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Abstract In this paper, global exponential synchroniza-
tion of a class of discrete delayed complex networks with
switching topology has been investigated by using
Lyapunov-Ruzimiki method. The impulsive scheme is
designed to work at the time instant of switching occur-
rence. A time-varying delay-dependent criterion for
impulsive synchronization is given to ensure the delayed
discrete complex networks switching topology tending to a
synchronous state. Furthermore, a numerical simulation is
given to illustrate the effectiveness of main results

Keywords Impulsive synchronization - Complex
networks - Switching topology - Lyapunov-Ruzimiki
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1 Introduction

It has long been understood that many physical, social,
biological, and technological networks are modeled by a
graph with non-trivial topological features. In this model,
every node is an individual element of the whole system
with certain pattern of connections, in which connections
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between each pair of nodes are neither entirely regular nor
entirely random [1-3]. These features do not occur in the
mathematical models of networks that have been studied in
the past, such as lattices or random graphs, but they do
truly exist in nature. At present, derivatives of network
science have been successfully applied to the analysis of
metabolic and genetic regulatory networks, the design of
robust and scalable communication networks both wired
and wireless, the development of vaccination strategies for
the control of disease, and a broad range of other practical
issues.

Secure communication [4, 5], parallel image processing
[6], and chemical reaction implemented by coupled cha-
otic systems have been an active research field during the
last two decades. Synchronization issues are fundamen-
tally important for any dynamical networks, and there is
no exception for complex networks. As a consequence,
theory and methods for synchronization of different
families of complex networks have been extensively
studied by many researchers (such as [7-15], and refer-
ences therein). Network synchronization has been dis-
cussed in terms of spectral and statistical properties by
authors [16]. The results on complete synchronization,
phase synchronization, space lag synchronization, and
cluster reflect the ideas of [17-19]. The improvement on
different regimes of synchronization of discrete complex
networks is abstracted from papers authored by [9, 20].
Some general cases of synchronization of complex net-
works with switching topology can be found in the lit-
eratures of [15, 21]. From another angle, several
approaches to synchronize a complex network have been
proposed. Adaptive synchronization, impulsive synchro-
nization scheme, and pining control synchronization have
been considered by authors in [10-12, 22, 23-27]. In
addition, systems with delays and multiplicative noises
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have been studied by considering H-infinity method in
[28] and [29].

However, all previous studies have limitations on syn-
chronizing a state delayed discrete complex network. As
known, connections between each pair of nodes in a
complex network always change. The mutable topology
can pose a significant threat on the global dynamical
property of the whole networks. Indeed, the fact has been
ignored by most of pioneering work. Additionally, the
large time-varying delays may exist in switching topology
which means data communication may occur in different
sub-networks. It is much more complicated than previous
studies. If the mutable topology and a large time-varying
delay occur simultaneously in the discrete complex net-
works, it would be difficult to employ previous synchro-
nization control schemes. Therefore, it is necessary to
investigate new synchronization method.

Impulsive control has been successfully used to stabilize
and synchronize dynamical systems, for examples, [30—
37]. And impulsive control technique could be an efficient
method when a discrete change behavior is needed. The
adjustment interest rate could agree with that. In this paper,
we proposed an impulsive synchronization scheme for a
state delayed discrete complex network with switching
topology. For this control scheme, we consider that the
impulsive control signal is designed to be input into all of
nodes. Meanwhile, every time instant of impulsive effects
occur precisely at the time instant of switching happening.
In other words, when the complex networks switch its state
at every instant of time, there is no delay between the
controller functioning.

The paper is organized as follows. Section 2 presents
some mathematical preliminaries needed in this work, and
a generalized mathematical model for delayed discrete
complex networks with switching topology. The main
theorem for global synchronization of this type of discrete
complex networks is then given in Sect. 3. In Sect. 4, a
small-world network with 3 sub-networks involving 30
nodes is constructed to illustrate the effectiveness of our
result. Section 5 concludes the paper.

2 Preliminary

First, we need to introduce some notations and definitions
for the sake of exploring our main results. Let || e || denote
the Euclidean norm; R" denotes the n dimensional
Euclidean space, the set of natural numbers
N =1{0,1,2,...}, and, for certain positive integer 7, we let
Z_.={-1,—t+1,...,0}. The family of N linearly cou-
pled discrete complex networks, consisting of time delay
with respect to its system state and the switched topology,
can be described by
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xi(k+ 1) = Axi(k) + Bf (xi(k)) + Df (xi(k — ©(k))) + 1 (k)
N
+ Zczj,a(k)rxj(k —1(k)),
=
i=1,2,...NkeN (1)

Xy, = ¢(0), 0€Z_., (2)

where x;(k)=(x;1,%2,....X;,) €ER" represents the state
vector of the i-th node at every instant of time k and
n denotes the number of nodes affiliated to each sub-
network. AeR™”" BeR"™" and DeR™" are known real
matrices. f(x;(k))= (f1(xi1(k)),f2(xi2(K)), ....fa(Xin (K)))"
and f(e):R"—R" is a smooth nonlinear vector-valued
functions. I(k) = (I, (k),L(k), ...,I,(k))" is a n-dimensional
vector from external input. S is a finite index set of
r elements: S={s1,s2,...,5, }. Let the switching function be
denoted by a(k):N—S, which is the switching signal
from sudden changing of system dynamic without jumps in
the state x at any switching instant. Specifically, we
consider that it is a piecewise constant function and
continuous from the right, indicating certain active sub-
system regime, at every instant of time k the index
a(k)=s; €S; meanwhile, let the switching instants of &
be denoted by ky.(m=1,2,...) and let ko, =0.
Cy,=(cijs ) EZNN  represents the coupling
configuration symmetric matrix defined as follows: For
each active sub-system regime s, if there is a connection
from node j to node i (j # i), then cj, =cjiy >0;
otherwise ¢, =cji s, =0. Assume that

N N
Ciigp = — Z Cijse = — Z Cji,skvi € N,s; € S. (3)

J=Lj#i J=Lj#

outer

The notation I' € R™" represents the diagonal inner
coupling matrix between two connected nodes. t(k) is a
time-varying delay with respect to each instant of time
k and satisfies t(k) € Z_.. ¢(o) : Z_, — R is smooth
everywhere except at a finite number of points. The norm
of ¢(s) is defined by [[$(0)]], = suppez {1 $(0)]]}.

In order to design an impulsive control scheme to syn-
chronize system (1), we consider the evolutionary state is
abruptly jumping at every impulsive instant of time k,, from
its open-loop state, which can be formulated by

Axi(kpyu) = Jux; (kmy), m=1,2,...N 4)

where x;k(k,,,,,,) stands for the primal state at time instant
k., without impulsive jump. As usual, every impulsive
instant of time k;, satisfies 0 = ko, <kj,<ky,<--- <
kpu<kppru<... and limy, o kyy = 005 J, : R — R"
(m=1,2,...) represents the impulsive jump strength.
Therefore, at every impulsive instant of time k,,,, the
coupled states x;(k) — x;(k) between connected node i and
j can be described by
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xi(km,u) - xj(km,u) = x;F (km,u) - X; (km,u)

+Ju[x?(km7u) - x;(km,u)]- (5)

Intuitively, a family of impulsive controller can be
designed as

o0

Ui(k,xi(k)) = (k= kina) Ju(; (ki) m=1,2,...N,

7 ©)

where U;(k, x;(k)) represents a class of impulsive
controller at each instant of time k,,; 6(e) denotes
the Dirac discrete-time function. Correspondingly, by
virtue of impulsive controller, the closed-loop discrete
complex networks can be derived by the following
form:

X,(k+1)

— Axi(K) + B (x: () + DF (xs(k — (8))) + 1(K)

N
+> CiopTxi(k — (k) + Ui(k+ 1,x] (k+ 1)),

i=1,2,...,N. (7)
Ui(k + 1,x; (k+1)) Za (k+ 1 = k) Ju[Axi (k)
+Bf(xi( ) + Df (xi(k — 7(k)))
)+ 3 cpuu Ttk - <),
m=1,2, Fl N. (8)

Assumption 1 For each nonlinear function f;(e)

(i=1,2,...,n), suppose that it is globally Lipschitz

continues function and satisfies

i) = i) | SLller —xall, i=1,2,...,n,¥x1, %, €R,
9)

where /; is certain positive constant.

Definition 1 The system of the impulsive controlled
discrete complex networks (7) is said to be globally
exponentially synchronized, if for any initial condition

¢(®) : Z_. — R™N and there exist two positive constants
A and My > 1 such that

lxi(k) — x;(k)|| < Moe ) 1<i<j<N (10)

holds for all k > k.
Lemma [18] Let W=

(xl,xz, .. .,XN)T
RY (k=1,2,...,
W is zero, then

(WU)NXN7 PeR"™, x=

and 'y = (y1,v2, .. yn)" with X, yi €
N). If W =W’ and each row sum of

X (WaP)y=—

3 Main results

When the impulsive controller can be functioning simulta-
neously at the state of discrete complex networks’ switching
signal, the equivalent impulsive controlled system is
rewritten by using the matrix Kronecker product (see [38])

x(k+1) = (Iy @ A)x(k) + (Iy ® B)F(x(k))
+ (Iy ® D)F(x(k — 1)) + 1 (k) (12)
+ (C(,(k) Q@ Dx(k—1), k# K u

x(km,u) - [IN ® (IN +-Iu(km,u))]x(km,u - 1)7 (13)

for any k, m € N.

Theorem 1 Under Assumption 1., the impulsive con-
trolled complex network (12) is exponentially synchro-
nized if there exist certain positive integer m., positive
scalars  &5(t), Pok), 9a(k), and positive-definite matrices

Py € R, Qo) € R™" (1 =1,2,...6) such that
- Givenu>1 and Py, ) <uPo,,, ), for any
k € [kmx, kmt1x — 1] in corresponding sub-state o(k,, ),
Polh) — MJW%@MM >0, (14)
/min (P c7<1km.A>> Amin (P §<1km,m,\>>
where
My, = A" Poge, 0A + L"B" Py, \BL
+L"B"PL; 0ok, g(km)BL
+ATQ1 oA + AT Qza
= NCo,.) A Q37J(km_x)ACJ(km,x)

— L'NCy(,.)B" 05 (k) BColk,.,) L
+LTBT Q4,, )BL

Q) =L"D"P, m_x)DL NCi(kWFTPg(km)l"
+LTDTPT 192.6(60) Pt PL
~-T'p Kox) Q3a ki) 6 m)r
+LTDTP Q40 ) G m,X)DL
- rTP Kx) QSG km,x) 6 W)r
- LTNC D Q6 0 (K Dca(km,x)L

-I'p T Qéa mPU( m)r

ki \f

(k) (Km+1x—Kimx
— :‘Mmdx( _|_Ju(km_x)) <eb () (K1 ,)'
me—1
— ot > eFotm) (Kimt1.— m.x+l)+zi:0 iy (an»lfl,x*kmfl.x)’

—_ T
where m. = [gre—p—5|-

Proof Consider the following Lyapunov function:
V(k) = 2" (k)(W @ Py )x(k), (15)
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for any k € [kyx,kmt1» — 1], m=1,2,... where
N -1 -1 .. -1
W= -1 N-1 ... -1
—1 -1 N -1
Let ¢([|¢:(0) = ¢;(0)[I*) = Amax(Po(0)) 1 6:(0)—;(0)]I%,

thus for the case k € Z.,
V(0) = xT(G)(W ® Po(0))x(0)

—ZZ (x:(0) — x;(0

i=1 j=i+l
< o(l¢:(0) — ¢;(0)]2)

= o(|$(0)]I2). (16)
Choose M > 1, such that
o(16(0)]12) < Mo (]| p(0)]*)e
<Mo([|$(0)]7)e

yo(lleO)I7). (17)

)" Poto) (xi(0) — x(0))

Mk1x—kox) g ~Eatky ) (K1r—kour)

kl X kO v)

< QJ (ko.x)
By claiming that

V(k) <Mo(]|¢(0)]2)e b0 & € [y, ke — 1],
méE N. (18)

We first need to show that
V(k) <Mo(||p(0)]2)e " *50) k€ (ko ki — 1), (19)
Obviously, for k € [ko — 7, kox — 1],

V(k) < (¢ (0)]2)

20
SM(P(H(ZS( )H ) — k1 x—ko.x )e_srr(koyx)(kl,x_ko,x). ( )

If (19) is not true, then there exists certain instant of time
lg € [kO,x, kl,x - 1] SatiSfying

k= min{k & ko, ki — 1] V() > Mo(9(0) e}

(21)
such that
V(k) > Mo(||p(0)])7)ekxkos)
> Mo(|$(0)]2)e ol trtnobaho  (22)

> o(ll¢(0)]12).
and
V(k) <Mo([|p(0)[2)e ** ) k€ ko —7,k— 1] (23)

Considering that

K= max{k € [kox, k] : V(k) <Mo([|¢(0 )”r)
e~ Hk1x—ko.x) o ~Ealkg ) ) (kix—ko.x) } (24)
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from which we have

V() > Mo ((g(0)|2)e b kot trmto)

ke[k*+1,k—1]. (25)
Therefore,
V(") <V(k)<V(k),k € [k*,k]. (26)
And for any k € [k*, k — 1],
V(k+5) < Mo(]|¢(0)7)e 1o
< eftio) ks —kod) 7 g+ (27)

S 510(k07,x) V(k) N

Consider the increment of V(k) along the solution of

discrete complex networks (12) in the interval
k € [k*,k — 1], one observes
AV(K) = V(k+1) — V(K)

= [(Iv ® A)x(k) +
+ (In ® D)F (x(k —
+ (Copy ® D)x(k — 1)) (W ® Pogresr))[(Iv @ A)x(k)
+ (Iv ® B)F (x(k)) + (Iv ® D)F (x(k — 1))
+1(k) 4 (Copy © D)x(k — 7)] — x" (k) Py x(k)
= [(Iv ® A)x(k) + (Iy ® B)F (x(k))
(1~®D) (x(k — 7)) +1(k)
+ (Coy @ D)k — 1)) (W @ Pogr,,)[(Iv ® A)x(k)
+(1N®B) (x(k)) + (IN D)F (( 7))
+1(k) + (Comy @ T)x( )= P ko)X (K)
=x"(k )(1N®AT)(W®P (ko >)(1N®A) x(k)
+ F(x(k)) (Iy ® B")(W ® Poy,.)) (Iy ® B)F (x(k))
+ FT(x(k — 7)) (Iy ® D")(W © Py, ) (I © D)F (x(k — 7))
1T (k) (W @ Py, (k)
+x (k= 1)(CLyy y @ T)W @ Pyt ) (Cotr,) ® Tk — 7)
+2x7 (k) (Iy ® AT)(W & Py ) (In @ B)F(x(k))
Iy @ AT (Iy ® D)F (x(k — 1))
Iy ®AT (k)
(Cohon)

(Iv @ B)F (x(k))
7)) +1(k)

( olkos
(W ® Po,,
(W ® Pgyy,

) )
) )
) o)
) (ko))

D)x(k — 1)

+2FT(x(k))([N®BT)(W®P (ko)) (IN ®D) (x(k — 1))
+ 2F" (x(k)) (Iy ® B")(W @ Py, )1 (k)
+ 2F (x(k)) (Iy © BT ) (W @ Po(sy,)) (Cofty,) © D)x(k — 7)
+2F (x(k)) (Iy ® B ) (W & Pyy,.)) (Iy @ D)F (x(k — 7))
+ 2F" (x(k)) (Iy ® B")(W @ Py, )1 (k)
+ 2F" (x(k)) (Iy @ B")(W © Py(t,,))(Corg,) © T)x(k — 1)
+ 2F7 (x(k — 7)) (Iy ® D")(W & Py, ) )1 (k)
+2FT (x(k — ))(IN®DT)(W®PG(;<U )(Coko) @ T)x(k — 1)
+ 217 (k) (W @ Pyt ) (Cofty,) @ D)k — 7)
— X" (k) Py, x (k)
(28)

Note that
(W Pu)I(k) =0 and I"(k)(W® Pygy) =0.  (29)
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For the simplicity of calculation, we define + LTDTPZ(,CU,X)Q476(k0_X>P,,(kO,X)DL
Cotk)WCo(ky) = NCoiry - (30) = TP, Q5 0(h0) Pothon T
T T -1
WCisk,) = NCJU(OJ). (31) — L' NCo, D Qﬁ,a(ko_X)DCU(ko,x)L
T
(k) = (k) — (k). (2) T et @ootton Patron Tk = 7))
k= 1) = xi(k — 1) — x(k — 7). (33) = [Ameown) gy Ane@eo)) g
/Lmin(P;(lk )) ﬂvmin(PJ(lk ))
Fij(x(k)) = Fi(x(k)) — Fj(x(k)). (34) T ' ) s (© ;
Lmax . Amax x
Fylx(k = 1)) = Fi(x(k — 7)) — Fy(x(k — 7)). (65) = |y g, )y
#min (P”(ko,x) ) “min (Pﬂ(koAx) )
According to Lemma 1, we can obtain that (36)
AV(k)=V(k+1)—V(k)
Therefore, we obtain
AT
= Z Z ATP (4, Axii (k) ( pl
l_] 0.x ij — Amax kox ) max(Q ko x ) =
i1 j=i V(k)< — (Pﬁ” )) + Ho(ko.) (Pf(l‘J )) V(ik—1)
4 X k)LTBTPO—(kO X)BLXU (k) mInA" (ko ) min a(ko.x) (7 :
k—k*
Tk — )LTDTP (o) DL (k — 7) Amax (To(ky,.)) Amax (Qe(k,)) .
= 1. (P—l )+Mqa<k01) . (P_l V(k )
k T)NC )F Pk Txij(k — 1) A" o (ko.x) AT 6 (ko)
(k1 x—kox)
k)A kao yAx; (k) Zamax (Mo (k) T o )imax(Q«(ko.X))
— . -1 o(Kox) 9 . —1
X (K)LTBT P71 (ko) Po(ko) BL;i (k) }m‘“(Pa(ko,x)) Fmin (P, )
- K—kos
<(0AT Qs . Axy (k) Mo (|| (0))eorle i)
— ik —kos
kLD G P L~ <Mo(g(O))e™
<V(k). (37)

3 (k — )FTP (ko) Q;gk(h)P (ko) rx,,(k—z-)
k)LTBTQ4ak0 BLx;(k)

X (k = LD PL . 1 Oug(k0,)Potho,) DLy (k — )
5 (LT NC (4, ) B" O5 440 BCo(ko, Lxij (k)

X,f k= )TTPLo 05 ko) Patko) TXij(k — 7)

— xj;(k — ©)L"NCyt,\D" Qﬁrk0 DC,, o Lxj(k — 1)
Xg k—1)I"PL o (ko.0) 26.0(ko.) Poko. T Xii (k — T)
x? k) (ko) xu(k)}

0 Qo(kn m)BL

- NleﬁU(ku.x)A Q3,¢7(ko<x)ACUs0(k0x)

+ L"B" Q4 54,,)BL

= L'NCo(ty,)B" O5,0(t6,)BCo(to,) L = Potho. i ()

+xl(k = ©)[L"D" Pyyg, \DL — NC)

T
(ko) I Pok,) T

+ LTDTP;U(O_X) Qz,ﬂ(koAA)P“(kO,X)DL
= TP Q3 otio) Potha T

We have a contradiction here and (19) is true. Next
comes that we suppose the claim (18) holds for
m=1,2,...,m, such that

V() <Mo(||@(0)[17)e ) k€ [kt sk — 1) (38)

Correspondingly, we should prove the Eq. (18) holds
for m=m-+1,

V(k) <Mo(|$(0)]7)e

Note that from (13) and condition (ii), we have

i 1—ko.x)

k€ [kinyy kinre — 1. (39)

ZZ xh( Y+ T (k)T
i=1 j=i+l
.Pa(kmx)(l—i_‘] (ki 7X))xl/(k -1)
<:u)‘max (I+JM (kr?l.,x))
N-1 N
O xf (ke = 1)Pogr i (ke — 1)
=1 j=it1

= W (I ki )V (ki — 1)
<2 (1+dy (k) M)
<:u)‘max(1+‘]”( m,x))M(p(Hd)(H)‘

. e (karl,’c k[)‘,h) :q(kﬁ't)(klu+l.x7krﬁ,x)

<Mo((|g(0)|e e

) Ak c—ko.x)

)

2
T
2
T

St rstohne)(40)
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If (39) is not true, then there exists a natural number k

satisfying
k= min{k € k,;,x,k,Hl,X —1]: V(k) > (41)
Mo([|p(6)|[7)e kmtbos)}
Consequently, we have
k>kn, and V(k) > V(kn,). (42)
Define
k* = max{k € [k k] : V(k) <
M<p(||¢(0)||3)e%(m.fko.,oe—sa(%)(km—ﬂ..t—km—,)}. (43)
Thus, there exists k* such that k* <k.
For any k € [k* + 1 k] we have
V) > Mp([9(0)|2) - & berts bbbl
(44)
and for any k € [k*, k],
V() <V(k) <V (k). (45)
Then, for any k € [k, kat1.0 — 1], we can obtain
Jmax (T (s, Amax (Lo (k.
Vik+1)s imin((P;(Z;;))))  Hotha) Jmin (1(9;&5,”)?) V.
(46)

According to the condition (iii), one observes that for
any s € Zq, k+5 € [ki—m, x, k|-
Meanwhile for any k € [k*, k — 1],

V(k +5) < Mo(I(0) et memtor
<M (I (0) e
. eZ:-”:T(;l Eqlk_iy) K1 —Kiizix)

ki1 .x—ko.x)

< e b Mg g(0) e

mr—1

eFolky) (ki 1,c—hon x) ezizo Co(ki—ix) (ki 1~ i =Ko i )

(kmx m+] x—Kiix + Z kifi—ix) m+]—i,x7krr’1—i.x)
<e
V(K + 1)
mr—1
Eoltn) (k14— kmr+1-+§: Cattn i) (ki t1ix—Kii)
<e i=0
-V (k")

< 9o(kus) V(k) :
(47)

Consider that k = k, we have

@ Springer

_ - |
Vi) < (_%ﬂ
)Lmin(Pa.(ka))

(k—k*)

/lmaX (Qa(k >)

_ —p T V k*
otk 7 (Pt e)) .

< [ m::lx(l_[tf(k,,,t )
)

min (P}

(k. (48)

THG 5 (kyr,0) Amin (Pi(k B

(| (O)| e ettt

<Mo([|p(0)|[7)eHbn1to)
<V(k),

(km x *km.,r>
)vmax (Q (km)) B
)

which is a contradiction. Hence, the Eq. (39) holds for
k=k+ 1. And by virtue of mathematical induction, the
claim (18) is true for each k € N.

In view of (18) and Definition 1, it can be obtained that

V(k)<Mo(|l¢(0 )” )e e Hkhos) ke[kmfl,Xvkm.,x_l]amEN~
(49)
For any k€N,
min{ Amin (Ps }Z Z IIx: (k) — x;(k |12
i=1 j=i+l
N-1 N
> Z K) Powy (xi(k) = xi(k)  (50)
i=1 j=i+1
= V(k

< Mo([|p(0)|[7)e "o,

Therefor, for any k € N,
Ibei(k) = x; () 1*
) s
< min{ b (Pow) Mo (|| ¢(0)][2)e 0,
which implies

xi(k) — x;(k)|| < Mge **od) 1 <i<j<N. 52
j J

Therefore, the discrete complex networks (1) are
globally exponentially synchronized under impulsive
control. The proof is thus completed. O

Remark. We consider a multiple Lyapunov function for
each sub-network with arbitrarily fast switching signal in
our theorem, which results in a less conservation criterion.

Remark 1 In the switched Lyapunov function, ps«, gives
an upper bound on the estimation of divergence rate for
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each running sub-network. By condition (ii) of Theorem 1,
the impulsive control gain is designed to compensate
divergence from system itself and deteriorating effect from
arbitrarily fast switching. If some certain sub-networks
could be self-synchronizing, the impulsive control gain
only needs to compensate deteriorating effect.

4 Example and numerical simulations

This section presents a typical example to illustrate our
result. Let us consider a 2-dimensional discrete chaotic
neural network is given as the isolated node of a small-
world network with 30 nodes,

x(k+ 1) = Ax(k) + Bf (x(k)) + Df (x(k — t(k))) + I1(k),
(53)

100

80

60

40

40+

20 -

where  x(k) = (31 (K), 12(K))", £(x(K)) = (tanh(xi (K)),
anh(n (), 1(k) = (0,07, A= ‘01 _01] B—
2  —=0.11 -1.6 -0.1 ok
{—5 3.2 ] D= {—0.18 —2.4]’ and (k) = m -

Obviously, Lipschitz constants can be 1 here. Consider a
small-world model involved with three different sub-sys-
tems as follow

— 30 nodes are arranged in a ring, while each node i is
adjacent to its neighbor node; each pair of nodes are
coupled to the whole network by probability p = 0.02.
See Fig. la.

— 30 nodes are arranged in a ring, while each node i is
adjacent to its neighbor node; each pair of nodes are
coupled to the whole network by probability p = 0.01.
See Fig. 1b.

100

80

60

40

Fig.1 aN=30,k=2,p=0.02;bN=30,k=2,p=0.01; ¢ N=30, k =4, p = 0.04; d Chaotic trajectory of each single node
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— 30 nodes are arranged in a ring, while each node i is
adjacent to its 2 neighbor node; each pair of nodes are
coupled to the whole network by probability p = 0.04.
See Fig. lc.

The trajectory of each single node of this small-world
model has been portrayed in Fig. 1d with random initial
values in the interval [0.3, 3] and [—3, —0.3], respectively.

Let T =diag{0.15,0.3}, we can obtain the state
response of each sub-network. Note that there is no swit-
ched rule in each sub-network here, and the initial values
are randomly chosen in the interval [0.3, 3] and [-3,
—0.3], respectively.

Given a switching signal o(r) in Fig. 3a, we have
the state response of the switched complex networks,

have

_ p— [3.0001 0

01— 5.0690 0
0 3.0001|"=4

0 5.0690} Q=

93812 0 337971 0
0 9.3812]’ QMZ[ 0 33.7971]’ Qar=
(114504 0 50.9300 0
0 11.4594}’ Q”:[ 0 50-9300}’ Cor=
201879 20.?879} - And 5, =0.6213, g, <22.42. Thus,
11:[—0.6667 0 ]

0 —0.667

29998 0 51333 0
N Pz‘[ 0 2.9998}’Q1’2_[ 0 5.1333]’ Q2=
[9.9398 0

01rm 297933 0
0 9.9398|" <37

0 29.7933]’ Q2=

. 11.2764 0 52.0308 0
see Fig. 3b. From Theorem 1, for each sub-network, we [ 0 11.276 4], Osr= [ 0 52.0308]’
a
120
b
120
c —]
120

Fig. 2 a The state responses of sub-networks 1; b the state responses of sub-networks 2; ¢ the state responses of sub-networks 3
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19.9970 0
Qa,z[ 0 19.9970}And ,=0.8870,¢> <4.22.
-0.4079 0
Thus, Jz_[ 0 —0.4079}

_ p._ 134267 0 O1s= [10.2609 0
TLO00 13426077 T | 0 10.2609 ]
0,,—|31001 0 0., |16:6667 0 ]
7100 31001 2T |0 16.6667 |
04, |32060 0 0sam 30.8123 0 ]
7100 520600 T | 0 30.8123)°

30112 0
Q6,3—[ 0 3.0112].And e3= 0.1062, g3 <12.62.
~1.1576 0
Th“S’J3_[ 0 —1.1576}

It is shown from Fig. 2a—c that all of nodes in each sub-
network could not reach into a synchronous state without a
control. Indeed, the switched signal plays a role of deteri-
oration accelerator to diverge the synchronous state, shown

in Fig. 3b. Once the feasible impulsive controller is placed
on discrete complex networks with topology switching,
such complex networks would be synchronized, see
Fig. 3c.

5 Conclusion

In this paper, we have investigated impulsive synchroni-
zation control of a discrete delayed complex network with
switching topology by using Lyapunov-Ruzimiki method.
A time-varying delay-dependent criteria for exponential
synchronization is presented guarantee the switched dis-
crete complex networks tending to be a synchronous
manifold. It is worthwhile to see time-varying delay can
take any value, even larger than any dwell time of a sub-
network. Furthermore, a numerical example with three sub-
networks is presented by using the impulsive control
technique.
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0 20 40 60 80 100 120
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120
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c _
| | |
60 80 100 120

Fig. 3 a The switching signal c(t); b the state responses of the switched system; ¢ the synchronized state under impulsive control
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