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In this paper, an improved fuzzy connectedness (FC) method was proposed for automatic three-dimensional (3D) liver vessel
segmentation in computed tomography (CT) images. +e vessel-enhanced image (i.e., vesselness image) was incorporated into
the fuzzy affinity function of FC, rather than the intensity image used by traditional FC. An improved vesselness filter was
proposed by incorporating adaptive sigmoid filtering and a background-suppressing item. +e fuzzy scene of FC was au-
tomatically initialized by using the Otsu segmentation algorithm and one single seed generated adaptively, while traditional FC
required multiple seeds. +e improved FC method was evaluated on 40 cases of clinical CT volumetric images from the
3Dircadb (n � 20) and Sliver07 (n � 20) datasets. Experimental results showed that the proposed liver vessel segmentation
strategy could achieve better segmentation performance than traditional FC, region growing, and threshold level set. Aver-
age accuracy, sensitivity, specificity, and Dice coefficient of the improved FCmethod were, respectively, (96.4± 1.1)%, (73.7± 7.6)%,
(97.4± 1.3)%, and (67.3± 5.7)% for the 3Dircadb dataset and (96.8± 0.6)%, (89.1± 6.8)%, (97.6± 1.1)%, and (71.4± 7.6)% for the
Sliver07 dataset. It was concluded that the improved FCmay be used as a newmethod for automatic 3D segmentation of liver vessel
from CT images.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon malignancies in the world, especially in China with the
fifth morbidity and the third mortality [1, 2]. Nowadays,
main treatments to HCC include surgical resection, liver
transplantation, and local thermal ablation [3]. Treatment
planning and navigation based on medical imaging are
essential for these procedures. Among different medical
imaging modalities, computed tomography (CT) is com-
monly used for the guidance of liver tumor treatment.+ree-
dimensional (3D) segmentation of liver vessel is critical in

CT-based liver tumor treatment planning and navigation.
However, manual segmentation of liver vessel in CT images
is time consuming and tedious. +us, there is a demand for
computerized 3D segmentation of liver vessel in CT images
[4, 5].

Currently, computerized liver vessel segmentation
techniques can be classified into region growing [6–8], active
contour models or level sets [9], graph cuts [10–12], extreme
learning [13], deep learning [14], and fuzzy logic [15, 16].
However, it is still challenging to extract liver vessel in CT
images, especially in those with low contrast [4]. Region
growing methods [6–8] are simple with low computational
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cost, but they are sensitive to seed point location and
threshold. Active contour models or level sets [9] are among
mainstream vessel segmentation algorithms, but they have
limitations of complex initialization and typically use speed
function which implicitly assumes that images are of good
contrast. Graph cuts [10–12] are segmentation methods
based on graph theory, but they are partly limited by the
shrinking bias problem. Machine learning methods [13, 14]
can take into account the diversity of liver vessel topologies
and features, but they generally require plenty of training
samples or long training time. Fuzzy connectedness (FC)
methods [15, 16] are based on fuzzy logic. FC describes
spatial connectedness between each voxel, rather than just
focusing on intensity. Recently, Guo et al. [15] and Wang
et al. [16] have demonstrated the potential of FC in liver
vessel segmentation. However, for FC-based liver vessel
segmentation in CT images, there are still issues to be
addressed, including unsatisfying segmentation accuracy
(especially for low-contrast CT images), requirement on
multiple seeds, and sensitivity to initialization.

In this paper, an improved FC method was proposed for
automatic 3D liver vessel segmentation in CT images. +e
vessel-enhanced image (i.e., vesselness image) was in-
corporated into the fuzzy affinity function of FC, rather than
the intensity image used by traditional FC. An improved
vesselness filter was also proposed based on the Jerman’s
vesselness filter [17] introduced recently. +e fuzzy scene of
FC was initialized by using the Otsu segmentation algo-
rithm, and the quantity of seeds required was reduced to one
which was generated automatically. +e proposed method
was evaluated on 40 cases of clinical CT image volumes,
including low-contrast images. Experimental results dem-
onstrate that the improved FC method can overcome the
drawbacks of traditional FC and yield more satisfying
segmentation performance.

2. Materials and Methods

Figure 1 shows the flow chart of the improved FC method.
First, the liver volume of interest (VOI) image was obtained
by using the liver mask, which could be obtained by using
liver segmentation approaches [18].+e liver VOI image was
then contrast enhanced by an adaptive sigmoid filtering
which was initialized by K-means clustering and isotropi-
cally resampled. Subsequently, the improved vesselness filter
was used to enhance the liver vessel and suppress the
background, and a 3D vesselness image was obtained. +en,
a 3D fuzzy scene was constructed with the 3D vesselness
image by (1) incorporating the improved vesselness into the
fuzzy affinity function of FC, (2) initializing the fuzzy scene
by the Otsu algorithm, and (3) generating automatically one
single seed. Finally, the 3D liver vessel was segmented on the
basis of the 3D fuzzy scene and anisotropically resampled.

2.1. Dataset. Both simulated data (n � 60) and clinical CT
data (n � 40) were used. +e synthetic dataset VascuSynth
[19, 20] was provided by the Medical Image Analysis Lab,
School of Computing Science, Simon Fraser University,

Canada. VascuSynth contains 10 groups of data, which are
publically available at http://vascusynth.cs.sfu.ca. Each
group consists of 12 randomly generated images with dif-
ferent quantity of bifurcations. Six groups of data were
randomly selected; among them, the images with bi-
furcations ≥11 were included in this study. Gaussian white
noise was also added to the raw data. +e level of the
Gaussian white noise was indicated by σ2, the variance of the
noise. In this study, Gaussian white noise with σ2 � 30, 45,
and 60 were added.

+e clinical CT image datasets, 3Dircadb and Sliver07,
were used. 3Dircadb contains 20 cases of contrast-
enhanced CT (CE-CT) images. 3Dircadb was provided
by the Research Institute against Digestive Cancer,
France, and is publically available at http://www.ircad.
fr/research/3dircadb. +e pixel spacing is 0.56–0.86mm,
and the slice thickness is 1–4mm. +e number of slices
ranges from 64 to 502, and the in-plane resolution is
512 × 512 pixels. +e gold standard of liver vessel was
provided by 3Dircadb, which was manually delineated by
radiologists. Sliver07 contains 30 cases of CE-CT images,
including 20 training sets and 10 testing sets. +e 20 cases
of training data are publically available at http://www.
sliver07.org and were included in this study. However,
Sliver07 did not provide the gold standard of liver vessel.
+erefore, radiologists were asked to manually delineate
the liver vessel to serve as the gold standard for the 20
cases of training data of Sliver07. +e number of slices, in-
plane resolution, and interslice resolution range from 64
to 394, from 0.58 to 0.81mm, and from 0.7 to 5.0mm,
respectively.

2.2. Improved Vesselness Filter. +e multiscale Hessian
matrix-based filter (vesselness filter) is commonly used for
vessel enhancement [4, 17]. Classical vesselness filters were
proposed by Sato et al. [21] and Frangi et al. [22]. Since then,
Li et al. [23], Erdt et al. [24], and Xiao et al. [25] proposed

3D liver VOI image

Adaptive sigmoid filtering

Isotropic resampling

Background-
suppressing item

Fuzzy affinity

Two-threshold Otsu 

Vesselness image

Automatic seed
generation 

Fuzzy scene

Binarization

Anisotropic resampling

K-means clustering 

Vesselness filtering

Segmented liver vessels

Figure 1: Flowchart of the improved fuzzy connectedness method
for automatic 3D segmentation of liver vessel from CT images.
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improved methods for enhancing the vasculature. Recently,
Jerman et al. [17] proposed a novel vesselness filter and
demonstrated that it outperformed traditional vesselness
filters. For completeness, the Jerman’s filter was introduced
briefly as below. Let λi, i � 1, 2, 3 denotes the Hessian ei-
genvalues of a 3D image at each coordinate x. Considering the
ideal eigenvalues’ relationship λ2 ≈ λ3 ∧ |λ2,3|>> |λ1| in vas-
culature, Jerman et al. [17] constructed a novel Hessian ei-
genvalues function to improve the enhancement performance
by using a two-step piecewise compensation. In CT images,
the magnitudes of λ2 and λ3 were lower at the vascular
boundary or in the low-scale vessel (|λ3|≥ |λ2| ≈
|λ1|⟶ Low), which did not match the ideal Hessian ei-
genvalues relationship in vasculature, resulting in significant
attenuation of the vesselness response. +erefore, Jerman et al.
[17] performed a piecewise compensation on the eigenvalue λ3:

λρ(σ) �

λ3, if λ3 > τmaxxλ3(x, σ),

τmaxxλ3(x, σ), if 0< λ3 ≤ τmaxxλ3(x, σ),

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩

(1)
where σ is the vessel scale and τ is a threshold between 0 and
1. In addition, traditional vesselness filters would suppress
blob-like structures and obtain poor response at vascular
nodes (|λ1| ≈ |λ2| ≈ |λ3|⟶ High). +us, Jerman et al. [17]
compensated the ellipsoid structure conforming to the
condition λ2 ≥ λρ/2> 0 to construct the final vesselness
function:

υk �

0, if λ2 ≤ 0∨ λρ ≤ 0,

1, if λ2 ≥ λρ/2> 0,

λ22 λρ − λ2  3/ λ2 + λρ  
3
, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

Jerman et al. [17] evaluated their method on clinical
image datasets of lung, cerebral, and fundus vasculatures.
However, for the task of liver vessel enhancement in CT
images, the Jerman’s filter would enhance the liver contour,
liver parenchyma, and noise. +erefore, the Jerman’s filter
was improved by incorporating adaptive sigmoid filter for
contrast enhancement and by incorporating a background-
suppressing item into the vesselness function of the Jerman’s
filter (Equation (2)).

+e adaptive sigmoid filter is defined as

Isigmoid � 1 + exp −
IVOI − β

α
  

−1

, (3)

where Isigmoid is the filtered image, IVOI is the liver VOI
image, and β and α represented the intensity center and the
intensity range of the vasculature. In this study, β and αwere
obtained adaptively by the K-means clustering (K � 5). +e
internal structure of IVOI was clustered into five regions with
corresponding cluster centers. With the value of the intensity
centers ranking from low to high, the five regions corre-
sponded to the background, liver tumor, liver parenchyma,
low-intensity vessel mixed with liver parenchyma, and high-
intensity vessel, respectively. With the intensity means of the
last two regions (m1 and m2), parameters β and α are cal-
culated by

α � m2 −m1( /2,

β � m2 + m1( /2.
 (4)

+e background-suppressing item, 1− e−R
2
s /2c, was in-

corporated into Equation (2), yielding

υ �

0, if λ2 ≤ 0∨ λρ ≤ 0,

1, if λ2 ≥ λρ/2> 0,

λ22 λρ − λ2  3/ λ2 + λρ  
3
1− e−R

2
s /2c , otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where Rs �
����������
λ21 + λ22 + λ2ρ


and c is the background

suppression coefficient, which was optimally set at λρ/3.
Finally, the vesselness response was combined by cal-

culating the maximum response of υ in each scale σ,
σ ∈ [σmin, σmax]:

Ivesselness � sup υ : σmin ≤ σ ≤ σmax , (6)

where Ivesselness is the final vessel-enhanced image (vesselness
image). +e improved vesselness filter algorithm is sum-
marized in Algorithm 1.

2.3. Improved FuzzyConnectedness. FC involved three kinds
of fuzzy relationships: fuzzy adjacency, fuzzy affinity, and
fuzzy connectivity. Fuzzy affinity represented the local
similarity of the voxel pair (c, d) in the entire image scene C,
denoted by μκ(c, d) ∈ [0, 1]:

μκ(c, d) � μα(c, d) ω1h1(f(c), f(d)) + ω2h2(f(c), f(d)) ,

(7)

where μα(c, d) is the fuzzy adjacency (a monotonic in-
creasing function), and h1 and h2 are computed by

h1(f(c), f(d)) � e
−1/2[f(c)+f(d)/2 −m/s]2

,

h2(f(c), f(d)) � e
−1/2[|f(c)−f(d)|−m/s]2

,
(8)

where f(·) is the intensity of voxels; m and s are mean and
standard deviation of f(·) in the VOI, respectively; and ω1
and ω2 are weight parameters, ω1 + ω2 � 1.

In this paper, the vesselness image obtained by using the
improved vesselness filter was used as the input of the fuzzy
affinity function, rather than the intensity image used by
traditional FC. +e improved fuzzy affinity function,
μκ′(c, d), is defined as

μκ′(c, d) � μα(c, d) ω1h1 Ivesselness(c), Ivesselness(d)( 

+ω2h2 Ivesselness(c), Ivesselness(d)( ]. (9)

To adaptively set parameters m and s, the Otsu seg-
mentation algorithm was adopted to the vesselness image.
Two-threshold Otsu was used to yield a binary liver vessel
mask. Parameters m and s are, respectively, set at the mean
and standard deviation of the vesselness voxels belonging to
the foreground of the vessel mask.

+e weight parameters ω1 and ω2 are adaptively selected
by using the method proposed by Pednekar et al. [26]:
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ω1 �
h1

h1 + h2
,

ω2 � 1−ω1.

(10)

+e fuzzy scene of liver vessel was initialized with one
single seed generated automatically on the vesselness image,
binarized by a threshold T, and anisotropically resampled to
yield the final liver vessel segmentation. Figure 2 illustrates
automatic selection of one single seed. In Figure 2(a), the 3D
image Ivesselness was divided into several regions Rsub of
5∗ 5∗ 3 voxels. +e maximum vesselness voxels at each Rsub
region were selected as potential seeds (denoted by the blue
points in Figure 2(b)). +en, the regions of 5∗ 5∗ 3 voxels
around the potential seeds were constructed and denoted as
Rseed, with each potential seed being the center of each Rseed
region. +e mean of the vesselness of each Rseed region was
calculated. +e potential seed having the largest vesselness
mean in its Rseed region was automatically selected as the
final single seed, which was indicated by the red point in
Figure 2(b). +e improved FC algorithm is summarized in
Algorithm 2.

2.4. Evaluation. To analyze quantitatively the performance
of the proposed vessel segmentation method, evaluation
metrics including accuracy, sensitivity, specificity, and Dice
coefficient were used:

Accuracy �
TP + TN

TP + FN + TN + FP
,

Sensitivity �
TP

FN + TP
,

Specificity �
TN

TN + FP
,

Dice �
2TP

2TP + FN + FP
,

(11)

where TP and TN are the numbers of voxels correctly
segmented as vessel and background (i.e., nonvessel),

respectively; FP and FN are the numbers of voxels in-
correctly segmented as vessel and background, respectively.

3. Results

Figure 3 shows the vessel segmented from the simulated data
by using the improved FC method. Figure 3(a) represents
the ground truth; Figure 3(b) shows the segmented vessel on
the synthetic data; and Figures 3(c)–3(e) show the seg-
mented vessel on the synthetic data added with Gaussian
white noise σ2 � 30, 45, and 60, respectively. +e segmen-
tation performance of the improved FC method on the
synthetic dataset (n � 60) is shown in Table 1, in terms of
accuracy, sensitivity, specificity, and Dice coefficient. Al-
though the sensitivity and Dice coefficient were decreased to
some extent with increasing the level of Gaussian white
noise, the segmentation performance was generally kept
stable. It is thus indicated that the improved FC method is
insensitive to Gaussian white noise.

Figure 4 shows the vessel-enhanced image by using the
improved vesselness filter. Figure 4(a) shows the original
CT image; Figure 4(b) shows the adaptive sigmoid filtered
image; Figure 4(c) shows the isotropic resampled image;
and Figure 4(d) shows the improved vesselness filtered
image. It can be seen that the improved vesselness filter
can effectively enhance the vessel while suppressing the
background. +e vesselness images obtained by using the
Jerman’s vesselness filter and the improved vesselness
filter are shown in Figure 5. +e intensity of the vesselness
images ranged from 0 to 1. +e contrast of vessel in CT
images increased from Figures 5(a) to 5(c). Note that the
Jerman’s vesselness filter enhanced the liver contour and
almost neglected the liver vessel for the low-contrast
image (Figure 5(d)). As the image contrast increased,
there was still undesired enhancement at the liver contour
(Figures 5(e) and 5(f )). In addition, the Jerman’s ves-
selness filter could not effectively suppress the background
(Figure 5(f )). By contrast, the improved vesselness filter
successfully enhanced the vessel while suppressing the
background, with little enhancement at the liver contour
(Figures 5(g)–5(i)).

Input: the liver VOI CT image IVOI.
Output: the vesselness image Ivesselness.

(1) Set the vessel scales σmin⟵ 1, σmax⟵ 4; threshold τ⟵ 0.6.
(2) Perform adaptive sigmoid filtering to IVOI by using Equations (3) and (4) to obtain the filtered image Isigmoid.
(3) Perform isotropic resampling to Isigmoid.
(4) For σ⟵ σmin do
(5) Compute the Hessian matrix elements at each coordinate Hij(x, σ);
(6) Make eigenvalue decomposition eigH(x, σ)⟶ λi, i � 1, 2, ..., D;
(7) Rank λi ≥ λi+1, i � 1, 2, ..., D− 1;
(8) Compensate λ3 by using Equation (1);
(9) Perform vesselness filtering by using Equation (5);
(10) σ⟵ σnext until σ � σmax.
(11) End for
(12) Compute the vesselness image by using Equation (6).

ALGORITHM 1: Improved vesselness filter.
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Figure 6 shows the liver vessel segmented by using the
improved FC, depicted by yellow contour or surface.+e gold
standard of liver vessel is indicated by red contour or surface.
+e axial slices, sagittal slices, coronal slices, and 3D view
are shown in Figures 6(a)–6(c), 6(d)–6(f), 6(g)–6(i), and 6(j)-
6(k), respectively. It can be seen that the proposed method
yielded satisfying segmentation performance. Figure 7 shows
typical CT images from the 3Dircadb (Figures 7(a)–7(i)) and
Sliver07 (Figures 7(j)–7(r)) datasets. +e original CT images
in Figures 7(a)–7(i) and 7(j)–7(r) are used in Figures 8 and 9,
respectively. For vessel segmentation, Figures 7(a)–7(c)

and 7(j)–7(l) were of high contrast, while Figures 7(d)–7(i)
and 7(m)–7(r) were of low contrast.

Figures 8 and 9 show the comparison of the improved
FC method with traditional segmentation algorithms, in-
cluding traditional FC [27], region growing [27], and
threshold level set [27]. Figures 8(a)–8(c) and 9(a)–9(c)
show the gold standard of liver vessel. Figures 8(d)–8(f )
and 9(d)–9(f ) show the vessel segmented by using the
improved FC method. Figures 8(g)–8(i) and 9(g)–9(i) show
the vessel segmented by using traditional FC with multiple
potential seeds indicated by the blue points in Figure 2(b).

Seed
Rseed

Rsub

(a) (b)

Figure 2: Multiple potential seeds and one single seed generated automatically on the vesselness image. (a) Illustration for automatic seed
selection. (b) Multiple potential seeds (blue) and one single seed (red) indicated on the vesselness image.

Input: the vesselness image Ivesselness
Output: the liver vessel segmentation

(1) Initialize the parameters, and set threshold T⟵ 0.05
(2) Perform two-threshold Otsu to Ivesselness to obtain the parameters m and s
(3) Calculate the fuzzy affinity by using Equation (9)
(4) Calculate adaptively the weights ω1 and ω2 by using Equation (10)
(5) Compute potential seeds in Rsub regions, and select automatically the single seed with the largest vesselness mean in its Rseed region
(6) Binarize the fuzzy scene and perform anisotropic resampling to obtain the final liver vessel segmentation

ALGORITHM 2: Improved fuzzy connectedness.

(a) (b) (c) (d) (e)

Figure 3: Segmentation of vessel from synthetic data by using the improved fuzzy connectedness method. (a) +e gold standard of vessel.
(b–e) +e vessel segmented from the synthetic data added with Gaussian white noise σ2 � 0, 30, 45, and 60, respectively.
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(a) (b)

(c) (d)

Figure 4: Illustration of the improved vesselness filter. (a) +e original CT image. (b) +e adaptive sigmoid filtered image of (a). (c) +e
isotropic resampled image of (b). (d) +e improved vesselness filtered image of (c).

(a) (b) (c)

(d) (e) (f )

Figure 5: Continued.
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(g) (h) (i)

Figure 5: Comparison of the improved vesselness filter with the Jerman’s vesselness filter. (a)–(c) +e original CT images. (d)–(f) +e
vesselness images by using the Jerman’s vesselness filtering to (a)–(c), respectively. (g)–(i) +e vesselness images by using the improved
vesselness filtering to (a)–(c), respectively.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 6: Continued.
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(j) (k) (l)

Figure 6: Liver vessel segmented by using the proposed method (yellow). +e gold standard of vessel is depicted in red. Each column
corresponds to one case. (a)–(c) +e axial slices. (d)–(f) +e sagittal slices. (g)–(i) +e coronal slices. (j)–(k) +e 3D view.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 7: Continued.
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Figures 8(j)–8(l) and 9(j)–9(l) show the vessel segmented
by using threshold level set with multiple potential seeds.
Traditional FC with one single seed could not segment
completely the liver vessel (Figures 8(j)–8(l) and 9(j)–9(l)).
Whenmultiple potential seeds were used for traditional FC,
the segmentation performance show the vessel segmented
by using traditional FC with one single seed indicated
by the red point in Figure 2(b). Figures 8(m)–8(o) and
9(m)–9(o) show vessel segmented by using region growing
with multiple potential seeds. Figures 8(p)–8(r) and 9(p)–
9(r) shows improved, but it was still unsatisfying (Figures 8(g)–
8(i) and 9(g)–9(i)). For region growing and threshold level set
with multiple potential seeds, both undersegmentation and
oversegmentation of vessel occurred (Figures 8(m)–8(r)
and 9(m)–9(r)). It is interesting to discuss the segmen-
tation performance on low-contrast cases shown in
Figures 7(d)–7(i) and 7(m)–7(r). If a part of the main

vessel was low-contrast, it would be totally unsegmented,
as indicated by the black arrows in Figures 8(h), 8(n), 8(q)
and 9(h), 9(n), 9(q). When the peripheral vessel was low-
contrast, it would be merged (Figures 8(h) and 8(q)) or
missed (Figures 9(h), 9(n), 9(q)), as indicated by blue arrows.
Even in the high-contrast images shown in Figures 7(a)–7(c)
and 7(j)–7(l), part of the vessel was segmented falsely
(Figures 8(m) and 8(p)) and the periphery vessel was not
segmented (Figures 8(g) and 9(m), 9(p)), as indicated by
green arrows. By contrast, the proposed method was capable
to segment completely the liver vessel, even for the low-
contrast images.

To compare further the improved vesselness filter with
the Jerman’s vesselness filter, the liver vessel segmented by
using the improved FC method on the basis of the Jerman’s
vesselness filtering, rather than the improved vesselness
filtering, is shown in Figure 10. Figures 10(a) and 10(b)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 7: Typical CT images from the 3Dircadb (a)–(i) and Sliver07 (j)–(r) datasets. Each row corresponds to one case. +e first, second,
and third columns are axial slices, sagittal slices, and coronal slices, respectively. +e original CT images in (a)–(i) and (j)–(r) are used in
Figures 8 and 9, respectively. For vessel segmentation, (a)–(c) and (j)–(l) are of high contrast, while (d)–(i) and (m)–(r) are of low contrast.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k) (l)

Figure 8: Continued.
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(m) (n) (o)

(p) (q) (r)

Figure 8: Comparison of the improved fuzzy connectedness (FC) method with traditional segmentation algorithms. Each column
corresponds to one case.+e original CT images of each case are shown in Figures 7(a)–7(i). (a)–(c)+e gold standard of liver vessel. (d)–(f)
+e vessel segmented by using the improved FC. (g)–(i)+e vessel segmented by using traditional FC withmultiple potential seeds indicated
by the blue points in Figure 2(b). (j)–(l) +e vessel segmented by using traditional FC with one single seed indicated by the red point in
Figure 2(b). (m)–(o) +e vessel segmented by using region growing with multiple potential seeds. (p)–(r) +e vessel segmented by using
threshold level set with multiple potential seeds.

(a) (b) (c)

(d) (e) (f )

Figure 9: Continued.
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show that the Jerman’s vesselness filter falsely enhanced the
liver contour. Figure 10(c) shows that the Jerman’s ves-
selness filter could not effectively suppress the background

(nonvessel) tissues. Quantitative comparison of the im-
proved FC (with one single seed) with traditional FC,
region growing, and threshold level set (with multiple

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 9: Comparison of the improved fuzzy connectedness (FC) method with traditional segmentation algorithms. Each column
corresponds to one case.+e original CT images of each case are shown in Figures 7(j)–7(r). (a)–(c)+e gold standard of liver vessel. (d)–(f)
+e vessel segmented by using the improved FC. (g)–(i)+e vessel segmented by using traditional FC withmultiple potential seeds indicated
by the blue points in Figure 2(b). (j)–(l) +e vessel segmented by using traditional FC with one single seed indicated by the red point in
Figure 2(b). (m)–(o) +e vessel segmented by using region growing with multiple potential seeds. (p)–(r) +e vessel segmented by using
threshold level set with multiple potential seeds.
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seeds) on the 3Dircadb (n � 20) and Sliver07 (n � 20)
datasets are listed in Table 2 and shown in Figure 11, in
terms of accuracy, sensitivity, specificity, and Dice co-
efficient. It can be observed that the improved FC out-
performed traditional FC, region growing, and threshold
level set. +e average accuracy, sensitivity, specificity, and
Dice coefficient of the improved FC method were, re-
spectively, (96.4 ± 1.1)%, (73.7 ± 7.6)%, (97.4 ± 1.3)%, and
(67.3 ± 5.7)% for the 3Dircadb dataset and (96.8± 0.6)%,
(89.1 ± 6.8)%, (97.6 ± 1.1)%, and (71.4 ± 7.6)% for the
Sliver07 dataset.

4. Discussion

4.1. Significance of>is Study. 3D liver vessel segmentation
is critical in computer-assisted liver tumor treatment
planning and navigation. FC is an emerging method for
image segmentation. However, traditional FC obtained
unsatisfying performance for liver vessel segmentation in
CT images, and it required multiple seeds and was sensitive
to initialization. To address these issues, an improved FC
method was proposed in this paper. Our method was fully
automatic. +e main contributions of this study were as
follows. +e Jerman’s vesselness filter was improved by
incorporating adaptive sigmoid filtering and a back-
ground-suppressing item. +e improved vesselness filter
effectively enhanced the vessel and suppressed the back-
ground. +e improved vesselness response was in-
corporated into the fuzzy affinity function, increasing the

segmentation performance of FC. +e fuzzy scene was
initialized by two-threshold Otsu with one single seed,
reducing the number of seeds and the sensitivity to ini-
tialization in traditional FC.

4.2. Implementation Details of the Algorithms. +e algo-
rithms described in this paper were implemented by using
C++ and the Insight Segmentation and Registration Toolkit
(ITK) (http://itk.org) [27]. +e following ITK classes were
mainly used:

(1) +e improved vesselness filter was implemented on
the basis of the class itk::HessianToObjectness
MeasureImageFilter.

(2) +e improved FC method was implemented on the
basis of the class itk::SimpleFuzzyConnectedness
ScalarImageFilter. +is class was also used for the
traditional FC segmentation.

(3) +e K-means clustering was implemented by using
the class itk::Statistics::ScalarImageKmeansImage
Filter.

(4) +e class itk::SigmoidImageFilter was used for sig-
moid filtering.

(5) +e classes itk::ResampleImageFilter and itk::Iden-
tityTransform were used for isotropic resampling.

(6) +e class itk::ConfidenceConnectedImageFilter was
used for region growing segmentation.

(a) (b) (c)

Figure 10: +e liver vessel segmented by using the improved fuzzy connectedness method on the basis of the Jerman’s vesselness filtering,
rather than the improved vesselness filtering. (a) and (b) +e Jerman’s vesselness filter falsely enhances the liver contour. (c) +e Jerman’s
vesselness filter fails to effectively suppress the background (nonvessel) tissues.

Table 2: Segmentation performance of the improved fuzzy connectedness (with one single seed), traditional fuzzy connectedness, region
growing, and threshold level set (with multiple potential seeds).

Improved fuzzy
connectedness Fuzzy connectedness Region growing +reshold level set

ACC
(%)

SEN
(%)

SPE
(%)

DICE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

DICE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

DICE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

DICE
(%)

3Dircadb
(n � 20)

96.4±
1.1

73.7±
7.6

97.4±
1.3

67.3±
5.7

82.2±
21.9

67.1±
25.5

82.5±
24.7

40.4±
16.2

84.1±
21.1

66.1±
25.0

86.4±
23.4

42.4±
15.6

94.3±
4.5

51.5±
20.3

97.0±
5.2

54.0±
13.9

Sliver07
(n � 20)

96.8±
0.6

89.1±
6.8

97.6±
1.1

71.4±
7.6

82.9±
25.5

85.0±
17.2

83.1±
26.7

45.1±
18.8

90.6±
12.6

84.1±
19.2

90.7±
13.6

56.2±
19.4

95.3±
2.9

82.5±
6.9

95.3±
3.2

67.5±
6.7

ACC � accuracy; SEN � sensitivity; SPE � specificity; DICE � Dice coefficient.
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(7) +e class itk::+resholdSegmentationLevelSetImage
Filter was used for threshold level set segmentation.

Average run time of the proposed algorithm was 200 s
for 3Dircadb and 210 s for Sliver07. +e improved ves-
selness filtering took approximately 30 s. +e improved
FC segmentation also took nearly 30 s. Each of the iso-
tropic resampling and anisotropic resampling took
around 60 s.

4.3. Sensitivity of the Proposed Algorithm to Key Algorithmic
Parameters. Sensitivity analysis of key algorithmic param-
eters in Algorithms 1 and 2 was performed. +e vessel scales
σmin and σmax were set on the basis of the findings of Luu
et al. [4]. Here, two key algorithmic parameters were ana-
lyzed: the threshold τ in the improved vesselness filter and
the threshold T in the improved FC. +e threshold τ in
vesselness filter determined the degree of piecewise com-
pensation on the eigenvalue λ3. In theory, the smaller the
threshold τ is, the more enhancement on the vessel
boundary would be obtained; however, a too small τ is prone
to cause undersegmentation. +e threshold T in FC de-
termined the degree of undersegmentation or over-
segmentation. A too small T caused undersegmentation,
while a too large T resulted in oversegmentation. +e value
of T from 0.01 to 0.09 was tested, as the segmented vas-
culature would be incomplete when T > 0.1. For the com-
promise between undersegmentation and oversegmentation,
the value of T was firstly fixed to 0.05 to analyze the
sensitivity of the proposed algorithm to the threshold
τ. Figure 12 shows the average accuracy, sensitivity,
specificity, and Dice coefficient of the proposed method on
10 cases randomly selected from the 3Dircadb dataset. +e
threshold τ ranged from 0.1 to 0.9 (T � 0.05). +e accuracy
and Dice coefficient reached peak when τ was optimally set
at 0.6. +en, the value of τ was fixed to 0.6 to analyze the
sensitivity of the proposed algorithm to the threshold

T. Figure 13 shows the segmentation performance of the
proposed method on the 10 randomly selected cases, with T
ranging from 0.01 to 0.09 (τ � 0.6). Based on the maximum
value of the accuracy and Dice coefficient, the parameter T
was optimally set at 0.05.

4.4. Comparison with Related Work. Table 3 shows a com-
parison of the improved FC method with related work in
terms of segmentation method, dataset, number of cases,
automation, precision, and run time. For the run time of the
proposed method, it should be noted that each of the
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Figure 11: Comparison of the improved fuzzy connectedness (with one single seed) with traditional fuzzy connectedness, region growing,
and threshold level set (with multiple potential seeds). (a) and (b) show the accuracy, sensitivity, specificity, and Dice coefficient for the
3Dircadb and Sliver07 datasets, respectively. ACC � accuracy; SEN � sensitivity; SPE � specificity; DICE � Dice coefficient; IFC � improved
fuzzy connectedness; FC � fuzzy connectedness; RG � region growing; LS � threshold level set.
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Figure 12: Evaluation of the segmentation performance of the
improved fuzzy connectedness method on 10 cases randomly se-
lected from the 3Dircadb dataset for the values of T ranging from
0.1 to 0.9 (T � 0.05). +e value of T is optimally set at 0.6. ACC �

accuracy; SEN � sensitivity; SPE � specificity; DICE � Dice
coefficient.
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improved vesselness filtering and the improved FC seg-
mentation only took around 30 s.

Firstly, the proposed method was compared with related
work that used the 20 cases of the Sliver07 training dataset.
Oliveira et al. [7] used region growing for liver vessel seg-
mentation, but they only performed visual assessment for
the segmentation. Ahmadi et al. [28] segmented liver vessel
by using fuzzy C-means clustering and initialized the pa-
rameters by the genetic algorithm. +ough the run time was
shorter, the training process was more complex, and the
accuracy and specificity of Ahmadi et al. [28] were lower
than those of the proposed method. +en, the proposed
method was compared with related work that used the
3Dircadb dataset. Huang et al. [14] segmented liver vessel on

the 20 cases of 3Dircadb by using the 3D U-Net network.
+eir method reduced the need for the quantity of training
data, but it required long training time (48 h). +e accuracy,
sensitivity, specificity, and Dice coefficient of Huang et al.
[14] were slightly higher than those of the proposed method.
Sangsefidi et al. [11] employed graph cuts for segmenting
liver vessel, but they evaluated their method on only few
cases of 3Dircadb.

Finally, the proposed method was compared with re-
lated work that used clinical data other than Sliver07 and
3Dircadb. +ese studies mostly used CT angiography
(CTA) images, which were specific CT for vasculature with
clear vascular boundary. However, in the context of
computer-assisted liver tumor treatment planning and
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Figure 13: Evaluation of the segmentation performance of the improved fuzzy connectedness method on 10 cases randomly selected from
the 3Dircadb dataset for the values of T ranging from 0.01 to 0.09 (T � 0.6). +e value of T is optimally set at 0.05. ACC � accuracy; SEN �

sensitivity; SPE � specificity; DICE � Dice coefficient.

Table 3: Comparison of the proposed method with related work.

Author Year Method Dataset # Automation Precision (%) Run
time (s)

Oliveira et al. [7] 2011 RG Sliver07 20 Auto — —
Luu et al. [4] 2015 RG Clinical CTA 51 Auto ACC � 86.2; SEN � 85.1; SPE � 92.3 —
Esneault et al. [10] 2010 GC Clinical CTA 1 Auto — 10–100
Zeng et al. [12] 2017 GC Clinical CTA 6 Auto ACC � 97.7; SEN � 79.8; SPE � 98.6 390
Sangsefidi et al.
[11] 2018 GC 3Dircadb/Clinical

CTA 7 Auto DICE � 74.0 560

Shang et al. [9] 2011 LS Clinical CTA 20 Auto SEN∗ � 91.0 480
Ahmadi et al. [28] 2016 FCC Sliver07 20 Auto ACC � 91.0; SEN � 94.1; SPE � 83.6 27.1
Zeng et al. [13] 2016 ML Clinical CTA 6 Auto ACC � 98.1; SEN � 74.2; SPE � 99.3 0.05–0.1
Guo et al. [15] 2015 FC Clinical CTA 4 Semi — 112.5
Wang et al. [16] 2016 FC Clinical CTA 3 Semi — 22
Huang et al. [14] 2018 DL 3Dircadb 20 Auto ACC � 97.1; SEN � 74.3; SPE � 98.3; DICE � 67.5 230

Ours 2018 IFC 3Dircadb
Sliver07

20
20

Auto
Auto

ACC � 96.4; SEN � 73.7; SPE � 97.4; DICE � 67.3
ACC � 96.8; SEN � 84.4; SPE � 97.6; DICE � 71.4

200
210

∗Evaluation by the number of vascular nodes; CTA � computed tomography angiography; RG � region growing; GC � graph cuts; LS � level set; FCC � fuzzy
C-means clustering; ML � machine learning; FC � fuzzy connectedness; DL � deep learning; IFC � improved fuzzy connectedness; ACC � accuracy; SEN �

sensitivity; SPE � specificity; DICE � Dice coefficient; Auto � automatic; Semi � semiautomatic.
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navigation, CE-CT images may be used more commonly, as
liver tumors could be observed in CE-CT images. +ough
region growing methods had relatively higher operation
efficiency, they are depended on the number and distri-
bution of seeds, resulting in unsatisfied segmentation
performance even in high-contrast CTA images [4]. Graph
cuts and level set methods would take long time to segment
liver vessel [9–12]. Esneault et al. [10] just showed the
segmentation on one case of data, and they reported that
the segmented vascular branches needed to be registered,
which would take more time. Zeng et al. [12] reported that
their method only achieved good performance on high-
contrast CTA images, so their method might be restricted
in practical applications when only low-contrast CT images
are available. +e similar issue existed in Shang et al. [9]
and Zeng et al. [13]. Shang et al. [9] evaluated the sensitivity
by the number of vascular nodes (denoted as SEN∗ in
Table 3), but this evaluation metric may not be rigorous. In
comparison with Guo et al. [15] and Wang et al. [16] which
increased the time efficiency of traditional FC, this study
focused on improving the segmentation performance and
reducing the number of seeds and the sensitivity to ini-
tialization. In addition, our method did not require manual
interaction to select the seed.

4.5. Limitations and Future Work. One limitation of this
study is the small number of clinical data with the gold
standard (40 cases). More clinical data may be used in future
(if possible) to further verify the performance of the pro-
posed method. In addition, the algorithmic steps of isotropic
resampling and anisotropic resampling are time consuming,
each taking around 60 s. +is limitation may be overcome in
future work.

5. Conclusions

An improved FC method was presented for automatic liver
vessel segmentation in CT volumetric images. +e Jerman’s
vesselness filter was improved by incorporating adaptive
sigmoid filtering and a background-suppressing item. +e
improved vesselness filter effectively enhanced the liver
vessel while suppressing the background. +e improved
vesselness response was incorporated into the fuzzy affinity
function of FC. +e fuzzy scene was initialized by two-
threshold Otsu with one single seed generated automatically,
reducing the number of seeds and the sensitivity to ini-
tialization in traditional FC. +e improved FC method was
evaluated on 40 cases of clinical CT volumetric images.
Experimental results showed that the proposed liver vessel
segmentation strategy could achieve better segmentation
performance than traditional FC, region growing, and
threshold level set. It is concluded that the proposed algo-
rithm may be used as a new method for automatic 3D liver
vessel segmentation in CT images.

Data Availability

+e VascuSynth dataset is publically available at http://
vascusynth.cs.sfu.ca/. +e 3Dircadb dataset is publically

available at http://www.ircad.fr/research/3dircadb. +e
training data of the Sliver07 dataset are publically available at
http://www.sliver07.org/.
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