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Abstract
Identifying the environmental drivers of the global distribution of succulent plants 
using the Crassulacean acid metabolism pathway of photosynthesis has previously 
been investigated through ensemble-modeling of species delimiting the realized niche 
of the natural succulent biome. An alternative approach, which may provide further 
insight into the fundamental niche of succulent plants in the absence of dispersal limi-
tation, is to model the distribution of selected species that are globally widespread 
and have become naturalized far beyond their native habitats. This could be of inter-
est, for example, in defining areas that may be suitable for cultivation of alternative 
crops resilient to future climate change. We therefore explored the performance of 
climate-only species distribution models (SDMs) in predicting the drivers and distribu-
tion of two widespread CAM plants, Opuntia ficus-indica and Euphorbia tirucalli. Using 
two different algorithms and five predictor sets, we created distribution models for 
these exemplar species and produced an updated map of global inter-annual rainfall 
predictability. No single predictor set produced markedly more accurate models, with 
the basic bioclim-only predictor set marginally out-performing combinations with ad-
ditional predictors. Minimum temperature of the coldest month was the single most 
important variable in determining spatial distribution, but additional predictors such as 
precipitation and inter-annual precipitation variability were also important in explain-
ing the differences in spatial predictions between SDMs. When compared against 
previous projections, an a posteriori approach correctly does not predict distributions 
in areas of ecophysiological tolerance yet known absence (e.g., due to biotic competi-
tion). An updated map of inter-annual rainfall predictability has successfully identi-
fied regions known to be depauperate in succulent plants. High model performance 
metrics suggest that the majority of potentially suitable regions for these species are 
predicted by these models with a limited number of climate predictors, and there is 
no benefit in expanding model complexity and increasing the potential for overfitting.
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1  |  INTRODUC TION

Identifying the environmental conditions under which a species can 
thrive is an important question in biogeography and ecology both 
to understand the environmental tolerances of individual organisms 
and to be able to predict their distributions across current and future 
climates. Many parts of the world are likely to experience warmer 
climates and reduced and/or more variable precipitation in the de-
cades ahead, so there is interest in determining which organisms may 
be relatively well adapted to these future climate regimes. A group 
of plants that are particularly characteristic of warm, semi-arid parts 
of the world with strong seasonal rainfall patterns are succulents 
using the specific mode of photosynthesis known as Crassulacean 
acid metabolism (CAM). By virtue of being able to fix most of their 
carbon dioxide from the atmosphere at night rather than during 
the day time, CAM plants typically show high water-use efficiency 
and can survive in environments with high daily temperatures and 
relatively limited water availability (Cushman, 2001; Lüttge, 2010; 
Osmond, 1978; Winter, 1985; Winter & Smith, 1996). The environ-
mental resilience of these plants makes them attractive species for 
cultivation on marginal land for a variety of potential uses, such as 
fodder, bioethanol production, or as feedstock for anaerobic diges-
tion (Acharya et al., 2019; Borland et al., 2009; Davis et al., 2011; 
Hastilestari et al., 2013; Holtum et al., 2011; Loke et al., 2011; Mason 
et al., 2015; Mwine et al., 2013; Yan et al., 2011). Such crops may 
be of particular value in semi-arid regions most likely to experience 
increased drought risk (e.g., Marthews et al., 2019; Otto et al., 2018).

The growth and the ecophysiological controls on the natural dis-
tribution of CAM species have been widely studied and observed 
across a range of environments. Broadly speaking, the methods pre-
viously used to observe the distribution of specific CAM species can 
be split into those that are: observation based; growth/trial based; 
and those that are based on models—both process and data-driven 
(Ringelberg et al., 2020). However, a comparison of the importance 
in different environmental parameters and derived indices in ex-
plaining the variability in CAM plant distribution has not yet been 
completed. Using existing studies published in the literature it is 
possible to compare areas of expected growth and productivity suit-
ability (i.e., the locations with the environmental conditions required 
for specific species growth) (Guisan et al., 2017) based on process-
based models (e.g., Owen et al., 2015) or using climatic envelope 
methods (e.g., Louhaichi et al., 2015). However, there is also the 
potential to use methods based on derived environmental parame-
ters and those driven by a posteriori models (e.g., species distribution 
modeling (Guisan et al., 2017)) to identify the relationship between 
known observations of CAM species and predictor variables; thus 

projecting maps of suitable biotic conditions for species to occur 
based on climatological, environmental, and/or biotic correlations 
(Aguirre-Gutiérrez et al., 2013; Soberón & Nakamura, 2009).

Correlative species distribution models (SDMs) have been com-
monly employed as predictive tools to quantify relationships between 
species occurrence datasets and measurements of environmental 
variables (Dormann et al., 2012) across ecology, but seldom applied 
to the specific mapping of CAM plants. Equally, as noted by Bucklin 
et al. (2015), there remains no consensus on which variables should 
be included as predictors in SDM analysis more generally. While 
many climate-only SDMs (i.e., using only climatic parameters) have 
been highlighted as important tools for both projecting current and 
future ecological niches (e.g., for guiding future conservation efforts 
(Elith & Leathwick, 2009) (Bucklin et al., 2015)), some studies have 
criticized this approach for providing only an incomplete represen-
tation of complex environmental systems (Araújo & Peterson, 2012; 
Bahn & McGill, 2007; Beale et al., 2008; Heikkinen et al., 2006). 
Using different combinations of bioclimatic and derived environmen-
tal indices, this study tests and compares the relative importance of 
parameters in explaining the distribution of CAM plants, focusing 
specifically on Opuntia ficus-indica (L.) Mill. And Euphorbia tirucalli L. 
as example species. In doing so, this study attempts to define the 
best, minimal predictors of plant distribution so that models have the 
greatest predictive power without being over-parameterized (Merow 
et al., 2014; Raes & Aguirre-Gutiérrez, 2018).

Unlike recent analyses which have ensemble-modeled numer-
ous species with the aim of identifying the wider natural succulent 
biome distribution (e.g., Ringelberg et al., 2020), this study takes 
an alternative approach by selecting a minimal number of species 
of interest, but for which their distribution is successfully wide, 
occupying all available climatic niches, and with minimal disper-
sion limitations. There are numerous rare succulent species that 
have very restricted ranges on account of being dispersal-limited 
for which this analysis would not be appropriate. By comparison, 
O. ficus-indica is a successful invasive species having established 
itself across every continent (except Antarctica) (CABI, 2019) 
and found across all latitudes. Opuntia ficus-indica and E. tirucalli 
have also shown great potential suitability for bioeconomic uses 
(Hastilestari et al., 2013; Mason et al., 2015); and are therefore 
suitable test species to use for this analysis which is interested in 
exploring the possibility for these plants to be actively grown as 
a crop—highlighting the potential that can be achieved with CAM 
plantation for bioeconomic and land restorative purposes. While 
most previous distribution modeling exercises have been built on 
the natural distribution of native species, additional novel infor-
mation might be obtained from explicitly considering the extent 
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and spread of introduced invasive species, once they are given the 
opportunity to spread into other parts of the “potential niche.”

Specifically, this study will compare different sets of variables 
to predict zones of potential suitability for Opuntia ficus-indica and 
Euphorbia tirucalli growth. In doing so, this study aims to first pre-
dict the current locations with suitable biotic conditions for the 
occurrences of O. ficus-indica and E. tirucalli using different SDMs 
tested in this study. Second, the results will help identify the most 
important set of variables that help define the environmental 
niche of two CAM species of interest. While the natural distri-
bution of both species has generally been restricted to semi-arid 
regions as outcompeted by other plants, their natural ecological 
requirements permit them growing in wetter areas, and compe-
tition factors have largely restricted the spread of the species 
to regions with annual rainfall <500 mm (Luttge, 2004). Opuntia 
ficus-indica is a successful invasive which has been widely sighted 
across regions outside of central America (e.g., Africa, southern 
Europe), while E. tirucalli is native to Africa (Palgrave, 1977; Webb 
et al., 1984) but has also been found in central America, Europe, 
and other locations globally. Given the successful expansion, but 
different origins of these two species, comparison of the potential 
regions through which they could be successfully cultivated for 
bioeconomic (e.g., biogas) uses across a region (e.g., sub-Saharan 
Africa) with low levels of energy access, increased agricultural 
pressure in the face of drought, and high climatic suitability for 
these species is particularly interesting (Buckland & Thomas, 
2021). For this reason, this study will initially calibrate and project 
models based on a global view, before taking a deeper focus on 
Africa as a potential region for cultivation, bioenergy and bioeco-
nomic uses.

2  |  MATERIAL S AND METHODS

Using SDM techniques, this study compares the relative perfor-
mance of five SDMs to predict the potential distribution of O. ficus-
indica and E. tirucalli based on current climatic conditions. The five 
SDMs each capture different combinations of environmental vari-
ables defined in the WorldClim 2.1 bioclim database (Fick & Hijmans, 
2017) and derived indices or parameters that have previously been 
cited as impacting upon the spatial distribution of CAM plants: 
the Hellmann–Eberle quotient (a measure of inter-annual rainfall 
predictability used by Ellenberg, 1981), the aridity index (the ratio 
between annual precipitation and potential evapotranspiration 
(PET)), cloud cover (as a proxy for light intensity), and the R-index 

(the ratio between actual and PET) (Yao, 1974). As noted in Title and 
Bemmels (2018), the inclusion of more complex climatic indices may 
characterize environmental conditions that are more directly physi-
ologically relevant to particular species than more primary climatic 
parameters (e.g., temperature, precipitation). Due to the successful 
invasive nature of both species, we have considered their expan-
sion to be largely limited by environmental conditions rather than 
distribution-limited, and thus only climatic-based parameters have 
been used.

2.1  |  Predictor datasets

The choice of environmental variables selected should ideally 
be based on the known ecology of the species (Title & Bemmels, 
2018), as this has previously demonstrated more realistic SDMs 
(Rödder et al., 2009; Saupe et al., 2012). With this in mind, a com-
bination of bioclim datasets from the WorldClim 2.1 catalogue 
(Fick & Hijmans, 2017) and derived environmental metrics were 
compiled and a sensitivity analysis (Pearson’s Correlation) was 
used to remove highly correlated variables. Inclusion of co-variant 
parameters leads to over-parameterization of the model. All pre-
dictor datasets were bilinearly resampled to the same 2.5  min 
resolution.

2.1.1  |  Bioclim datasets

Based on existing research of the parameters impacting the growth 
and distribution of succulents and CAM plants more generally 
(Acharya et al., 2019; Inglese & Scalenge, 2009; Le Houérou, 1996; 
Louhaichi et al., 2015; Masocha & Dube, 2018), and the results from 
covariance testing (Appendix A), four bioclim variables were se-
lected for use as explanatory parameters (Table 1).

2.1.2  |  Hellmann–Eberle quotient

The Hellmann–Eberle quotient provides a measure of inter-annual 
precipitation variability and is defined as the ratio between pre-
cipitation of the wettest year and precipitation of the driest year 
over an extended period of time. Ellenberg (1981) examined the 
distribution pattern of tall stem succulents in relation to climate 
and found that they tended to occur in areas where rainfall was 
low (i.e., <500 mm per annum), but regularly received (i.e., where 

Bioclim variable Environmental parameter

Bioclim 2 Mean diurnal temperature range (mean of monthly (max temp-min 
temp)) (°C)

Bioclim 6 Minimum temperature of coldest month (°C)

Bioclim 12 Annual precipitation (mm)

Bioclim 15 Precipitation seasonality (coefficient of variation)

TA B L E  1 Bioclim parameters (from Fick 
& Hijmans, 2017) used in the final model 
iterations
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the Hellmann–Eberle quotient <5 over a series of years) (Cowling 
et al., 1997). Ellenberg’s original study from 1981 was based on 
35 years of observations (1905‒1940) and has since been referred 
to and expanded in more recent studies exploring the controls on 
CAM distribution (e.g., Holtum et al., 2016, 2017; Lüttge, 2010; 
Ringelberg et al., 2020). Using historical monthly weather data 
from 1960 to 2018 AD from the CRU-TS 4.03 dataset (Harris et al., 
2014) downscaled with WorldClim 2.1 (Fick & Hijmans, 2017), we 
calculated a more recent version of the Hellmann–Eberle quotient 
based on annual historical precipitation levels at a 2.5 min spa-
tial resolution (globally) to compare against observational occur-
rences of O. ficus-indica and E. tirucalli from the Global Biodiversity 
Information Facility (GBIF.org, 2020). Individual GeoTiff files were 
analyzed and climate rasters were produced in R Studio (RStudio 
Team, 2019), before being combined with observational occur-
rence data in ArcGIS Pro 2.4.1.

Precipitation regime alone, however, is unlikely to explain the 
distribution of these species as it does not include the impact of 
minimum temperatures, which is known to be limiting for partic-
ular CAM species (Acharya et al., 2019; Herrando-Moraira, 2020; 
Inglese & Scalenge, 2009; Smith et al., 2012; Stock et al., 1997). 
For this reason, combining the Hellmann–Eberle quotient with 
other bioclimatic parameters in the SDM analysis has the poten-
tial to improve our distributional understanding of key species of 
interest.

2.1.3  |  Aridity index, R-index and cloud cover

The Aridity Index (AI) is commonly considered to provide a meas-
ure of overall water availability, a central component to all vegeta-
tive growth. Based on global raster data from 1970 to 2000 AD, a 
global aridity index based upon the implementation of the Penman–
Monteith reference evapotranspiration equation (Allen et al., 1998) 
was used in this study (Trabucco & Zomer, 2018). The R-index is cal-
culated as the ratio between actual evapotranspiration (AET) and 
PET and is a measure of plant water supply in relation to plant water 
demand (Yao, 1974). A global R-index raster was calculated using 
the average annual AET and PET rates available via the Consultative 
Group for International Agricultural Research (Trabucco & Zomer, 
2018). Finally, as a proxy for photosynthetically active radia-
tion, cloud cover was included as a potential parameter that could 
be inversely related to plant growth. CAM plant growth shows a 
saturation-type relationship to light intensity (Nobel, 1988; Nobel & 
Valenzuela, 1987) with the three main environmental limitations on 
CAM plant growth considered water, light, and temperature (Nobel, 
1988; Owen et al., 2015). Process-based models have thus included 
a proxy for light intensity as a measure to predict the variability in 
spatial productivity of CAM plant species in existing literature (e.g., 
Owen et al., 2015). In this study, a global raster of mean annual cloud 
cover based on 15 years (2000–2014 AD) of twice-daily satellite ob-
servations was used from the EarthEnv data repository (Wilson & 
Jetz, 2016).

2.1.4  |  Pearson’s correlation coefficient

A total of five combinations of environmental parameters and bi-
oclim parameters (Fick & Hijmans, 2017) were used to model the 
relationship between environmental conditions and the observed 
distribution of O. ficus-indica and E. tirucalli (Table 2). Prior to final 
environmental parameter selection for each of the five SDM com-
binations, Pearson’s correlation coefficient tests were conducted to 
test for covariance between the variables (Appendix A). Based on 
the results, and on an understanding of the main climatic parameters 
that influence CAM distribution, 4 bioclim variables were selected 
for use in the final model fitting (Table 1) alongside a combination of 
derived environmental indices.

2.2  |  Occurrence data

Opuntia ficus-indica and Euphorbia tirucalli were the two species of 
interest selected for analysis in this study. The former is an espe-
cially suitable test species for this analysis since its occurrences are 
already occupying most of its geographic range allowing us to model 
a potential distribution closer to its fundamental niche (i.e., all the 
environmental conditions where a species could potentially exist) 
as opposed to the realized niche (i.e., those conditions in which the 
species currently does exist) (Chase & Leibold, 2003; Hutchinson, 
1957). By comparison, often the current distributions of localized or 
very rare species are restricted by dispersal limitations and species 
interactions; in such cases the realized niche will be smaller than the 
fundamental niche, and we cannot independently test the impact of 
different climatic and environmental parameters on defining areas 
suitable for species occurrence.

Opuntia ficus-indica and E. tirucalli occurrence data were down-
loaded from the GBIF data repository (GBIF.org, 2020) (Accessed 
09/06/2020) and cleaned according to the method described in 
Zizka (2019). Species occurrence data from both the native and in-
troduced ranges was used for both species. One of the main aims 
of this study is to identify regions which could support the cultiva-
tion of these species under current climatic conditions (i.e., to map 
the fundamental niche of the species). As such, we do not need to 
limit the training dataset to the native distribution, rather observa-
tions of the species across a range of geographic zones are useful in 
identifying the scope of environmental settings which are suitable. 
Spatial bias of occurrence datasets has the potential to distort the 
interpretation of large-scale biodiversity patterns (Ballesteros-Mejia 
et al., 2013; Beck et al., 2014; Boakes et al., 2010; Varela et al., 2014; 
Yang et al., 2013), and SDMs are sensitive to the spatial bias of spec-
imen records (Dudík & Phillips, 2005; Lintz et al., 2013; Phillips et al., 
2009). Spatially biased data would have a two-fold impact on dis-
torting SDMs: first, through biasing the present data used to train 
and evaluate model performance (Hijmans et al., 2017); second in bi-
asing the surface range envelope model used in the pseudo-absence 
dataset generation (see below) and therefore model performance 
metrics. With this in mind, we applied a geographic sampling filter, 
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selecting up to five occurrence data points from each 1° × 1° grid 
cell—reducing our datasets to 2721 and 1085 occurrences (from 
8061 and 2313) of O. ficus-indica and E. tirucalli, respectively (Figures 
1 and 2).

2.3  |  Pseudo-absences

Unlike “presence” datasets, “absence” datasets are not often read-
ily available. Since some SDM algorithms require both datasets, 
pseudo-absence (PA) datasets are created as a replacement for 
true absence records (Raes & Aguirre-Gutiérrez, 2018). The use of 
PA data is widely accepted and has been shown in the SDM litera-
ture to be a useful approach to calibrate SDMs (Chefaoui & Lobo, 
2008; Iturbide et al., 2018; Václavík & Meentemeyer, 2009; Wisz 
& Guisan, 2009). PA data are generated by sampling background 
areas from which presence records have not been identified 
through a range of different strategies, including: random, surface 
range envelope (SRE), or based on a minimum (or maximum) dis-
tance from known presence points. The sensitivity of SDM algo-
rithms to the sample of PA when projecting under future climates 
varies between models and creates a source of SDM-dependent 
uncertainty that should be considered when deciding on initial PA 
sampling and accounted for in SDM ensemble modeling (Iturbide 
et al., 2018).

Based on the recommendations of the findings in Barbet-
Massin et al. (2012) and Iturbide et al. (2018), an equal number of 
PAs were selected to presences with multiple PA realizations (five) 
to reduce overall uncertainty. Studies based on a single realization 
of PAs have the potential to mask results from poorly performing 
SDMs (Iturbide et al., 2018). Hence, five PA realizations were used 

to reduce the dependence on poorly performing SDMs and to en-
sure model fits were not dependent on a single realization where 
PAs have been biasedly generated from regions with few noted 
presences rather than few true presences (Barbet-Massin et al., 
2018). PAs were generated from all areas outside the suitable 
area estimated by a surface range envelope model (SRE) (Thuiller 
et al., 2014). SRE models are based on presence-only data (Barbet-
Massin et al., 2012); SRE quantile refers to the quantile used to 
remove the most extreme values of each environmental variable 
for determining tolerance boundaries (quantile 0.025 ~ 95% confi-
dence interval) (Hallgren et al., 2019).

2.4  |  Model fitting

There are numerous options for algorithms to use in SDM studies 
(summarized in Raes & Aguirre-Gutiérrez, 2018), but there is often 
no model of “best” choice (Qiao et al., 2015). Fitting the data with the 
same algorithm over multiple repeats would yield different results, 
as would fitting the data across multiple algorithms. Overfitting oc-
curs when an overly flexible model learns the noise in the training 
dataset to a level that negatively impacts the performance of the 
model when introduced to new input data. By comparison, inflexible 
models do not have the flexibility to fit complex relationships be-
tween parameters and predictor datasets. As such, inflexible models 
may not have the capacity to accurately fit the training dataset, nor 
to generalize well to new unseen data (e.g., projecting over a new 
time period or geographic location). In SDM, and machine learn-
ing more generally, we seek to find a balance in creating models 
with the capacity to fit variance but also avoid bias. Equally, defin-
ing “best” model is largely dependent on the choice of evaluative 

F I G U R E  1 Final 2721 Opuntia ficus-indica occurrences downloaded from the GBIF dataset (GBIF.org, 2020) after spatial bias analysis 
completed
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metric—for which there are numerous. Each evaluative metric meas-
ures a slightly different aspect of model performance, and thus while 
a model may perform well according to one measure, it may not be 
the “best” model according to another metric (Qiao et al., 2015; Raes 
& Aguirre-Gutiérrez, 2018).

With this in mind, SDMs were initially fitted across two dif-
ferent algorithms which required the same PA dataset generation 
strategy: Boosted Regression Trees (Elith, 2008) (also known as 
Generalized Boosting Model GBM) and Random Forests (Breiman, 
2001), before being combined in an ensemble model to obtain a 
consensus distribution (Marmion et al., 2009). Default model pa-
rameters found in the biomod2 package (Georges & Thuiller, 2013; 
Thuiller et al., 2014) were used and 10 repeats were completed 
per algorithm per PA selection, producing a total of 100 individual 
model repeats used for each ensemble model (a total of 500 individ-
ual model repeats across all five SDM scenarios). The between- and 
within-modeling variability shown in SDM outputs has led to the 
widespread usage of ensemble models (Marmion et al., 2009; Qin 
et al., 2020; Raes & Aguirre-Gutiérrez, 2018; Senay et al., 2013); 
capturing the uncertainty in model predictions across the different 
SDM algorithm outputs (Araújo & New, 2007; Dormann, 2018; Hao 
et al., 2019; Raes & Aguirre-Gutiérrez, 2018), producing more con-
sistent predictions when projecting new unseen data (e.g., future 
climate scenarios).

There are many strategies that can be used to combine predic-
tions from individual models into an ensemble model. Following 
the recommendation of Hao et al. (2019), we have taken a more 
sophisticated approach which involved weighting the models based 
on their individual predictive performances. The performance of 
each individually trained model was assessed, and ensemble mod-
els were produced based on the true skill statistic (TSS) and relative 

operating characteristic (ROC) of each individual model (based on 
thresholds defined in Qin et al. (2020): those with ROC >0.5 imply 
that the model performed better than random). TSS metrics are 
widely used as a measure of relative performance in SDM studies 
and have been recommended over the use of other methods such 
as Kappa (Allouche et al., 2006). The TSS is calculated as: Specificity 
+Sensitivity –1, whereby “specificity” refers to the proportion of cor-
rectly predicted absences, and “sensitivity” refers to the proportion 
of correctly predicted presences. Individual models were combined 
using two ensemble-model algorithms: weighted mean of probabili-
ties and coefficient of variation of probabilities, to provide a measure 
of uncertainty in the former ensemble model. Current occurrence 
and predictor datasets were split 60% for training and validation, 
with the remaining 40% used for testing and evaluating model 
performance. All models were fitted and projected using the bio-
mod2 package version 3.3 (Thuiller et al., 2014) in R Studio version 
1.2.5033 (RStudio Team, 2019).

2.5  |  Evaluating model comparison

As well as TSS and AUC (ROC) scores calculated for each of the indi-
vidual models, the TSS and AUC scores of the ensemble models were 
compared to determine the relative best performing model and iden-
tify whether the additional parameters used in SDMs 2–5 increased 
the predictive accuracy of SDM 1 (bioclim-only predictors). As dis-
cussed in Komac et al. (2016), the AUC provides us with a measure of 
the performance of ordinal score models and a threshold measure of 
accuracy (Thuiller et al., 2005), while the TSS score provides us with 
a measure of evaluative performance which has all the advantages 
associated with the Cohen’s kappa statistic (Cohen, 1968) but is not 

F I G U R E  2 Final 1085 Euphorbia tirucalli occurrences downloaded from the GBIF dataset (GBIF.org, 2020) after spatial bias analysis 
completed



    |  7 of 16BUCKLAND et al.

sensitive to prevalence (Allouche et al., 2006). Ensemble models 
from the five SDM scenarios were initially projected on to the world 
to generate a continuous map showing variations in the suitability/
probability of occurrence for the two species of interest. Then, using 
the ensemble model cut-off values to provide a binary measure of 
habitat suitability, projections were then compared against projec-
tions based on existing methods from the literature (e.g., Louhaichi 
et al., 2015) to identify the spatial variability in identified suitable 
regions between the methods. Ensemble binary cut-off values are 
calculated as those that give the maximum “sensitivity” and “speci-
ficity” scores (Thuiller et al., 2005).

2.6  |  Assessing variable importance

Individual variable importance was approximated using the 
Variables_importance function of the “biomod2” package (Thuiller 
et al., 2014). Variable importance was assessed for each of the five 
ensemble models and across each of the two species with the aim of 
determining which climatic or environmental factors have stronger 
effects on the species suitability across the region of interest. The 
principle of the biomod2 variable importance algorithm is to shuffle 
a single variable of the given data and produce model predictions 
with this new “shuffled” dataset. A Pearson’s correlation between 
the reference predictions and “shuffled” dataset predictions is cal-
culated, with higher values corresponding to a greater influence the 
individual variable has on the model (i.e., a value of 0 assumes no 

influence of the variable on the model). Variable importance results 
were standardized across all predictors used per model and pre-
sented in percentage terms.

3  |  RESULTS

3.1  |  Ensemble model projections and comparisons

A total of 500 individual models and projections were produced for 
each species and ensembled to produce weighted mean projections 
with coefficient of variation (uncertainty between the individual 
projections) measurements for each of the scenarios. Ensemble re-
sults from SDM scenario 1 are presented in Figures 3 and 4, with TSS 
scores across the five ensembles shown in Table 3. SDM scenarios 
2–5 are shown in Appendix E.

Across both species, results show relatively little difference in 
the evaluative performance between the ensemble models when 
tested against the remaining 40% of the dataset, however, SDM 1 
outperformed the other four SDMs for both O. ficus-indica and E. 
tirucalli distribution projections (Table 3, Figures S7 and S8). The 
random forest algorithm generally performed best for O. ficus-indica 
projections in both TSS and ROC scores, while GBMs marginally 
outperformed random forest models in the E. tircualli predictions 
(See Supplementary Information). Among both species and pre-
dictor scenarios, all models performed well with overall TSS scores 
>0.91 across all ensembles (Table 3). TSS scores for individual model 

F I G U R E  3 Species distribution model 
scenario 1 projection and uncertainty 
(coefficient of variation) based on 
occurrences of O. ficus-indica
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performances showed high performance with little variability, rang-
ing from 0.85 to 0.942 and from 0.87 to 0.968 for O. ficus-indica and 
E. tirucalli, and 0.981–0.996 and 0.984–0.999 ROC scores, respec-
tively (Tables S2 and S3). Due to the overall high performance of 
the individual models, all individual projections were included in the 
weighted ensemble model.

At a global scale, ensemble models across all five predictor 
scenarios indicated that both species have potential distributional 
ranges in the tropics and mid-latitudes. The areas predicted most 
suitable for O. ficus-indica include sub-Saharan Africa, Mediterranean 
Europe, Australia, South America (especially Brazil and north-
eastern Argentina), central America and countries in southern and 

eastern Asia (e.g., India, China, and Thailand). Meanwhile the areas 
predicted most suitable for E. tirucalli growth are more restricted to 
the tropics, especially sub-Saharan Africa, Brazil and northern South 
America, India, northern Australia and south China. The higher lat-
itudes and hyper-arid Sahara were predicted unsuitable for both 
species.

When the deviation in environmental suitability is compared 
between SDM scenarios (Figures 5 and 6), the inclusion of either 
the Hellmann–Eberle quotient, aridity index, or R-index all produced 
overall results with lower suitability projections than those predicted 
using bioclim variables alone (SDM 1). It is only in SDM 4 (Figures 5c 
and 6c) that ensemble model projections suggest that some regions 
(typically those with reduced overall certainty) have a higher level 
of environmental suitability than projections based on the four bio-
clim variables alone. However, these results are not necessarily cor-
roborated when we consider the binary cutoff values at a regional 
scale for example (i.e., where maximum specificity and sensitivity 
are achieved) and the results are presented as either “suitable” or 
“unsuitable” areas (Table 4). For example, results from the continu-
ous profiles suggest SDM 4 estimates some areas of both increased 
and decreased suitability relative to SDM 1, yet the results from the 
binary cutoff values for the African continent suggest this projection 
produces the second lowest levels of regions suitable for O. ficus-
indica growth. By comparison, SDM 4 produces the largest suitable 
area estimates for the E. tirucalli projections, as well as demonstrat-
ing increased estimated suitability values in the continuous dataset 
for SDM 4 relative to SDM 1.

F I G U R E  4 Species distribution model 
scenario 1 projection and uncertainty 
(coefficient of variation) based on 
occurrences of E. tirucalli

TA B L E  3 Ensemble species distribution model (SDM) 
evaluative metrics (true skill statistic (TSS) and relative operating 
characteristic (ROC)) for each of the five O. ficus-indica and E. 
tirucalli ensembled SDM scenarios. See Supplementary Information 
for binary cut-off, Specificity, and Sensitivity scores

SDM scenario

O. ficus indica E. tirucalli

TSS ROC TSS ROC

1 0.930 0.997 0.955 0.998

2 0.914 0.994 0.932 0.996

3 0.916 0.995 0.948 0.997

4 0.925 0.996 0.954 0.998

5 0.918 0.995 0.949 0.997
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3.2  |  Environmental variable importance

Results from individual variable importance analysis were calcu-
lated based on the weighted mean ensemble models for each of the 
five SDM scenarios and across the two species of interest (Tables 5 
and 6). Across both O. ficus-indica and E. tirucalli, the minimum tem-
perature of the coldest month shows a significantly higher variable 

importance factor than any of the other environmental parameters 
across the SDM scenarios. Equally, both species show similarity in 
response to annual precipitation, which demonstrates second great-
est individual variable importance, except for when modeled in sce-
narios 3 and 5—when the Aridity index and R-index, respectively, 
show high levels of variable importance and a reduction in the rela-
tive importance of annual precipitation.

F I G U R E  5 Deviation of species distribution model (SDM) scenarios 2–5 (a–d) from the results of the bioclim-only scenario (SDM 1) for O. 
ficus-indica. Red shading indicates areas where the relative SDM predicts a lower probability of O. ficus-indica growth versus SDM 1, while 
green shading predicts areas with a higher probability of O. ficus-indica projected occurrence

(a) (b)

(c) (d)

F I G U R E  6 Deviation of species distribution model (SDM) scenarios 2–5 (a–d) from the results of the bioclim-only scenario (SDM 1) for 
E. tirucalli. Red shading indicates areas where the relative SDM predicts a lower probability of E. tirucalli growth versus SDM 1, while green 
shading predicts areas with a higher probability of E. tirucalli projected occurrence

(a) (b)

(c) (d)
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4  |  DISCUSSION

4.1  |  Drivers of CAM plant distribution

Results from the ensemble model evaluative performance and indi-
vidual variable importance analysis suggest that for both species there 
is not any overall model improvement with the inclusion of either 
the aridity index, Hellmann–Eberle quotient, cloud cover conditions 
or R-index (i.e., SDMs 2–5) over the primary four bioclim variables 
(SDM1); and that the dominant variable of importance in explaining 
the spatial variability in ecological niche is the minimum temperature 
of the coldest month. With this in mind, it seems there is little ben-
efit in the inclusion of additional predictors beyond the four bioclim 
parameters, regardless of which additional parameters were to be 
considered. With results not differing significantly between the SDM 

scenario analyses, it suggests that the most important bioclimate 
predictors (SDM 1) primarily shaped the patterns across all models 
produced. These results of variable importance are in agreement with 
von Willert et al. (1992) who consider low temperatures a key limit-
ing factor in succulent growth when referring to succulent growth on 
hill slopes in Tenerife. The relatively minor variation in overall model 
performance between the SDMs with and without the additional pa-
rameters is also in agreement with the results noted by Bucklin et al. 
(2015), who have suggested that climate-only predictor sets may be 
equally as effective in producing environmental suitability maps.

Following the role of extreme cold temperatures, moisture 
availability measured either through annual precipitation or the 
aridity index or R-index is shown to be the second most import-
ant independent variable on overall model performance. When an 
alternative precipitation metric is included in the model (i.e., SDM 
scenarios 3 and 5), the relative importance of annual precipita-
tion is reduced. The compound variable, aridity index, is defined 
as the ratio between annual precipitation and PET—reflecting the 
amount of moisture potentially available for vegetation growth. 
Equally, the R-index as calculated as the ratio between AET and 
PET, provides a measure of water supply in relation to water de-
mand (Yao, 1974); unsurprising that the relative importance of 
annual precipitation as an individual metric is reduced when con-
sidered alongside these compound variables. However, it is also 
worth noting that the R-index used in this study (derived from AET 
and PET datasets (Trabucco & Zomer, 2018)) is based on spatially 
standardized vegetation and soil coefficients (i.e., based on typical 

TA B L E  4 Example total suitable area (million km2) calculations 
across the African continent (as an example) for O. ficus-indica and 
E. tirucalli per species distribution model (SDM) scenario based on 
the binary cutoff values

SDM scenario O. ficus-indica E. tirucalli

1 15.6 17.0

2 11.4 13.2

3 14.8 16.3

4 14.4 17.4

5 13.4 14.9

TA B L E  5 Standardized mean variable importance of each parameter across the five different species distribution model (SDM) scenarios 
for O. ficus-indica

SDM scenario

Environmental predictors

Mean diurnal 
temp range

Min temp of 
coldest month

Annual 
precipitation

Precipitation 
seasonality

Hellmann–
Eberle 
quotient Aridity index Cloud cover R-index

1 2% 74% 20% 4% n/a n/a n/a n/a

2 1% 70% 17% 4% 8% n/a n/a n/a

3 2% 74% 5% 4% n/a 15% n/a n/a

4 1% 78% 13% 5% n/a n/a 4% n/a

5 1% 75% 5% 4% n/a n/a n/a 14%

TA B L E  6 Standardized mean variable importance of each parameter across the five different species distribution model (SDM) scenarios 
for E. tirucalli

SDM scenario

Environmental predictors

Mean diurnal 
temp range

Min temp of 
coldest month

Annual 
precipitation

Precipitation 
seasonality

Hellmann 
Eberle 
quotient Aridity index Cloud cover R-index

1 2% 71% 26% 1% n/a n/a n/a n/a

2 2% 68% 23% 1% 7% n/a n/a n/a

3 2% 74% 3% 1% n/a 19% n/a n/a

4 1% 82% 14% 1% n/a n/a 2% n/a

5 2% 76% 4% 1% n/a n/a n/a 18%
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agronomic crops at maturity and an average soil texture for plant 
rooting depth at 2 m). Variations in both the vegetation and soil 
stress coefficients specific to the characteristics of the species of 
interest would perhaps produce a more useful spatial representa-
tion and metric to test.

Moreover, it is important to note that the variable importance 
results reported refer to the individual direct influence of that vari-
able on the model projection, it does not account for interactions 
between the variables or combined effects of the variables—a key 
tenet of SDM approaches. For example, while cloud cover has 
in general shown low levels of individual variable importance, 
Figure 6c demonstrated that SDM scenario 4 was the only ensem-
ble projection to identify an increase in land suitability estimates 
from the bioclim-only model—suggesting that the role of cloud 
cover (or rather the inverse) is significant in determining the eco-
logical niche of E. tirucalli, albeit likely through interactions with 
other variables. Equally, despite the consistently high TSS values 
and lack of variability between the different SDM predictor sets 
studied (Table 3), the spatial distribution in the ecological niche 
suitability estimates is shown to vary between scenarios (Figures 
5 and 6). These results suggest that despite marginal variation 
in TSS score or variable importance factors, the interactions be-
tween variables are important in explaining the overall projected 
suitability profile for individual species, and the minimum tem-
perature of the coldest month, while important, is not exclusively 
the sole variable which defines the distribution of either species. 
Rather, it is the combination of both parameters documenting min-
imum temperatures, and also a measure of precipitation (both in 
terms of annual total amount, and/or a measure of variability in 
precipitation) which are important in explaining the ecophysiolog-
ical controls on these species.

This being said, while the results in the spatial deviation of in-
dividual SDM scenarios from SDM 1 projections (Figures 5 and 6) 
suggest variation in the continuous likelihood profiles, binary cut-off 
levels (Table 4) suggest that all alternative (i.e., SDMs 2–5) SDMs for 

O. ficus indica predict a reduction in suitable area relative to SDM 1, 
while E. tirucalli results suggest SDM 4 projects marginally greater 
levels of suitability than SDM 1 when assessed at a continent-scale, 
for example. Thus, while the continuous suitability profiles may 
show one measure of difference between the alternative predictor 
scenarios, the binary levels of “suitable” versus “unsuitable” areas in 
absolute terms provide an alternative interpretation of the overall 
size of the ecological niche. Nevertheless, despite these values sug-
gesting >15 million km2 of suitable area for O. ficus indica (e.g., SDM 
1) across Africa, the potential yields will vary within these locations/
SDM projections and hence a combination of both the continuous 
scale likelihood and the binary cut-off values is useful in assessing 
the true scale of potential niche that could be used for growing these 
species.

4.2  |  Land suitability estimates

A key advantage of the SDM approach is the capacity to produce a 
more refined estimate of land area that is potentially available, after 
taking account of protected areas and other essential land covers 
and uses, for cultivation of O. ficus-indica and E. tirucalli. Given the 
overall lack of variability found between the five SDM scenarios 
and the equally high performance of the bioclim-only SDM 1 model, 
the following section opted to only compare the results from the O. 
ficus-indica SDM 1 model with existing methods from previous lit-
erature focusing specifically on Africa as an example region. Figure 7 
presents the comparison of the land suitability estimates found in 
this study following SDM 1 (binary cut-off) and the predicted suit-
able areas for O. ficus-indica growth according to the parameters de-
tailed in Louhaichi et al. (2015), and the adapted productivity index 
displayed in Owen et al. (2015).

Figure 7b overlays the results from this study onto the the-
oretical distribution of O. ficus-indica across Africa according 
to the parameters detailed in Louhaichi et al. (2015) (Figure 7a), 

F I G U R E  7 Comparison of species distribution model (SDM) 1 binary O. ficus-indica projected ecological niche with existing methods from 
the literature: (a–b) estimates of potential area suitable for O. ficus-indica growth based on the method described in Louhaichi et al. (2015) 
overlain with SDM 1 binary projections (this study) (c - d) refined Environmental Productivity Index (EPI) for O. ficus-indica as calculated in 
Owen et al. (2015) overlain with SDM 1 binary projections (this study)
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with results showing additional theoretically suitable areas in 
northern Africa bordering the Mediterranean, a greater region in 
eastern Africa, and more extensive suitability in southern Africa. 
SDM 1 projected distribution details a far greater suitable area 
than the approach taken in Louhaichi et al. (2015) since they are 
based on observed occurrence data rather than restricted by the 
common intersection of a few environmental conditions. While 
the models used in this study do not consider any soil-based pa-
rameters, they have still explained over 93% of the occurrences 
observed with high AUC scores. When compared with the results 
of the productivity analysis in Owen et al. (2015), our results 
show a clear omission of O. ficus-indica growth in central Africa 
where Figure 7c suggests a zone of high productivity. This is a 
good demonstration that our approach has taken the “competi-
tion” aspect into consideration as the EPI method suggests that 
O. ficus-indica would grow well in central Africa, but we know 
through lack of occurrences in these areas that O. ficus-indica is 
out-competed by other plants.

Unlike the two alternative methods described above, the SDM 
method explored in this study is driven by the relationship with 
known occurrences and climatic parameters, allowing us to qualify 
these maps with a level of evaluative performance. As noted ear-
lier, this suggests that c.1,500 million hectares of land are suitable 
for O. ficus-indica and E. tirucalli growth and is of importance to 
initiatives looking at the potential use of CAM plant biomass as 
feedstock for anaerobic digestion and bioenergy, or alternative hy-
drolysis and VFA uses such as bioplastics, proteins. The advantage 
of an SDM-based approach which incorporates the nuances and 
complexities of the relationships between environmental param-
eters and known occurrences, is that while tropical areas are the-
oretically identified of potential high productivity, O. ficus-indica 
is outcompeted and occurrence data demonstrates that it is not 
a successful plant in these regions for reasons beyond its direct 
relationship with climate. This conclusion is key to identifying the 
most appropriate regions for exploring the potential for cultivation 
of CAM plants, such as O. ficus-indica and E. tirucalli, as it removes 
any discussion regarding the removal of prime forest ecosystems in 
place of CAM cultivation.

4.3  |  Updated Hellmann–Eberle quotient map

While minimum temperatures were demonstrated as key in deter-
mining the majority of the variability in spatial distribution of the 
species, analysis of an updated Ellenberg index (Hellmann–Eberle 
quotient combined with average annual precipitation) also high-
lighted the importance of precipitation predictability in the distri-
bution of succulents. As noted above, Ellenberg (1981) examined 
the distribution pattern of tall stem succulents in relation to climate 
(von Willert et al., 1992) and found that they tended to occur in 
areas where rainfall was low (i.e., <500 mm), but regularly received 
(Hellmann–Eberle quotient <5 over a long series of years) (Cowling 
et al., 1997). Since Ellenberg’s original study, which was based on 
precipitation data from 1905 to 1940, further studies have also ex-
plored the predictability of rainfall as a parameter by which to ex-
plain succulent distributions (Holtum et al., 2016; Ringelberg et al., 
2020). As part of this study, an updated global Hellmann–Eberle 
quotient based on a longer time-series of monthly precipitation data 
from 1960 to 2018 was used as a predictor parameter for the en-
semble model. In addition to use in the ensemble modeling, the up-
dated map of a revised “Ellenberg index” shown in Figure 8 provides 
further valuable discussion to unresolved problems regarding suc-
culent distribution. The near absence of stem succulents from arid 
Australia, for example, is one particular example which has invited 
discussion among research groups (Holtum et al., 2016; Ringelberg 
et al., 2020). While Ellenberg (1981) suggested the rainfall is too un-
predictable to support stem succulents in arid Australia, Ringelberg 
et al.’s (2020) recent ensemble model of the wider succulent biome 
has suggested that large parts of Australia should be climatically 
suitable for stem succulents; further complicating their apparent ab-
sence. Instead, Ringelberg et al. (2020) suggest that perhaps longer-
term climatic oscillations, or even historical fire conditions, may offer 
an alternative rationale for their absence despite favorable climatic 
conditions, according to their ensemble models.

By comparison, the updated Hellmann–Eberle quotient and 
“Ellenberg index” maps produced using a much longer period of cli-
mate data (58 years) in this study have successfully identified regions 
that are well-known areas depauperate in succulents, like central 

F I G U R E  8 Based on the monthly 
precipitation values from 1960 to 
2018, average annual precipitation, the 
Hellmann–Eberle quotient (maximum 
annual precipitation/minimum annual 
precipitation), and overall Ellenberg index 
were calculated. Green areas represent 
regions where <500 mm of rainfall 
coincides with Hellmann–Eberle quotient 
>5. Global raster of Ellenberg index as 
shown was used as a predictor dataset for 
species distribution model 2
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Australia and large parts of Kalahari/Namib deserts. Additionally, it 
is highlighting other areas that agree well with observation—parts of 
the Arabian Peninsula, Horn of Africa, Saharan desert, and in South 
America the Atacama. This updated visualization based on a longer 
time series than previously studied suggests that perhaps high vari-
ability in annual precipitation levels over the long term is key to ex-
plaining succulent absence, such as the lack of endemic terrestrial 
species with CAM in arid Australia.

5  |  CONCLUSIONS

In comparison with existing methods of land suitability estimation 
for these species, this study has taken an a posteriori modeling ap-
proach using SDMs and known occurrences to extrapolate wider 
areas of potential suitability for cultivation of these species. In doing 
so, it has allowed us to qualify the models of suitability estimates 
with a level of evaluative performance, incorporates the nuances 
and complexities of relationships between environmental parame-
ters and known occurrences, and produce a more refined estimate of 
land area that is potentially available for cultivation of O. ficus-indica 
and E. tirucalli when considered alongside existing land uses and 
primary ecosystems. The high model performance metrics of SDMs 
made using successfully invasive distribution-unlimited species gives 
us confidence that most of the fundamental niche of O. ficus-indica 
and E. tirucalli can be explained by the models produced in this study, 
and given the negligible variability between the different scenarios, 
there is no benefit in expanding model complexity and increasing 
the potential for over-fitting by including additional environmental 
predictors. While the minimum temperature of the coldest month 
was found to be the key variable of importance in determining the 
spatial variability of O. ficus-indica and E. tirucalli, these results are 
based on the individual performance of each parameter as opposed 
to combined effects and nonlinearities between the environmental 
predictors. An updated global map of Hellmann–Eberle quotient 
based on a much longer period of climate data (ca. 60 years), sup-
ports the ideas of Ellenberg (1981) that long-term precipitation vari-
ability is also a key variable in determining CAM plant distribution, 
and in certain regions can explain stem succulent absence.

AUTHOR CONTRIBUTION
Catherine E. Buckland: Conceptualization (lead); Data curation 
(lead); Formal analysis (lead); Investigation (lead); Methodology 
(lead); Writing –  original draft (lead); Writing –  review & editing 
(lead). Andrew J.A.C. Smith: Formal analysis (supporting); Funding 
acquisition (equal); Investigation (supporting); Supervision (support-
ing); Writing –  review & editing (supporting). David S. G. Thomas: 
Funding acquisition (equal); Investigation (supporting); Supervision 
(supporting).

ACKNOWLEDG EMENTS
This research was funded by the Oxford Martin School as part of 
the Dryland Bioenergy project. We would also like to extend our 

gratitude to the two anonymous reviewers for providing valuable 
feedback on an earlier draft of this manuscript.

CONFLIC T OF INTERE S T
The authors declare no competing interests.

DATA AVAIL ABILIT Y S TATEMENT
The authors confirm that the results supporting the findings of this 
study are available within the article and its supplementary materi-
als. Raw data and code (R script) to reproduce the results are avail-
able at Dryad: https://doi.org/10.5061/dryad.wwpzg​msmt.

ORCID
Catherine E. Buckland   https://orcid.org/0000-0002-7411-3046 
Andrew J. A. C. Smith   https://orcid.org/0000-0001-9188-0258 
David S. G. Thomas   https://orcid.org/0000-0001-6867-5504 

R E FE R E N C E S
Acharya, P., Biradar, C., Louhaichi, M., Ghosh, S., Hassan, S., Moyo, H., 

& Sarker, A. (2019). Finding a suitable niche for cultivating cactus 
pear (Opuntia ficus-indica) as an integrated crop in resilient dryland 
agroecosystems of India. Sustainability (Switzerland), 11, https://doi.
org/10.3390/su112​15897

Aguirre-Gutiérrez, J., Carvalheiro, L. G., Polce, C., van Loon, E. E., Raes, 
N., Reemer, M., & Biesmeijer, J. C. (2013). Fit-for-purpose: Species 
distribution model performance depends on evaluation criteria - 
dutch hoverflies as a case study. PLoS One, 8(5), e63708. https://
doi.org/10.1371/journ​al.pone.0063708

Allen, R. G., Periera, L. S., Raes, D., & Smith, M. (1998). Crop evapotrans-
piration: guideline for computing crop water requirement. In FAO 
Irrigation and Drainage, Paper No 56. FAO, Rome, Italy; 300.

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of 
species distribution models: Prevalence, kappa and the true skill 
statistic (TSS). Journal of Applied Ecology, 43, 1223–1232. https://
doi.org/10.1111/j.1365-2664.2006.01214.x

Araújo, M. B., & New, M. (2007). Ensemble forecasting of species dis-
tributions. Trends in Ecology and Evolution, 22, 42–47. https://doi.
org/10.1016/j.tree.2006.09.010

Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic 
envelope modelling. Ecology, 93, 1527–1539.

Bahn, V., & McGill, B. J. (2007). Can niche-based distribution models out-
perform spatial interpolation? Global Ecology and Biogeography, 16, 
733–742. https://doi.org/10.1111/j.1466-8238.2007.00331.x

Ballesteros-Mejia, L., Kitching, I. J., Jetz, W., Nagel, P., & Beck, J. (2013). 
Mapping the biodiversity of tropical insects: Species richness and 
inventory completeness of African sphingid moths. Global Ecology 
and Biogeography, 22, 586–595. https://doi.org/10.1111/geb.12039

Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting 
pseudo-absences for species distribution models: How, where and 
how many? Methods in Ecology and Evolution, 3, 327–338. https://
doi.org/10.1111/j.2041-210X.2011.00172.x

Barbet-Massin, M., Rome, Q., Villemant, C., & Courchamp, F. (2018). 
Can species distribution models really predict the expansion of in-
vasive species? PLoS One, 13, 1–14. https://doi.org/10.1371/journ​
al.pone.0193085

Beale, C. M., Lennon, J. J., & Gimona, A. (2008). Opening the climate 
envelop reveals macroscale associations with climate in European 
birds. Proceedings of the National Academy of Sciences USA, 105, 
14908–14912.

Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in 
the GBIF database and its effect on modeling species’ geographic 

https://doi.org/10.5061/dryad.wwpzgmsmt
https://orcid.org/0000-0002-7411-3046
https://orcid.org/0000-0002-7411-3046
https://orcid.org/0000-0001-9188-0258
https://orcid.org/0000-0001-9188-0258
https://orcid.org/0000-0001-6867-5504
https://orcid.org/0000-0001-6867-5504
https://doi.org/10.3390/su11215897
https://doi.org/10.3390/su11215897
https://doi.org/10.1371/journal.pone.0063708
https://doi.org/10.1371/journal.pone.0063708
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1016/j.tree.2006.09.010
https://doi.org/10.1016/j.tree.2006.09.010
https://doi.org/10.1111/j.1466-8238.2007.00331.x
https://doi.org/10.1111/geb.12039
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1371/journal.pone.0193085
https://doi.org/10.1371/journal.pone.0193085


14 of 16  |     BUCKLAND et al.

distributions. Ecological Informatics, 19, 10–15. https://doi.
org/10.1016/j.ecoinf.2013.11.002

Boakes, E. H., McGowan, P. J. K., Fuller, R. A., Chang-qing, D., Clark, 
N. E., O’Connor, K., & Mace, G. M. (2010). Distorted views of 
biodiversity: Spatial and temporal bias in species occurrence 
data. PLOS Biology, 8, e1000385. https://doi.org/10.1371/journ​
al.pbio.1000385

Borland, A. M., Griffiths, H., Hartwell, J., & Smith, J. A. C. (2009). 
Exploiting the potential of plants with crassulacean acid metabolism 
for bioenergy production on marginal lands. Journal of Experimental 
Botany, 60, 2879–2896. https://doi.org/10.1093/jxb/erp118

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Buckland, C. E., & Thomas, D. S. G. (2021). Analysing the potential for CAM-

fed bio-economic uses in sub-Saharan Africa. Applied Geography, 
132, 102463. https://doi.org/10.1016/j.apgeog.2021.102463

Bucklin, D. N., Basille, M., Benscoter, A. M., Brandt, L. A., Mazzotti, F. J., 
Romañach, S. S., Speroterra, C., & Watling, J. I. (2015). Comparing 
species distribution models constructed with different subsets of 
environmental predictors. Diversity and Distributions, 21, 23–35. 
https://doi.org/10.1111/ddi.12247

CABI (2019). Invasive Species Compendium -  Opuntia ficus-indica 
(prickly pear). Centre for Agriculture and Bioscience International. 
Accessed October 15, 2019. https://www.cabi.org/isc/datas​
heet/37714

Chase, J. M., & Leibold, M. A. (2003). Ecological niches: Linking classical 
and contemporary approaches. University of Chicago Press.

Chefaoui, R. M., & Lobo, J. M. (2008). Assessing the effects of pseudo-
absences on predictive distribution model performance. Ecological 
Modelling, 210, 478–486. https://doi.org/10.1016/j.ecolm​
odel.2007.08.010

Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision 
for scaled disagreement or partial credit. Psychological Bulletin, 70, 
213–220. https://doi.org/10.1037/h0026256

Cowling, R. M., Richardson, D. M., & Pierce, S. M. (1997). Vegetation of 
southern Africa. Cambridge University Press.

Cushman, J. C. (2001). Crassulacean acid metabolism. A plastic photo-
synthetic adaptation to arid environment. Plant Physiology, 127, 
1439–1448.

Davis, S. C., Dohleman, F. G., & Long, S. P. (2011). The global potential for 
Agave as a biofuel feedstock. GCB Bioenergy, 3, 68–78. https://doi.
org/10.1111/j.1757-1707.2010.01077.x

Dormann, C. F. (2018). Model averaging in ecology: A review of Bayesian, 
information-theoretic, and tactical approaches for predictive infer-
ence. Ecological Monographs, 88, 485–504.

Dormann, C. F., Schymanski, S. J., Cabral, J., Chuine, I., Graham, C., 
Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B., & 
Singer, A. (2012). Correlation and process in species distribution 
models: Bridging a dichotomy. Journal of Biogeography, 39, 2119–
2131. https://doi.org/10.1111/j.1365-2699.2011.02659.x

Dudík, M., & Phillips, S. J. (2005). Correcting samle selection bias in max-
imum entropy density estimation. Advances in Neural Information 
Processing Systems, 18, 323–330.

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological 
explanation and prediction across space and time. Annual Review of 
Ecology, Evolution, and Systematics, 40, 677–697.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted 
regression trees. Journal of Animal Ecology, 77, 802–813.

Ellenberg, H. (1981). Reasons for stem succulents being present or ab-
sent in the arid regions of the world. Flora, 171, 114–169.

Fick, S., & Hijmans, R. (2017). WorldClim 2: New 1-km spatial resolu-
tion climate surfaces for global land areas. International Journal of 
Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086

GBIF.org. (2020). GBIF Occurrence Download. https://doi.org/10.15468.
dl.9fff6p

Georges, D., & Thuiller, W. (2013). Multi-species Distribution Modeling 
with biomod2, 1–11.

Guisan, A., Thuiller, W., & Zimmermann, N. (2017). Habitat suitability and 
distribution models: with applications in R. Cambridge University 
Press.

Hallgren, W., Santana, F., Low-Choy, S., Zhao, Y., & Mackey, B. (2019). 
Species distribution models can be highly sensitive to algorithm 
configuration. Ecological Modelling, 408, 108719. https://doi.
org/10.1016/j.ecolm​odel.2019.108719

Hao, T., Elith, J., Guillera-Arroita, G., & Lahoz-Monfort, J. J. (2019). A re-
view of evidence about use and performance of species distribu-
tion modelling ensembles like BIOMOD. Diversity and Distributions, 
25, 839–852. https://doi.org/10.1111/ddi.12892

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-
resolution grids of monthly climatic observations - the CR TS3.10 
Dataset. International Journal of Climatology, 34, 623–642.

Hastilestari, B. R., Mudersbach, M., Tomala, F., Vogt, H., Biskupek-Korell, 
B., Van Damme, P., Guretzki, S., & Papenbrock, J. (2013). Euphorbia 
tirucalli L.-comprehensive characterization of a drought tolerant 
plant with a potential as biofuel source. PLoS One, 8, 1–12. https://
doi.org/10.1371/journ​al.pone.0063501

Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & 
Sykes, M. T. (2006). Methods and uncertainties in bioclimatic enve-
lope modelling under climate change. Progress in Physical Geography, 
30, 751–777. https://doi.org/10.1177/03091​33306​071957

Herrando-Moraira, S., Vitales, D., Nualart, N., Gómez-Bellver, C., Ibáñez, 
N., Massó, S., Cachón-Ferrero, P., González-Gutiérrez, P. A., Guillot, 
D., Herrera, I., Shaw, D., Stinca, A., Wang, Z., & López-Pujol, J. 
(2020). Global distribution patterns and niche modelling of the in-
vasive Kalanchoe × houghtonii (Crassulaceae). Scientific Reports, 10, 
3143. https://doi.org/10.1038/s4159​8-020-60079​-2

Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2017). Dismo R 
Package (version 1.1-4). https://cran.r-proje​ct.org/packa​ge=dismo

Holtum, J. A. M., Chambers, D., Morgan, T., & Tan, D. K. Y. (2011). Agave 
as a biofuel feedstock in Australia. GCB Bioenergy, 3, 58–67. https://
doi.org/10.1111/j.1757-1707.2010.01083.x

Holtum, J. A. M., Hancock, L. P., Edwards, E. J., Crisp, M. D., Crayn, D. 
M., Sage, R., & Winter, K. (2016). Australia lacks stem succulents 
but is it depauperate in plants with crassulacean acid metabolism 
(CAM)? Current Opinion in Plant Biology, 31, 109–117. https://doi.
org/10.1016/j.pbi.2016.03.018

Holtum, J. A. M., Hancock, L. P., Edwards, E. J., & Winter, K. (2017). 
Facultative CAM photosynthesis (crassulacean acid metabolism) in 
four species of Calandrinia, ephemeral succulents of arid Australia. 
Photosynthesis Research, 134, 17–25. https://doi.org/10.1007/
s1112​0-017-0359-x

Hutchinson, G. E. (1957). Concluding remarks. Population Studies: 
Animal Ecolgy and Demography, 415–427. https://doi.org/10.1101/
SQB.1957.022.01.039

Inglese, P., & Scalenge, R. (2009). Cactus pear (Opuntia ficus-indica L. 
(Mill)). In E. A. C. Constantini (Ed.), Manual of methods for soil and 
land evaluation (pp. 275–285). Science Publisher.

Iturbide, M., Bedia, J., & Gutiérrez, J. M. (2018). Background sampling 
and transferability of species distribution model ensembles under 
climate change. Global and Planetary Change, 166, 19–29. https://
doi.org/10.1016/j.glopl​acha.2018.03.008

Komac, B., Esteban, P., Trapero, L., & Caritg, R. (2016). Modelization of 
the current and future habitat suitability of rhododendron ferru-
gineum using potential snow accumulation. PLoS One, 11, 1–18. 
https://doi.org/10.1371/journ​al.pone.0147324

Le Houérou, H. N. (1996). The role of cacti (Opuntia spp.) in erosion con-
trol, land reclamation, rehabilitation and agricultural development 
in the Mediterranean Basin. Journal of Arid Environments, 33, 135–
159. https://doi.org/10.1006/jare.1996.0053

Lintz, H. E., Gray, A. N., & McCune, B. (2013). Effect of inventory 
method on niche models: Random versus systematic error. 
Ecological Informatics, 18, 20–34. https://doi.org/10.1016/j.
ecoinf.2013.05.001

https://doi.org/10.1016/j.ecoinf.2013.11.002
https://doi.org/10.1016/j.ecoinf.2013.11.002
https://doi.org/10.1371/journal.pbio.1000385
https://doi.org/10.1371/journal.pbio.1000385
https://doi.org/10.1093/jxb/erp118
https://doi.org/10.1016/j.apgeog.2021.102463
https://doi.org/10.1111/ddi.12247
https://www.cabi.org/isc/datasheet/37714
https://www.cabi.org/isc/datasheet/37714
https://doi.org/10.1016/j.ecolmodel.2007.08.010
https://doi.org/10.1016/j.ecolmodel.2007.08.010
https://doi.org/10.1037/h0026256
https://doi.org/10.1111/j.1757-1707.2010.01077.x
https://doi.org/10.1111/j.1757-1707.2010.01077.x
https://doi.org/10.1111/j.1365-2699.2011.02659.x
https://doi.org/10.1002/joc.5086
https://doi.org/10.1016/j.ecolmodel.2019.108719
https://doi.org/10.1016/j.ecolmodel.2019.108719
https://doi.org/10.1111/ddi.12892
https://doi.org/10.1371/journal.pone.0063501
https://doi.org/10.1371/journal.pone.0063501
https://doi.org/10.1177/0309133306071957
https://doi.org/10.1038/s41598-020-60079-2
https://cran.r-project.org/package=dismo
https://doi.org/10.1111/j.1757-1707.2010.01083.x
https://doi.org/10.1111/j.1757-1707.2010.01083.x
https://doi.org/10.1016/j.pbi.2016.03.018
https://doi.org/10.1016/j.pbi.2016.03.018
https://doi.org/10.1007/s11120-017-0359-x
https://doi.org/10.1007/s11120-017-0359-x
https://doi.org/10.1101/SQB.1957.022.01.039
https://doi.org/10.1101/SQB.1957.022.01.039
https://doi.org/10.1016/j.gloplacha.2018.03.008
https://doi.org/10.1016/j.gloplacha.2018.03.008
https://doi.org/10.1371/journal.pone.0147324
https://doi.org/10.1006/jare.1996.0053
https://doi.org/10.1016/j.ecoinf.2013.05.001
https://doi.org/10.1016/j.ecoinf.2013.05.001


    |  15 of 16BUCKLAND et al.

Loke, J., Mesa, L. A., & Franken, Y. J. (2011). Euphorbia tirucalli bioenergy 
manual: Feedstock production, bioenergy conversion, applications, 
economics version 2.

Louhaichi, M., Park, A. G., Mata-Gonzalez, R., Johnson, D. E., & 
Mohawesh, Y. M. (2015). A Preliminary Model of Opuntia 
ficus-indica (L.) Mill. Suitability for Jordan A Preliminary 
Model of Opuntia ficus-indica (L.) Mill. Suitability for. Acta 
Horticulturae, 1067, 267–274. https://doi.org/10.17660/​ActaH​
ortic.2015.1067.37

Luttge, U. (2004). Ecophysiology of crassulacean acid metabolism. Annals 
of Botany, 93, 629–652.

Lüttge, U. (2010). Ability of crassulacean acid metabolism plants to over-
come interacting stresses in tropical environments. AoB PLANTS, 
2010, 1–15. https://doi.org/10.1093/aobpl​a/plq005

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. 
(2009). Evaluation of consensus methods in predictive species dis-
tribution modelling. Diversity and Distributions, 15, 59–69. https://
doi.org/10.1111/j.1472-4642.2008.00491.x

Marthews, T. R., Jones, R. G., Dadson, S. J., Otto, F. E. L., Mitchell, D., 
Guillod, B. P., & Allen, M. R. (2019). The impact of human-induced 
climate change on regional drought in the horn of Africa. Journal 
of Geophysical Research: Atmospheres, 124, 4549–4566. https://doi.
org/10.1029/2018J​D030085

Masocha, M., & Dube, T. (2018). Global terrestrial biomes at risk of cacti 
invasion identified for four species using consensual modelling. 
Journal of Arid Environments, 156, 77–86. https://doi.org/10.1016/j.
jarid​env.2018.05.006

Mason, P. M., Glover, K., Smith, J. A. C., Willis, K. J., Woods, J., & 
Thompson, I. P. (2015). The potential of CAM crops as a globally 
significant bioenergy resource: Moving from “fuel or food” to “fuel 
and more food”. Energy and Environmental Science, 8, 2320–2329. 
https://doi.org/10.1039/c5ee0​0242g

Merow, C., Smith, M. J., Edwards, T. C., Guisan, A., Mcmahon, S. M., 
Normand, S., Thuiller, W., Wüest, R. O., Zimmermann, N. E., & Elith, 
J. (2014). What do we gain from simplicity versus complexity in 
species distribution models? Ecography, 37, 1267–1281. https://doi.
org/10.1111/ecog.00845

Mwine, J., Van Damme, P., Hastilestari, B. R., & Papenbrock, J. (2013). 
African natural plant products: Discoveries and challenges in 
chemistry, health and nutrition. American Chemical Society, 2, 
4905–4914.

Nobel, P. S. (1988). Environmental biology of agaves and cacti. Cambridge 
University Press.

Nobel, P. S., & Valenzuela, A. G. (1987). Environmental responses and 
productivity of the CAM plant, Agave tequiliana. Agricultural and 
Forest Meteorology, 39, 319–334.

Osmond, C. B. (1978). Crassulacean acid metabolism: A curiosity in con-
text. Annual Review of Plant Physiology, 29, 379–414. https://doi.
org/10.1146/annur​ev.pp.29.060178.002115

Otto, F. E. L., Wolski, P., Lehner, F., Tebaldi, C., van Oldenborgh, G. J., 
Hogesteeger, S., Singh, R., Holden, P., Fučkar, N. S., Odoulami, R. 
C., & New, M. (2018). Anthropogenic influence on the drivers of the 
Western Cape drought 2015–2017. Environmental Research Letters, 
13(12), 2015–2017. https://doi.org/10.1088/1748-9326/aae9f9

Owen, N. A., Fahy, K. F., & Griffiths, H. (2015). Crassulacean acid me-
tabolism (CAM) offers sustainable bioenergy production and resil-
ience to climate change. GCB Bioenergy, 8(4), 737–749. https://doi.
org/10.1111/gcbb.12272

Palgrave, C. K. (1977). Trees of southern Africa. C Struik Publishers.
Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, 

J., & Ferrier, S. (2009). Sample selection bias and presence-only 
distribution models: Implications for background and pseudo-
absence data. Ecological Applications, 19, 181–197. https://doi.
org/10.1890/07-2153.1

Qiao, H., Soberón, J., & Peterson, A. T. (2015). No silver bullets in correl-
ative ecological niche modelling: Insights from testing among many 

potential algorithms for niche estimation. Methods in Ecology and 
Evolution, 6, 1126–1136. https://doi.org/10.1111/2041-210X.12397

Qin, Z., Zhang, J. E., Jiang, Y. P., Wang, R. L., & Wu, R. S. (2020). Predicting 
the potential distribution of Pseudomonas syringae pv. actinidiae 
in China using ensemble models. Plant Pathology, 69, 120–131. 
https://doi.org/10.1111/ppa.13112

Raes, N., & Aguirre-Gutiérrez, J. (2018). A modeling framework to estimate 
and project species distributions in space and time (pp. 309–320). 
Mountains.

Ringelberg, J. J., Zimmermann, N. E., Weeks, A., Lavin, M., & Hughes, C. 
E. (2020). Biomes as evolutionary arenas: Convergence and conser-
vatism in the trans-continental succulent biome. Global Ecology and 
Biogeography, 29, 1100–1113. https://doi.org/10.1111/geb.13089

Rödder, D., Schmidtlein, S., Veith, M., & Lötters, S. (2009). Alien invasive 
slider turtle in unpredicted habitat: a matter of niche shift or of pre-
dictors studied? PLoS One, 4, e7843. https://doi.org/10.1371/journ​
al.pone.0007843

RStudio Team (2019). RStudio: Integrated Development for R Studio Inc. 
http://www.rstud​io.com

Saupe, E. E., Barve, V., Myers, C. E., Soberón, J., Barve, N., Hensz, C. M., 
Peterson, A. T., Owens, H. L., & Lira-Noriega, A. (2012). Variation 
in niche and distribution model performance: The need for a priori 
assessment of key causal factors. Ecological Modelling, 237–238, 11–
22. https://doi.org/10.1016/j.ecolm​odel.2012.04.001

Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-
absence selection technique for improved species distribution 
modelling. PLoS One, 8(8), e71218. https://doi.org/10.1371/journ​
al.pone.0071218

Smith, S. D., Monson, R., & Anderson, J. E. (2012). Physiological ecology of 
North American desert plants. Springer.

Soberón, J., & Nakamura, M. (2009). Niches and distributional areas: 
Concepts, methods, and assumptions. Proceedings of the National 
Academy of Sciences of the United States of America, 106, 19644–
19650. https://doi.org/10.1073/pnas.09016​37106

Stock, W. D., Allsopp, N., van der Heyden, F., & Witkowski, E. T. F. (1997). 
In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Plant form 
and function. In Vegetation of Southern Africa (p. 615). Cambridge 
University Press.

Thuiller, W., Georges, D., & Engler, R. (2014). Biomod2: ensemble plat-
form for species distribution modeling. R Package Version, 3, 1–64.

Thuiller, W., Lavorel, S., & Araújo, M. B. (2005). Niche properties and 
geographical extent as predictors of species sensitivity to climate 
change. Global Ecology and Biogeography, 14, 347–357. https://doi.
org/10.1111/j.1466-822X.2005.00162.x

Title, P. O., & Bemmels, J. B. (2018). ENVIREM: an expanded set of biocli-
matic and topographic variables increases flexibility and improves 
performance of ecological niche modeling. Ecography, 41, 291–307. 
https://doi.org/10.1111/ecog.02880

Trabucco, A., & Zomer, R. J. (2018). Global Aridity Index and Potential 
Evapo-Transpiration (ET0) Climate Database v2 Methodology and 
Dataset Description.

Václavík, T., & Meentemeyer, R. K. (2009). Invasive species distribution 
modelling (iSDM): are absence data and dispersion constraints 
needed to predict actual distributions? Ecological Modelling, 220, 
3248–3258.

Varela, S., Anderson, R. P., García-Valdés, R., & Fernández-González, F. 
(2014). Environmental filters reduce the effects of sampling bias 
and improve predictions of ecological niche models. Ecography, 37, 
1084–1091. https://doi.org/10.1111/j.1600-0587.2013.00441.x

von Willert, D. J., Eller, B. M., Werger, M. J. A., Brinckmann, E., & 
Ihlenfeldt, H.-D. (1992). Life Strategies of Succulents in Deserts: 
With Special Reference to the Namib Desert. Cambridge University 
Press.

Webb, D. B., Wood, P. J., Smith, J. P., & Henman, G. S. (1984). A guide 
to species selection for tropical and sub-tropical plantations. 
Commonwealth Forestry Institute, University of Oxford.

https://doi.org/10.17660/ActaHortic.2015.1067.37
https://doi.org/10.17660/ActaHortic.2015.1067.37
https://doi.org/10.1093/aobpla/plq005
https://doi.org/10.1111/j.1472-4642.2008.00491.x
https://doi.org/10.1111/j.1472-4642.2008.00491.x
https://doi.org/10.1029/2018JD030085
https://doi.org/10.1029/2018JD030085
https://doi.org/10.1016/j.jaridenv.2018.05.006
https://doi.org/10.1016/j.jaridenv.2018.05.006
https://doi.org/10.1039/c5ee00242g
https://doi.org/10.1111/ecog.00845
https://doi.org/10.1111/ecog.00845
https://doi.org/10.1146/annurev.pp.29.060178.002115
https://doi.org/10.1146/annurev.pp.29.060178.002115
https://doi.org/10.1088/1748-9326/aae9f9
https://doi.org/10.1111/gcbb.12272
https://doi.org/10.1111/gcbb.12272
https://doi.org/10.1890/07-2153.1
https://doi.org/10.1890/07-2153.1
https://doi.org/10.1111/2041-210X.12397
https://doi.org/10.1111/ppa.13112
https://doi.org/10.1111/geb.13089
https://doi.org/10.1371/journal.pone.0007843
https://doi.org/10.1371/journal.pone.0007843
http://www.rstudio.com
https://doi.org/10.1016/j.ecolmodel.2012.04.001
https://doi.org/10.1371/journal.pone.0071218
https://doi.org/10.1371/journal.pone.0071218
https://doi.org/10.1073/pnas.0901637106
https://doi.org/10.1111/j.1466-822X.2005.00162.x
https://doi.org/10.1111/j.1466-822X.2005.00162.x
https://doi.org/10.1111/ecog.02880
https://doi.org/10.1111/j.1600-0587.2013.00441.x


16 of 16  |     BUCKLAND et al.

Wilson, A. M., & Jetz, W. (2016). Remotely sensed high-resolution global 
cloud dynamics for predicting ecosystem and biodiversity distribu-
tions. PLOS Biology, 14(3), e1002415. https://doi.org/10.1371/journ​
al.pbio.1002415

Winter, K. (1985). Crassulacean acid metabolism. In J. Barber, & N. R. 
Baker (Eds.), Photosynthetic Mechanisms and the Environment (pp. 
329–387). Elsevier.

Winter, K., & Smith, J. A. C. (1996). Crassulacean acid metabolism: 
Biochemistry, ecophysiology and evolution. Springer-Verlag.

Wisz, M. S., & Guisan, A. (2009). Do pseudo-absence selection strate-
gis influence species distribution models and their predictions? 
An information-theoretic approach based on simulated data. BMC 
Ecology, 9, 1–3.

Yan, X., Tan, D. K. Y., Inderwildi, O. R., Smith, J. A. C., & King, D. A. (2011). 
Life cycle energy and greenhouse gas analysis for agave-derived 
bioethanol. Energy and Environmental Science, 4, 3110–3121. 
https://doi.org/10.1039/c1ee0​1107c

Yang, W., Ma, K., & Kreft, H. (2013). Geographical sampling bias in a 
large distributional database and its effects on species richness-
environment models. Journal of Biogeography, 40, 1415–1426. 
https://doi.org/10.1111/jbi.12108

Yao, A. Y. M. (1974). Agricultural potential estimated from the ratio of 
actual to potential evapotranspiration. Agricultural Meteorology, 13, 
405–417. https://doi.org/10.1016/0002-1571(74)90081​-8

Zizka, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence 
records from biological collection databases. Methods in Ecology and 
Evolution, 10, 744–751. https://doi.org/10.1111/2041-210X.13152

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Buckland, C. E., Smith, A. J. A. C., & 
Thomas, D. S. G. (2022). A comparison in species distribution 
model performance of succulents using key species and 
subsets of environmental predictors. Ecology and Evolution, 
12, e8981. https://doi.org/10.1002/ece3.8981

https://doi.org/10.1371/journal.pbio.1002415
https://doi.org/10.1371/journal.pbio.1002415
https://doi.org/10.1039/c1ee01107c
https://doi.org/10.1111/jbi.12108
https://doi.org/10.1016/0002-1571(74)90081-8
https://doi.org/10.1111/2041-210X.13152
https://doi.org/10.1002/ece3.8981

	A comparison in species distribution model performance of succulents using key species and subsets of environmental predictors
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Predictor datasets
	2.1.1|Bioclim datasets
	2.1.2|Hellmann–­Eberle quotient
	2.1.3|Aridity index, R-­index and cloud cover
	2.1.4|Pearson’s correlation coefficient

	2.2|Occurrence data
	2.3|Pseudo-­absences
	2.4|Model fitting
	2.5|Evaluating model comparison
	2.6|Assessing variable importance

	3|RESULTS
	3.1|Ensemble model projections and comparisons
	3.2|Environmental variable importance

	4|DISCUSSION
	4.1|Drivers of CAM plant distribution
	4.2|Land suitability estimates
	4.3|Updated Hellmann–­Eberle quotient map

	5|CONCLUSIONS
	AUTHOR CONTRIBUTION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


