dataset	(GBIF.org,	2020)	after	spatial	bias	analysis	
completed
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metric—	for	which	there	are	numerous.	Each	evaluative	metric	meas-
ures	a	slightly	different	aspect	of	model	performance,	and	thus	while	
a	model	may	perform	well	according	to	one	measure,	it	may	not	be	
the	“best”	model	according	to	another	metric	(Qiao	et	al.,	2015; Raes 
&	Aguirre-	Gutiérrez,	2018).

With	 this	 in	 mind,	 SDMs	 were	 initially	 fitted	 across	 two	 dif-
ferent	algorithms	which	required	the	same	PA	dataset	generation	
strategy:	 Boosted	 Regression	 Trees	 (Elith,	 2008)	 (also	 known	 as	
Generalized	Boosting	Model	GBM)	and	Random	Forests	(Breiman,	
2001),	 before	 being	 combined	 in	 an	 ensemble	model	 to	 obtain	 a	
consensus	 distribution	 (Marmion	 et	 al.,	2009).	Default	model	 pa-
rameters	found	in	the	biomod2	package	(Georges	&	Thuiller,	2013; 
Thuiller et al., 2014)	 were	 used	 and	 10	 repeats	 were	 completed	
per	algorithm	per	PA	selection,	producing	a	total	of	100	individual	
model	repeats	used	for	each	ensemble	model	(a	total	of	500	individ-
ual	model	repeats	across	all	five	SDM	scenarios).	The	between-		and	
within-	modeling	variability	 shown	 in	SDM	outputs	has	 led	 to	 the	
widespread	usage	of	ensemble	models	(Marmion	et	al.,	2009;	Qin	
et al., 2020;	Raes	&	Aguirre-	Gutiérrez,	2018;	 Senay	et	 al.,	2013);	
capturing	the	uncertainty	in	model	predictions	across	the	different	
SDM	algorithm	outputs	(Araújo	&	New,	2007; Dormann, 2018;	Hao	
et al., 2019;	Raes	&	Aguirre-	Gutiérrez,	2018),	producing	more	con-
sistent	predictions	when	projecting	new	unseen	data	 (e.g.,	 future	
climate	scenarios).

There	are	many	strategies	that	can	be	used	to	combine	predic-
tions	 from	 individual	 models	 into	 an	 ensemble	 model.	 Following	
the	 recommendation	 of	 Hao	 et	 al.	 (2019),	 we	 have	 taken	 a	 more	
sophisticated	approach	which	involved	weighting	the	models	based	
on their individual predictive performances. The performance of 
each	 individually	 trained	model	was	assessed,	and	ensemble	mod-
els	were	produced	based	on	the	true	skill	statistic	(TSS)	and	relative	

operating	 characteristic	 (ROC)	of	 each	 individual	model	 (based	on	
thresholds	defined	in	Qin	et	al.	(2020):	those	with	ROC	>0.5	imply	
that	 the	 model	 performed	 better	 than	 random).	 TSS	 metrics	 are	
widely	used	as	a	measure	of	 relative	performance	 in	SDM	studies	
and	have	been	recommended	over	the	use	of	other	methods	such	
as	Kappa	(Allouche	et	al.,	2006).	The	TSS	is	calculated	as:	Specificity 
+Sensitivity – 1,	whereby	“specificity”	refers	to	the	proportion	of	cor-
rectly	predicted	absences,	and	“sensitivity”	refers	to	the	proportion	
of	correctly	predicted	presences.	Individual	models	were	combined	
using	two	ensemble-	model	algorithms:	weighted	mean	of	probabili-
ties	and	coefficient	of	variation	of	probabilities,	to	provide	a	measure	
of	uncertainty	 in	 the	 former	ensemble	model.	Current	occurrence	
and predictor datasets were split 60% for training and validation, 
with the remaining 40% used for testing and evaluating model 
performance.	All	models	were	 fitted	 and	 projected	 using	 the	 bio-
mod2	package	version	3.3	(Thuiller	et	al.,	2014)	in	R	Studio	version	
1.2.5033	(RStudio	Team,	2019).

2.5  |  Evaluating model comparison

As	well	as	TSS	and	AUC	(ROC)	scores	calculated	for	each	of	the	indi-
vidual	models,	the	TSS	and	AUC	scores	of	the	ensemble	models	were	
compared	to	determine	the	relative	best	performing	model	and	iden-
tify	whether	the	additional	parameters	used	in	SDMs	2–	5	increased	
the	predictive	accuracy	of	SDM	1	(bioclim-	only	predictors).	As	dis-
cussed	in	Komac	et	al.	(2016),	the	AUC	provides	us	with	a	measure	of	
the performance of ordinal score models and a threshold measure of 
accuracy	(Thuiller	et	al.,	2005),	while	the	TSS	score	provides	us	with	
a measure of evaluative performance which has all the advantages 
associated	with	the	Cohen’s	kappa	statistic	(Cohen,	1968)	but	is	not	

F I G U R E  2 Final	1085	Euphorbia tirucalli	occurrences	downloaded	from	the	GBIF	dataset	(GBIF.org,	2020)	after	spatial	bias	analysis	
completed
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sensitive	 to	 prevalence	 (Allouche	 et	 al.,	 2006).	 Ensemble	 models	
from	the	five	SDM	scenarios	were	initially	projected	on	to	the	world	
to	generate	a	continuous	map	showing	variations	in	the	suitability/
probability	of	occurrence	for	the	two	species	of	interest.	Then,	using	
the	ensemble	model	cut-	off	values	to	provide	a	binary	measure	of	
habitat	suitability,	projections	were	then	compared	against	projec-
tions	based	on	existing	methods	from	the	literature	(e.g.,	Louhaichi	
et al., 2015)	 to	 identify	 the	 spatial	 variability	 in	 identified	 suitable	
regions	between	the	methods.	Ensemble	binary	cut-	off	values	are	
calculated	as	those	that	give	the	maximum	“sensitivity”	and	“speci-
ficity”	scores	(Thuiller	et	al.,	2005).

2.6  |  Assessing variable importance

Individual	 variable	 importance	 was	 approximated	 using	 the	
Variables_importance	 function	of	 the	 “biomod2”	package	 (Thuiller	
et al., 2014).	Variable	importance	was	assessed	for	each	of	the	five	
ensemble	models	and	across	each	of	the	two	species	with	the	aim	of	
determining which climatic or environmental factors have stronger 
effects	on	the	species	suitability	across	the	region	of	interest.	The	
principle	of	the	biomod2	variable	importance	algorithm	is	to	shuffle	
a	 single	variable	of	 the	given	data	and	produce	model	predictions	
with	 this	new	 “shuffled”	dataset.	A	Pearson’s	 correlation	between	
the	reference	predictions	and	“shuffled”	dataset	predictions	is	cal-
culated, with higher values corresponding to a greater influence the 
individual	variable	has	on	 the	model	 (i.e.,	 a	value	of	0	assumes	no	

influence	of	the	variable	on	the	model).	Variable	importance	results	
were	 standardized	 across	 all	 predictors	 used	 per	 model	 and	 pre-
sented in percentage terms.

3  |  RESULTS

3.1  |  Ensemble model projections and comparisons

A	total	of	500	individual	models	and	projections	were	produced	for	
each	species	and	ensembled	to	produce	weighted	mean	projections	
with	 coefficient	 of	 variation	 (uncertainty	 between	 the	 individual	
projections)	measurements	for	each	of	the	scenarios.	Ensemble	re-
sults	from	SDM	scenario	1	are	presented	in	Figures 3 and 4,	with	TSS	
scores	across	the	five	ensembles	shown	in	Table 3.	SDM	scenarios	
2–	5	are	shown	in	Appendix	E.

Across	both	 species,	 results	 show	 relatively	 little	difference	 in	
the	 evaluative	 performance	 between	 the	 ensemble	 models	 when	
tested	against	the	remaining	40%	of	the	dataset,	however,	SDM	1	
outperformed	 the	other	 four	SDMs	 for	both	O. ficus-	indica and E. 
tirucalli	 distribution	 projections	 (Table 3,	 Figures	 S7	 and	 S8).	 The	
random	forest	algorithm	generally	performed	best	for	O. ficus-	indica 
projections	 in	 both	 TSS	 and	 ROC	 scores,	 while	 GBMs	 marginally	
outperformed random forest models in the E. tircualli predictions 
(See	 Supplementary	 Information).	 Among	 both	 species	 and	 pre-
dictor	scenarios,	all	models	performed	well	with	overall	TSS	scores	
>0.91	across	all	ensembles	(Table 3).	TSS	scores	for	individual	model	

F I G U R E  3 Species	distribution	model	
scenario	1	projection	and	uncertainty	
(coefficient	of	variation)	based	on	
occurrences of O. ficus-	indica
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performances	showed	high	performance	with	little	variability,	rang-
ing from 0.85 to 0.942 and from 0.87 to 0.968 for O. ficus-	indica and 
E. tirucalli,	and	0.981–	0.996	and	0.984–	0.999	ROC	scores,	 respec-
tively	 (Tables	 S2	 and	 S3).	Due	 to	 the	 overall	 high	 performance	 of	
the individual models, all individual projections were included in the 
weighted	ensemble	model.

At	 a	 global	 scale,	 ensemble	 models	 across	 all	 five	 predictor	
scenarios	 indicated	 that	 both	 species	 have	potential	 distributional	
ranges	 in	 the	 tropics	 and	mid-	latitudes.	 The	 areas	 predicted	most	
suitable	for	O. ficus-	indica	include	sub-	Saharan	Africa,	Mediterranean	
Europe,	 Australia,	 South	 America	 (especially	 Brazil	 and	 north-	
eastern	Argentina),	central	America	and	countries	 in	southern	and	

eastern	Asia	(e.g.,	India,	China,	and	Thailand).	Meanwhile	the	areas	
predicted	most	suitable	for	E. tirucalli growth are more restricted to 
the	tropics,	especially	sub-	Saharan	Africa,	Brazil	and	northern	South	
America,	India,	northern	Australia	and	south	China.	The	higher	lat-
itudes	 and	 hyper-	arid	 Sahara	 were	 predicted	 unsuitable	 for	 both	
species.

When	 the	 deviation	 in	 environmental	 suitability	 is	 compared	
between	 SDM	 scenarios	 (Figures 5 and 6),	 the	 inclusion	 of	 either	
the	Hellmann–	Eberle	quotient,	aridity	index,	or	R-	index	all	produced	
overall	results	with	lower	suitability	projections	than	those	predicted	
using	bioclim	variables	alone	(SDM	1).	It	is	only	in	SDM	4	(Figures 5c 
and 6c)	that	ensemble	model	projections	suggest	that	some	regions	
(typically	 those	with	reduced	overall	certainty)	have	a	higher	 level	
of	environmental	suitability	than	projections	based	on	the	four	bio-
clim	variables	alone.	However,	these	results	are	not	necessarily	cor-
roborated	when	we	consider	the	binary	cutoff	values	at	a	regional	
scale	 for	 example	 (i.e.,	where	maximum	 specificity	 and	 sensitivity	
are	achieved)	 and	 the	 results	 are	presented	as	either	 “suitable”	or	
“unsuitable”	areas	(Table 4).	For	example,	results	from	the	continu-
ous	profiles	suggest	SDM	4	estimates	some	areas	of	both	increased	
and	decreased	suitability	relative	to	SDM	1,	yet	the	results	from	the	
binary	cutoff	values	for	the	African	continent	suggest	this	projection	
produces	 the	second	 lowest	 levels	of	 regions	suitable	 for	O. ficus-	
indica	growth.	By	comparison,	SDM	4	produces	the	largest	suitable	
area estimates for the E. tirucalli projections, as well as demonstrat-
ing	increased	estimated	suitability	values	in	the	continuous	dataset	
for	SDM	4	relative	to	SDM	1.

F I G U R E  4 Species	distribution	model	
scenario	1	projection	and	uncertainty	
(coefficient	of	variation)	based	on	
occurrences of E. tirucalli

TA B L E  3 Ensemble	species	distribution	model	(SDM)	
evaluative	metrics	(true	skill	statistic	(TSS)	and	relative	operating	
characteristic	(ROC))	for	each	of	the	five	O. ficus-	indica and E. 
tirucalli	ensembled	SDM	scenarios.	See	Supplementary	Information	
for	binary	cut-	off,	Specificity,	and	Sensitivity	scores

SDM scenario

O. ficus indica E. tirucalli

TSS ROC TSS ROC

1 0.930 0.997 0.955 0.998

2 0.914 0.994 0.932 0.996

3 0.916 0.995 0.948 0.997

4 0.925 0.996 0.954 0.998

5 0.918 0.995 0.949 0.997
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3.2  |  Environmental variable importance

Results	 from	 individual	 variable	 importance	 analysis	 were	 calcu-
lated	based	on	the	weighted	mean	ensemble	models	for	each	of	the	
five	SDM	scenarios	and	across	the	two	species	of	interest	(Tables 5 
and 6).	Across	both	O. ficus-	indica and E. tirucalli, the minimum tem-
perature	of	the	coldest	month	shows	a	significantly	higher	variable	

importance	factor	than	any	of	the	other	environmental	parameters	
across	the	SDM	scenarios.	Equally,	both	species	show	similarity	 in	
response to annual precipitation, which demonstrates second great-
est	individual	variable	importance,	except	for	when	modeled	in	sce-
narios	 3	 and	5—	when	 the	Aridity	 index	 and	R-	index,	 respectively,	
show	high	levels	of	variable	importance	and	a	reduction	in	the	rela-
tive importance of annual precipitation.

F I G U R E  5 Deviation	of	species	distribution	model	(SDM)	scenarios	2–	5	(a–	d)	from	the	results	of	the	bioclim-	only	scenario	(SDM	1)	for	O. 
ficus-	indica.	Red	shading	indicates	areas	where	the	relative	SDM	predicts	a	lower	probability	of	O. ficus-	indica	growth	versus	SDM	1,	while	
green	shading	predicts	areas	with	a	higher	probability	of	O. ficus-	indica projected occurrence

(a) (b)

(c) (d)

F I G U R E  6 Deviation	of	species	distribution	model	(SDM)	scenarios	2–	5	(a–	d)	from	the	results	of	the	bioclim-	only	scenario	(SDM	1)	for	
E. tirucalli.	Red	shading	indicates	areas	where	the	relative	SDM	predicts	a	lower	probability	of	E. tirucalli	growth	versus	SDM	1,	while	green	
shading	predicts	areas	with	a	higher	probability	of	E. tirucalli projected occurrence

(a) (b)

(c) (d)
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4  |  DISCUSSION

4.1  |  Drivers of CAM plant distribution

Results	from	the	ensemble	model	evaluative	performance	and	indi-
vidual	variable	importance	analysis	suggest	that	for	both	species	there	
is	 not	 any	 overall	 model	 improvement	with	 the	 inclusion	 of	 either	
the	aridity	index,	Hellmann–	Eberle	quotient,	cloud	cover	conditions	
or	R-	index	 (i.e.,	 SDMs	2–	5)	 over	 the	 primary	 four	 bioclim	 variables	
(SDM1);	and	that	the	dominant	variable	of	importance	in	explaining	
the	spatial	variability	in	ecological	niche	is	the	minimum	temperature	
of	the	coldest	month.	With	this	in	mind,	it	seems	there	is	little	ben-
efit	in	the	inclusion	of	additional	predictors	beyond	the	four	bioclim	
parameters,	 regardless	 of	 which	 additional	 parameters	 were	 to	 be	
considered.	With	results	not	differing	significantly	between	the	SDM	

scenario	 analyses,	 it	 suggests	 that	 the	 most	 important	 bioclimate	
predictors	 (SDM	1)	primarily	 shaped	 the	patterns	across	all	models	
produced.	These	results	of	variable	importance	are	in	agreement	with	
von	Willert	et	al.	(1992)	who	consider	low	temperatures	a	key	limit-
ing factor in succulent growth when referring to succulent growth on 
hill	slopes	in	Tenerife.	The	relatively	minor	variation	in	overall	model	
performance	between	the	SDMs	with	and	without	the	additional	pa-
rameters	is	also	in	agreement	with	the	results	noted	by	Bucklin	et	al.	
(2015),	who	have	suggested	that	climate-	only	predictor	sets	may	be	
equally	as	effective	in	producing	environmental	suitability	maps.

Following	 the	 role	 of	 extreme	 cold	 temperatures,	 moisture	
availability	measured	 either	 through	 annual	 precipitation	 or	 the	
aridity	 index	or	R-	index	 is	shown	to	be	the	second	most	 import-
ant	independent	variable	on	overall	model	performance.	When	an	
alternative	precipitation	metric	is	included	in	the	model	(i.e.,	SDM	
scenarios	 3	 and	 5),	 the	 relative	 importance	 of	 annual	 precipita-
tion	 is	 reduced.	The	compound	variable,	aridity	 index,	 is	defined	
as	the	ratio	between	annual	precipitation	and	PET—	reflecting	the	
amount	 of	moisture	 potentially	 available	 for	 vegetation	 growth.	
Equally,	 the	R-	index	as	calculated	as	 the	 ratio	between	AET	and	
PET,	provides	a	measure	of	water	supply	in	relation	to	water	de-
mand	 (Yao,	 1974);	 unsurprising	 that	 the	 relative	 importance	 of	
annual precipitation as an individual metric is reduced when con-
sidered	 alongside	 these	 compound	variables.	However,	 it	 is	 also	
worth	noting	that	the	R-	index	used	in	this	study	(derived	from	AET	
and	PET	datasets	(Trabucco	&	Zomer,	2018))	is	based	on	spatially	
standardized	vegetation	and	soil	coefficients	(i.e.,	based	on	typical	

TA B L E  4 Example	total	suitable	area	(million	km2)	calculations	
across	the	African	continent	(as	an	example)	for	O. ficus-	indica and 
E. tirucalli	per	species	distribution	model	(SDM)	scenario	based	on	
the	binary	cutoff	values

SDM scenario O. ficus- indica E. tirucalli

1 15.6 17.0

2 11.4 13.2

3 14.8 16.3

4 14.4 17.4

5 13.4 14.9

TA B L E  5 Standardized	mean	variable	importance	of	each	parameter	across	the	five	different	species	distribution	model	(SDM)	scenarios	
for O. ficus-	indica

SDM scenario

Environmental predictors

Mean diurnal 
temp range

Min temp of 
coldest month

Annual 
precipitation

Precipitation 
seasonality

Hellmann– 
Eberle 
quotient Aridity index Cloud cover R- index

1 2% 74% 20% 4% n/a n/a n/a n/a

2 1% 70% 17% 4% 8% n/a n/a n/a

3 2% 74% 5% 4% n/a 15% n/a n/a

4 1% 78% 13% 5% n/a n/a 4% n/a

5 1% 75% 5% 4% n/a n/a n/a 14%

TA B L E  6 Standardized	mean	variable	importance	of	each	parameter	across	the	five	different	species	distribution	model	(SDM)	scenarios	
for E. tirucalli

SDM scenario

Environmental predictors

Mean diurnal 
temp range

Min temp of 
coldest month

Annual 
precipitation

Precipitation 
seasonality

Hellmann 
Eberle 
quotient Aridity index Cloud cover R- index

1 2% 71% 26% 1% n/a n/a n/a n/a

2 2% 68% 23% 1% 7% n/a n/a n/a

3 2% 74% 3% 1% n/a 19% n/a n/a

4 1% 82% 14% 1% n/a n/a 2% n/a

5 2% 76% 4% 1% n/a n/a n/a 18%
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agronomic	crops	at	maturity	and	an	average	soil	texture	for	plant	
rooting	depth	at	2	m).	Variations	 in	both	 the	vegetation	and	soil	
stress coefficients specific to the characteristics of the species of 
interest would perhaps produce a more useful spatial representa-
tion and metric to test.

Moreover,	it	is	important	to	note	that	the	variable	importance	
results reported refer to the individual direct influence of that vari-
able	on	the	model	projection,	it	does	not	account	for	 interactions 
between	the	variables	or	combined	effects	of	the	variables—	a	key	
tenet	 of	 SDM	 approaches.	 For	 example,	 while	 cloud	 cover	 has	
in	 general	 shown	 low	 levels	 of	 individual	 variable	 importance,	
Figure 6c	demonstrated	that	SDM	scenario	4	was	the	only	ensem-
ble	projection	to	identify	an	increase	in	land	suitability	estimates	
from	 the	 bioclim-	only	 model—	suggesting	 that	 the	 role	 of	 cloud	
cover	(or	rather	the	inverse)	is	significant	in	determining	the	eco-
logical niche of E. tirucalli,	 albeit	 likely	 through	 interactions	with	
other	variables.	Equally,	despite	the	consistently	high	TSS	values	
and	 lack	of	variability	between	the	different	SDM	predictor	sets	
studied	 (Table 3),	 the	 spatial	 distribution	 in	 the	 ecological	 niche	
suitability	estimates	is	shown	to	vary	between	scenarios	(Figures 
5 and 6).	 These	 results	 suggest	 that	 despite	 marginal	 variation	
in	TSS	score	or	variable	 importance	factors,	 the	 interactions	be-
tween	variables	are	important	in	explaining	the	overall	projected	
suitability	 profile	 for	 individual	 species,	 and	 the	 minimum	 tem-
perature	of	the	coldest	month,	while	important,	is	not	exclusively	
the	sole	variable	which	defines	the	distribution	of	either	species.	
Rather,	it	is	the	combination	of	both	parameters	documenting	min-
imum	temperatures,	and	also	a	measure	of	precipitation	 (both	 in	
terms	of	 annual	 total	 amount,	 and/or	 a	measure	of	 variability	 in	
precipitation)	which	are	important	in	explaining	the	ecophysiolog-
ical controls on these species.

This	being	said,	while	 the	 results	 in	 the	spatial	deviation	of	 in-
dividual	SDM	scenarios	 from	SDM	1	projections	 (Figures 5 and 6)	
suggest	variation	in	the	continuous	likelihood	profiles,	binary	cut-	off	
levels	(Table 4)	suggest	that	all	alternative	(i.e.,	SDMs	2–	5)	SDMs	for	

O. ficus indica	predict	a	reduction	in	suitable	area	relative	to	SDM	1,	
while E. tirucalli	 results	suggest	SDM	4	projects	marginally	greater	
levels	of	suitability	than	SDM	1	when	assessed	at	a	continent-	scale,	
for	 example.	 Thus,	 while	 the	 continuous	 suitability	 profiles	 may	
show	one	measure	of	difference	between	the	alternative	predictor	
scenarios,	the	binary	levels	of	“suitable”	versus	“unsuitable”	areas	in	
absolute	 terms	provide	an	alternative	 interpretation	of	 the	overall	
size	of	the	ecological	niche.	Nevertheless,	despite	these	values	sug-
gesting >15 million km2	of	suitable	area	for	O. ficus indica	(e.g.,	SDM	
1)	across	Africa,	the	potential	yields	will	vary	within	these	locations/
SDM	projections	and	hence	a	combination	of	both	the	continuous	
scale	 likelihood	and	the	binary	cut-	off	values	 is	useful	 in	assessing	
the	true	scale	of	potential	niche	that	could	be	used	for	growing	these	
species.

4.2  |  Land suitability estimates

A	key	advantage	of	the	SDM	approach	is	the	capacity	to	produce	a	
more	refined	estimate	of	land	area	that	is	potentially	available,	after	
taking account of protected areas and other essential land covers 
and uses, for cultivation of O. ficus-	indica and E. tirucalli.	Given	the	
overall	 lack	 of	 variability	 found	 between	 the	 five	 SDM	 scenarios	
and	the	equally	high	performance	of	the	bioclim-	only	SDM	1	model,	
the	following	section	opted	to	only	compare	the	results	from	the	O. 
ficus-	indica	SDM	1	model	with	existing	methods	from	previous	 lit-
erature	focusing	specifically	on	Africa	as	an	example	region.	Figure 7 
presents	 the	comparison	of	 the	 land	suitability	estimates	 found	 in	
this	study	following	SDM	1	(binary	cut-	off)	and	the	predicted	suit-
able	areas	for	O. ficus-	indica growth according to the parameters de-
tailed	in	Louhaichi	et	al.	(2015),	and	the	adapted	productivity	index	
displayed	in	Owen	et	al.	(2015).

Figure 7b	overlays	 the	 results	 from	this	 study	onto	 the	 the-
oretical	 distribution	 of	 O. ficus-	indica	 across	 Africa	 according	
to	the	parameters	detailed	in	Louhaichi	et	al.	 (2015)	 (Figure 7a),	

F I G U R E  7 Comparison	of	species	distribution	model	(SDM)	1	binary	O. ficus-	indica	projected	ecological	niche	with	existing	methods	from	
the	literature:	(a–	b)	estimates	of	potential	area	suitable	for	O. ficus-	indica	growth	based	on	the	method	described	in	Louhaichi	et	al.	(2015)	
overlain	with	SDM	1	binary	projections	(this	study)	(c	-		d)	refined	Environmental	Productivity	Index	(EPI)	for	O. ficus-	indica as calculated in 
Owen	et	al.	(2015)	overlain	with	SDM	1	binary	projections	(this	study)
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with	 results	 showing	 additional	 theoretically	 suitable	 areas	 in	
northern	Africa	bordering	the	Mediterranean,	a	greater	region	in	
eastern	Africa,	and	more	extensive	suitability	in	southern	Africa.	
SDM	1	projected	distribution	details	 a	 far	greater	 suitable	area	
than	the	approach	taken	in	Louhaichi	et	al.	(2015)	since	they	are	
based	on	observed	occurrence	data	rather	than	restricted	by	the	
common	 intersection	of	 a	 few	environmental	 conditions.	While	
the	models	used	in	this	study	do	not	consider	any	soil-	based	pa-
rameters,	they	have	still	explained	over	93%	of	the	occurrences	
observed	with	high	AUC	scores.	When	compared	with	the	results	
of	 the	 productivity	 analysis	 in	 Owen	 et	 al.	 (2015),	 our	 results	
show a clear omission of O. ficus-	indica	growth	 in	central	Africa	
where Figure 7c	 suggests	 a	 zone	 of	 high	 productivity.	 This	 is	 a	
good	demonstration	 that	our	approach	has	 taken	 the	 “competi-
tion”	aspect	 into	consideration	as	the	EPI	method	suggests	that	
O. ficus-	indica	 would	 grow	well	 in	 central	 Africa,	 but	 we	 know	
through lack of occurrences in these areas that O. ficus-	indica is 
out-	competed	by	other	plants.

Unlike	the	two	alternative	methods	described	above,	the	SDM	
method	 explored	 in	 this	 study	 is	 driven	 by	 the	 relationship	with	
known	occurrences	and	climatic	parameters,	allowing	us	to	qualify	
these	maps	with	a	level	of	evaluative	performance.	As	noted	ear-
lier,	this	suggests	that	c.1,500	million	hectares	of	land	are	suitable	
for O. ficus-	indica and E. tirucalli growth and is of importance to 
initiatives	 looking	 at	 the	 potential	 use	 of	 CAM	 plant	 biomass	 as	
feedstock	for	anaerobic	digestion	and	bioenergy,	or	alternative	hy-
drolysis	and	VFA	uses	such	as	bioplastics,	proteins.	The	advantage	
of	 an	 SDM-	based	 approach	which	 incorporates	 the	 nuances	 and	
complexities	 of	 the	 relationships	 between	 environmental	 param-
eters and known occurrences, is that while tropical areas are the-
oretically	 identified	 of	 potential	 high	 productivity,	O. ficus-	indica 
is outcompeted and occurrence data demonstrates that it is not 
a	 successful	 plant	 in	 these	 regions	 for	 reasons	 beyond	 its	 direct	
relationship	with	climate.	This	conclusion	is	key	to	identifying	the	
most	appropriate	regions	for	exploring	the	potential	for	cultivation	
of	CAM	plants,	such	as	O. ficus-	indica and E. tirucalli, as it removes 
any	discussion	regarding	the	removal	of	prime	forest	ecosystems	in	
place	of	CAM	cultivation.

4.3  |  Updated Hellmann– Eberle quotient map

While	minimum	temperatures	were	demonstrated	as	key	 in	deter-
mining	 the	majority	 of	 the	 variability	 in	 spatial	 distribution	 of	 the	
species,	 analysis	 of	 an	 updated	 Ellenberg	 index	 (Hellmann–	Eberle	
quotient	 combined	 with	 average	 annual	 precipitation)	 also	 high-
lighted	 the	 importance	of	 precipitation	predictability	 in	 the	distri-
bution	 of	 succulents.	 As	 noted	 above,	 Ellenberg	 (1981)	 examined	
the	distribution	pattern	of	tall	stem	succulents	in	relation	to	climate	
(von	Willert	 et	 al.,	1992)	 and	 found	 that	 they	 tended	 to	 occur	 in	
areas	where	rainfall	was	low	(i.e.,	<500	mm),	but	regularly	received	
(Hellmann–	Eberle	quotient	<5	over	a	long	series	of	years)	(Cowling	
et al., 1997).	 Since	Ellenberg’s	 original	 study,	which	was	based	on	
precipitation	data	from	1905	to	1940,	further	studies	have	also	ex-
plored	the	predictability	of	rainfall	as	a	parameter	by	which	to	ex-
plain	succulent	distributions	(Holtum	et	al.,	2016;	Ringelberg	et	al.,	
2020).	 As	 part	 of	 this	 study,	 an	 updated	 global	 Hellmann–	Eberle	
quotient	based	on	a	longer	time-	series	of	monthly	precipitation	data	
from 1960 to 2018 was used as a predictor parameter for the en-
semble	model.	In	addition	to	use	in	the	ensemble	modeling,	the	up-
dated	map	of	a	revised	“Ellenberg	index”	shown	in	Figure 8 provides 
further	valuable	discussion	 to	unresolved	problems	 regarding	 suc-
culent	distribution.	The	near	absence	of	stem	succulents	from	arid	
Australia,	for	example,	 is	one	particular	example	which	has	 invited	
discussion	among	research	groups	(Holtum	et	al.,	2016;	Ringelberg	
et al., 2020).	While	Ellenberg	(1981)	suggested	the	rainfall	is	too	un-
predictable	to	support	stem	succulents	in	arid	Australia,	Ringelberg	
et	al.’s	(2020)	recent	ensemble	model	of	the	wider	succulent	biome	
has	 suggested	 that	 large	 parts	 of	 Australia	 should	 be	 climatically	
suitable	for	stem	succulents;	further	complicating	their	apparent	ab-
sence.	Instead,	Ringelberg	et	al.	(2020)	suggest	that	perhaps	longer-	
term	climatic	oscillations,	or	even	historical	fire	conditions,	may	offer	
an	alternative	rationale	for	their	absence	despite	favorable	climatic	
conditions,	according	to	their	ensemble	models.

By	 comparison,	 the	 updated	 Hellmann–	Eberle	 quotient	 and	
“Ellenberg	index”	maps	produced	using	a	much	longer	period	of	cli-
mate	data	(58	years)	in	this	study	have	successfully	identified	regions	
that	 are	well-	known	 areas	 depauperate	 in	 succulents,	 like	 central	

F I G U R E  8 Based	on	the	monthly	
precipitation values from 1960 to 
2018, average annual precipitation, the 
Hellmann–	Eberle	quotient	(maximum	
annual precipitation/minimum annual 
precipitation),	and	overall	Ellenberg	index	
were	calculated.	Green	areas	represent	
regions where <500 mm of rainfall 
coincides	with	Hellmann–	Eberle	quotient	
>5.	Global	raster	of	Ellenberg	index	as	
shown was used as a predictor dataset for 
species	distribution	model	2



    |  13 of 16BUCKLAND et AL.

Australia	and	large	parts	of	Kalahari/Namib	deserts.	Additionally,	it	
is	highlighting	other	areas	that	agree	well	with	observation—	parts	of	
the	Arabian	Peninsula,	Horn	of	Africa,	Saharan	desert,	and	in	South	
America	the	Atacama.	This	updated	visualization	based	on	a	longer	
time	series	than	previously	studied	suggests	that	perhaps	high	vari-
ability	in	annual	precipitation	levels	over	the	long	term	is	key	to	ex-
plaining	succulent	absence,	such	as	 the	 lack	of	endemic	 terrestrial	
species	with	CAM	in	arid	Australia.

5  |  CONCLUSIONS

In	comparison	with	existing	methods	of	 land	suitability	estimation	
for	these	species,	this	study	has	taken	an	a	posteriori	modeling	ap-
proach	 using	 SDMs	 and	 known	 occurrences	 to	 extrapolate	wider	
areas	of	potential	suitability	for	cultivation	of	these	species.	In	doing	
so,	 it	has	allowed	us	 to	qualify	 the	models	of	 suitability	estimates	
with a level of evaluative performance, incorporates the nuances 
and	complexities	of	 relationships	between	environmental	parame-
ters and known occurrences, and produce a more refined estimate of 
land	area	that	is	potentially	available	for	cultivation	of	O. ficus-	indica 
and E. tirucalli	 when	 considered	 alongside	 existing	 land	 uses	 and	
primary	ecosystems.	The	high	model	performance	metrics	of	SDMs	
made	using	successfully	invasive	distribution-	unlimited	species	gives	
us confidence that most of the fundamental niche of O. ficus-	indica 
and E. tirucalli	can	be	explained	by	the	models	produced	in	this	study,	
and	given	the	negligible	variability	between	the	different	scenarios,	
there	 is	 no	benefit	 in	 expanding	model	 complexity	 and	 increasing	
the	potential	 for	over-	fitting	by	 including	additional	environmental	
predictors.	While	 the	minimum	temperature	of	 the	coldest	month	
was	found	to	be	the	key	variable	of	importance	in	determining	the	
spatial	variability	of	O. ficus-	indica and E. tirucalli, these results are 
based	on	the	individual	performance	of	each	parameter	as	opposed	
to	combined	effects	and	nonlinearities	between	the	environmental	
predictors.	 An	 updated	 global	 map	 of	 Hellmann–	Eberle	 quotient	
based	on	a	much	 longer	period	of	climate	data	 (ca.	60	years),	sup-
ports	the	ideas	of	Ellenberg	(1981)	that	long-	term	precipitation	vari-
ability	is	also	a	key	variable	in	determining	CAM	plant	distribution,	
and	in	certain	regions	can	explain	stem	succulent	absence.
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