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Abstract

The factor structure of neuropsychological functioning among a large sample (N = 831) of

American youth (ages 12–21 at baseline) was investigated in order to identify an optimal

model. Candidate models were selected based on their potential to provide service to the

study of adolescent development and the effects of heavy episodic alcohol consumption.

Data on neuropsychological functioning were obtained from the NCANDA study. This is a

longitudinal community study of the effects of alcohol exposure on neurodevelopment.

Three conceptually motivated and one empirically motivated factor analysis model of neuro-

psychological domains were compared based on penalized-likelihood selection criteria and

model fit statistics. Two conceptually-motivated models were found to have adequate fit and

pattern invariance to function as a measurement model for the Penn Computerized Neuro-

cognitive Battery (Penn CNB) anchored neuropsychological battery in NCANDA. Corrobo-

ration of previous factor analysis models was obtained, in addition to the identification of an

alternative factor model that has higher discriminant capacity for neuropsychological

domains hypothesized to be most sensitive to alcohol exposure in human adolescents. The

findings support the use of a factor model developed originally for the Penn CNB and a

model developed specifically for the NCANDA project. The NCANDA 8-Factor Model has

conceptual and empirical advantages that were identified in the current and prior studies.

These advantages are particularly valuable when applied in alcohol research settings.
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Introduction

Adolescence is an important period of neuromaturation and a sensitive period for persistent

alterations to the brain’s reward circuitry resulting from alcohol exposure in animal models

[1–3]. Emerging evidence suggests that patterns of alcohol exposure experienced by youth can

result in alterations in neuroanatomical development [4], and associated neuropsychological

deficits in many domains including, verbal learning [5–7], visuospatial processing [8], execu-

tive functioning [9], attention [8, 10] and memory [7, 9–11]. The functional implications of

alcohol-induced neuromodulation are just now being confirmed in large-scale longitudinal

community samples [12–14]. These studies are designed to provide a more definitive evalua-

tion of adolescence as a sensitive period for the neurological influence of substance use expo-

sure in humans.

The National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) is

one of the large-scale studies designed to evaluate neuropsychological changes associated with

alcohol use. In order to address its objectives, NCANDA’s protocol includes a neuropsychological

test battery specifically designed to be sensitive to hypothesized decrements in neuropsychologi-

cal functioning due to alcohol exposure. Cross-sectional patterns observed among conceptually-

driven composite scores of neuropsychological tests have been reported for NCANDA [15]; how-

ever, evaluation of a factor structure in the NCANDA sample has not been evaluated.

The application of factor analysis to neuropsychological test batteries has been common.

Accounts of human intelligence and cognitive architecture are anchored in factor analysis; for

example, factor models described by Halstead [16], Newby et al. [17], and Patt et al. [18] have

been influential to the field’s conceptual and methodological development. In addition to pro-

viding insight into cognitive architecture, factor analysis has been employed to achieve the sta-

tistical benefits of dimension reduction and reduced estimation error [19]. Factor analysis has

been applied to the Penn CNB [20], which comprises the core components of the NCANDA

test battery [15].

The factor structure of the Penn CNB tests in a large sample of youth (age range 8–21) was

found to be similar to the proposed conceptual organization (Gur Model) used to develop this

standardized battery [20]. The single exception was between the conceptual model and the

empirically-based model determined through exploratory factor analysis was that the Penn

CNB’s conditional exclusion test designed to measure abstraction and mental flexibility. In the

factor analysis, conditional exclusion loaded onto the Complex Cognition latent factor based

on efficiency scores, as opposed to the presumed Executive Functioning factor [20]. This

empirically derived factor model reported by Moore et al. [20] is referred to as the Empirical

Model in this paper.

Sullivan et al. [15] proposed an organization of the NCANDA test battery, which includes

twelve tasks from the Penn CNB and six additional tasks from other test batteries (Table 1). The

eight functional domains proposed by Sullivan et al. [15] were based on the conceptual neuropsy-

chological domains from the tests’ initial development. Thus, Sullivan and colleagues split execu-

tive functioning into single task indices of attention (Continuous Performance Test) and

working memory (N-back Task) and grouped the Conditional Exclusion Task with other tests of

abstraction rather than executive functioning (Table 1). This organization of neuropsychological

tests uncovered better performance among participants with limited alcohol exposure compared

to those with moderate alcohol exposure in the balance domain and in five speed domains [15].

The present analysis aimed to replicate the previously reported factor structure of the Penn

CNB [20] and extend these findings by testing model invariance. A second novel aim was to

identify the optimal factor structure for the NCANDA neuropsychological battery when compar-

ing candidate models, which are the 8-factor model from Sullivan et al. [15], the basic conceptual
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model (Gur Model) [20], the empirically derived factor analysis model (Empirical Model) [20],

and a new model. The new model is one that prioritizes the neuropsychological functions

reported to be the most vulnerable to alcohol exposure in human adolescents. To that end, a Vul-

nerabilities Model was developed and investigated. This model includes factors designed to tap

visuospatial processing, attention, memory, and verbal learning, which are believed to be most

sensitive to alcohol exposure in adolescence based on a review of existing published data [3].

Establishing a measurement model for these vulnerabilities could enhance the estimation of asso-

ciations between target neuropsychological constructs and alcohol consumption. Accordingly,

our overarching aim was to identify which factor structures are applicable to contemporary mea-

surement batteries in youth samples in the context of substance use research.

Materials and methods

Sample

Data originate from the NCANDA project. NCANDA is a longitudinal study of community

youth that employs a modified accelerated longitudinal design [12, 21, 22]. The main analyses

Table 1. Configural models evaluated in this study.

Assessment Domain Suite 8-Factor Vulnerabilities† Gur+ Empirical

References [15] [3] [20] [20]

Penn Continuous Performance Test [23] Attention 1,2 Attention Attention Executive

Functioning

Factor 1

N-Back Task [23] Working Memory 1,2 Working

Memory

Attention Executive

Functioning

Factor 1

Penn Face Memory task [23] Face Memory 1,2 Episodic

Memory

Memory Episodic Memory Factor 2

Penn Delayed Face Memory [24] Face Memory 1,2 Episodic

Memory

Memory Episodic Memory

Visual Object Learning Test [23] Spatial Memory 1,2 Episodic

Memory

Memory Episodic Memory Factor 1 &

2

Delayed Visual Object Learning Test [23] Spatial Memory 1,2 Episodic

Memory

Memory Episodic Memory

Penn Word Memory Task [23] Verbal Memory 1,2 Episodic

Memory

Verbal Learning Episodic Memory Factor 2

Penn Continuous Exclusion Test [23] Mental Flexibility 1,2 Abstraction Visuospatial

Processing

Executive

Functioning

Factor 1

Penn Verbal Reasoning Test [23] Language Reasoning 1,2 Abstraction Verbal Learning Complex Cognition Factor 1

Penn Matrix Reasoning Test (Special

FORM A)�
[23] Nonverbal Reasoning 1,2 Abstraction Visuospatial

Processing

Complex Cognition Factor 1

Penn Emotion Differentiation Test [23] Emotion

Differentiation

1, Social Cognition Social Cognition Social Cognition Factor 3

Penn Emotion Recognition Test [23] Emotion

Identification

1,2 Social Cognition Social Cognition Social Cognition Factor 3

WRAT-4: Math [106] Math Computation 1 General Ability General Ability General Ability
WRAT-4: Reading [106] Word Reading 1 General Ability General Ability General Ability
Vocabulary [15] Vocabulary 1,2 General Ability Verbal Learning General Ability
WAIS-4: Digit Symbol [24] Complex Attention 1 Motor Speed Motor Speed Motor Speed
Grooved Pegboard [107] Dexterity 1 Motor Speed Motor Speed Motor Speed
Walk-a-Line [33] Ataxia 1 Balance Balance Balance

Note. Factors that are consistent across models are shaded. Italics indicate factors that were supplements to the original model. Suite 1 is the full.

NCANDA test battery. Suite 2 is the Penn CNB. The Gur model is limited to only suite 2 assessments.

https://doi.org/10.1371/journal.pone.0263174.t001
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presented in the current study are based on the measurements obtained at the baseline visit,

which limits the influence of differential practice effects in this report. Recruitment and enroll-

ment (nparticipants = 831, nfamilies = 670) resulted in samples demographically representative of

each metropolitan catchment region (nregions = 5), with enrichment of participants at risk for

lifetime substance use disorder; 51% of the participants reported at least one of the following:

family history of alcohol use disorder, externalizing or internalizing symptoms, or consump-

tion of alcohol before age 15. Exclusionary criteria included magnetic resonance imaging con-

traindications (e.g., permanent metal in the head such as dental braces), neurotropic

medications, serious medical problems, major mental health disorder, including autism

spectrum disorder (ASD), uncorrectable vision or hearing impairment, lack of English

fluency, and substance use disorder. As the methodological details of the study design were

previously published [12] only the core features of the protocol are presented here. Extensive

quantitative descriptions of the neuropsychological scores can be found in Sullivan et al. [15].

At project baseline, participants were 12–21 years old, with oversampling of younger ages and

those with no more than limited substance use experience. Participants’ neuropsychological

functioning was assessed annually. The protocol was reviewed and approved by the human

research protection program at each participating university and by the University of Califor-

nia San Diego Human Research Protections Program for the overall administration of the

study. Both written informed parental consent and written informed child assent were

obtained for juveniles and written informed consent obtained for participants who were at

least 18 years old.

Measures

Neuropsychological functioning was assessed with the Penn CNB [23], plus several traditional

tests including the Word Reading and Arithmetic sub-tests of the Wide Range Achievement

Test-4 (WRAT4) [24], Grooved Pegboard Test [25], and Fregly-Graybiel Walk-a-Line

(FGWL) postural stability test [26, 27]. The pegboard tests manual dexterity with a timed score

for the completion of a peg insertion task with each hand. The FGWL assesses ataxia. Penn

CNB assesses a range of neuropsychological domains and provided 12 separate and composite

test scores based on performance accuracy and speed, spanning various domains of function-

ing (Table 1). The Penn CNB was slightly modified from the standard Penn CNB distribution

to optimize the sensitivity of the battery to detect the effects of alcohol exposure. This was

done as recognition for NCANDA’s focus on the effects of alcohol exposure. Memory is a cog-

nitive function thought to be sensitive to alcohol exposure in adolescence [3], and thus, greater

discrimination among memory functions was sought. The modifications to the standard Penn

CNB consisted of two test substitutions. To better distinguish immediate-recall and delayed-

recall, delayed versions of Visual Object Learning and Penn Face Memory tests were substi-

tuted for the Penn Line Orientation Task and the Age Differentiation Task found in the stan-

dard Penn CNB. However, the immediate and delayed versions of the memory tests were

found to have strongly correlated errors in this sample and were ultimately combined

(meaned). Accuracy scores, which are available for the Penn CNB and the traditional tests,

were used in this study.

Demographics, including sex and age, parental socio-economic status (income, occupation

and educational attainment), were obtained during the baseline interview via self-report as

described in Brown et al. [12]. Familial relationships among participants were also identified

through proband and parental self-report.
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Statistical analysis

Overview. The analysis goal was to identify leading factor models. The statistical analyses

stepped through the following phases. Phase 1 consisted of estimation of confirmatory factor

analyses (CFA) [15, 20]. Phase 2 consisted of evaluation of the fit of individual models. Model

comparison followed in Phase 3. Phase 4 included invariance testing of the superior model(s).

These steps were run for the models of the full NCANDA battery and then again for the Penn-

CNB-only subset of tests.

Phase 1: Confirmatory factor analysis. Using confirmatory factor analysis (CFA), mod-

els were fit to the baseline NCANDA data. The models were fit to the data in the following

sequence. Configural CFA models were fit using maximum likelihood. Targeted models that

failed to converge were reestimated with starting values from pooled models, with Newton-

Raphson iterations, and run using Stata’s difficult algorithm. The reported loadings are based

on standardized solutions of the CFA models. Model configurations are presented in Table 1.

Neuropsychological scores were treated as reflexive indicators [28]. To account for the non-

independence of participants within families, models were initially fit (using Stata’s gsem) with

participants nested within families [29, 30]. This structure resulted in the failure of most mod-

els to converge, even with substantial mitigation. In response, the modelling approach was

modified. Models were run in Stata 15.1 using the sem functions [31]. The model comparison

results were based on bootstrap estimates, where each bootstrap sample consisted of only one

participant from each family. Means of up to 1,000 bootstrap samples are reported. The final

models used in each bootstrap sample estimation were allowed to run out to 100 iterations. If

convergence was not achieved, the statistics were treated as missing. In models that included

single indicators on latent constructs, the variances of the indicator(s) were constrained to a

constant equal to one minus the reliability [32]. Reliability estimates were extracted from prior

analyses [23, 33]. Latent variables with single indicators do not provide the measurement bene-

fits resulting from the use of measurement models but can provide utility to the overall sub-

stantive investigation [34]. A priori loadings were available to be used in metric models for the

Empirical Model [20]. Because the version of the Penn CNB used in the NCANDA study

included two unconventional tests, these were left free in all metric models. All other parame-

ters, including loading for traditional neuropsychological tests, were left unconstrained. All

first order models were correlated traits models.

At baseline,>99% (nPenn CNB = 828) of participants completed the full Penn CNB assessment

battery, and 97% (nNCANDA Battery = 806) completed all neuropsychological assessments. Missing

data was deleted listwise (i.e. complete case analysis was employed), because the most common

missing value pattern was missing either the entire computerized neuropsychological battery or

the battery of traditional assessments (e.g.,75% of cases with any missing Penn CNB tests were

missing all the Penn CNB tests). This pattern limits the benefit of missing value analysis, where

there are no auxiliary variables available that can provide proxy information on the missing

observations. Eleven participants were missing both the ataxia and math ability assessments. The

employed analyses assume missing values are missing completely at random [35]. An alternative

approach that used full-information maximum likelihood (FIML), which assumes data are miss-

ing at random [35] and utilizes all cases, was also employed in a separate series of analyses.

Data were assessed for normality before model estimation. Univariate distributions were

evaluated through visualization with histograms and Q-Q plots, and estimation of higher

order moments. Multivariate distributions were assessed via scatterplot matrices, estimation of

Mahalanobis distances, and evaluation with the BACON algorithm, set to detected outliers

beyond the 15th percentile of the χ2 distribution [36, 37]. As no overt two-way curvilinear asso-

ciations or grossly non-normal distributions were identified, data were left untransformed.
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Phase 2: Model fit evaluation. Evaluation of model fit was conducted by gauging fit indi-

ces against conventions outlined by Hu and Bentler [38]. Bright-line application of conven-

tional cut-points is avoided in recognition of the graded nature of model adequacy [39].

Further, the focus was made on comparative fits among models rather than the fit of individual

models [40]. We used likelihood ratio tests to evaluate the level of significance between the tar-

get model and the saturated and base models, under a neoFisherian evaluation framework [41,

42]. Incremental fit was assessed with the comparative fit index (CFI). Absolute fit was assessed

with root mean square error approximation (RMSEA) and the standardized root mean square

residual (SRMR). Values for these were viewed in light of conventional cut-offs of CFI > 0.95,

RMSEA < 0.05, and SRMR� 0.08 for identifying well-fitting models [38, 43]. Models were

deemed clearly unacceptable if CFI < 0.80, RMSEA> 0.10, and SRMR> 0.10 [38]. Although

there are additional fit indices that can be used in model evaluation, we present a limited prese-

lected set of indices with adequate statistical properties, coverage, and interpretability.

Phase 3: Model comparison. Similar to the approach taken by Fournet et al. [44], the ana-

lytical goal was anchored in model comparison rather than model development. Two nested

sets of indicators were evaluated. The broadest group used all of the available neuropsychologi-

cal tests for the NCANDA sample, this is referred to as the NCANDA suite (16 indicators).

The conceptually motivated models were applied to this set as configural models (Table 1).

Because the Gur Model did not originally incorporate all of the NCANDA assessments, it was

extended by adopting the conceptual structure outlined by Sullivan et al. [15] for the additional

assessments that are included in the full NCANDA suite. The extended model (Gur+) is

denoted by a plus symbol. Because an aim of this paper, and the focus of prior empirical

research, has been on the factor structure of the Penn CNB tests, a suite of models limited to

the Penn CNB are also evaluated (10 indicators; see Table 1). All of the conceptual models are

applied to both assessment suites. An empirically developed model was also available to pro-

vide a benchmark for comparisons. The empirically motivated 3-factor model (Empirical

Model) was based on an exploratory factor analysis model of Penn CNB accuracy scores

reported by Moore et al. [20]. Because loadings were available from the earlier report they

were used to construct a metric version (constrained loadings only) of the Empirical Model

[20]. There was no empirical basis to extend the Empirical Model to cover the full NCANDA

assessment suite, so this model was estimated only in the Penn CNB suite.

The Empirical Model was included as a supplement to the conceptually grounded set of

models. The decision to supplement the set of models was made after an initial investigation of

the preplanned models. In accordance with recommended reporting practices, all of the post-

hoc analyses were identified and interpreted as exploratory research steps [45, 46].

Model comparisons were primarily based on a set of penalized-likelihood selection criteria

(AIC, BIC) [47], and supplemented by CFI, RMSEA, and SRMR [48–51]. Where discrepancies

between AIC and BIC model selection occurred, BIC selection prevailed because it is more

consistent with our objective of approximating the correct model and giving deference to par-

simony, rather than optimizing a predictive model [50, 52, 53].

Phase 4: Invariance testing. Once optimal models were identified from among the candi-

date CFA models, configural invariance was evaluated. For this purpose, three series of multi-

group CFA models with metric and scalar parameter constraints were fit for age groups

(< 16.5 years old,� 16.5 years old), self-identified sex, and measurement waves (baseline

through year 4). Although configural model fit adequacy was considered necessary, it was not

treated as sufficient [54]. Having the same pattern of salient factor loadings across groups was

considered supportive of a configural invariance finding [55]. After configural invariance was

ascertained, multiple-group CFAs were estimated. Evaluation of metric invariance began by

estimating a model where all parameters were freely estimated. This was defined as the
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configural model, which was then compared with a model that included equality constraints

on the loadings across groups (the metric model). A scalar model with constrained loadings

and intercepts was next estimated. Intercepts for one of the indicators of each factor was con-

strained to zero to address identifiability in the group-CFA models.

Likelihood ratio tests comparing these nested models were used to gauge the significance of

the added restrictions in each successive model [56]. However, this mode of evaluation is con-

founded by sample size [57]; it does not separately identify features or gauge the magnitude of

misconfiguration. Thus, differences in the parameter estimates were also inspected to evaluate

their contributions to the differences among groups. Further, an additional set of model fit sta-

tistics were inspected to gauge the change in model fit as a consequence of each successive set

of constraints. Differences in CFI and RMSEA were evaluated in light of recommendations

that ΔCFI and ΔRMSEA should not exceed -0.010 and 0.015, respectively [58–60] (cf. [61]).

Deference was given to ΔCFI, as recommended by Sellbom and Tellegen [48]. Where measure-

ment invariance was not achieved, model modification indices (MI) were used to assist in the

identifications of parameters that may be contributing to worsening model fit [62]. Joint tests

of modification indices (MI) were applied in each model, first with Wald tests of all free

parameters, evaluating if they significantly vary across groups, then with score tests of parame-

ters constrained to equality across the groups (for a description of these classes of hypothesis

tests see [63]). Parameters in the joint tests were limited to the loadings in the configural and

metric models and included intercepts in the scalar model. Partial invariance was investigated

by refitting the model with parameters identified by the MI being freely estimated, without

constraint. Interpretation of invariance violations among groups relied on inspection of load-

ing patterns in each subset. Invariance evaluation was conducted to assess generalizability and

to screen for mitigable mechanisms that are affecting model fit statistics; model fit indices are

sensitive to noninvariance [58].

Invariance evaluation was supplemented with the use of alignment optimization [64].

Although the conditions under which alignment optimization proves to be the most appropri-

ate analytic tool for application are still unclear, there are some conditions where early work

identifies this method as valuable, for example when there are few noninvariant parameters in

a measurement model [65, 66].

Results

Sample characteristics

At baseline, ages ranged from 12.1 to 22.0. The median was 15.9 years with the 24th and 75th

percentile for age at 14.1 and 18.0. Boys accounted for 49% of the sample. Most participants

represented the 670 families in the NCANDA sample as singletons (nsingletons = 531) with 17

families contributing more than two children to the sample (ntwo siblings = 244, n> 2 siblings =

56). Of all families, 47% had at least one parent with a post-baccalaureate degree. Most of the

remaining families had a parent with an undergraduate degree (43% of families). The highest

degree was a high school diploma or equivalent for 8% of families; 1% of families had parents

without a diploma. At baseline, the mean number of days participants had used alcohol and

cannabis during their lifetime was 9.2 (SD = 35.4) and 8.6 (SD = 85.3), respectively. See Brown

and colleagues [12] for a detailed description of the sample.

Model comparisons

Application of the conceptually-motivated CFA models under investigation in this study

resulted in the identification of multiple models that had a constellation of moderately strong

fit statistics when applied to the Penn CNB suite of neuropsychological tests. However, when
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applied to the full NCANDA suite, the fits were only marginally sufficient. Application of BIC

as the model selection criterion, in this broader suite, identified the Gur+ Model as the supe-

rior model (Table 2). The RMSEA point estimate for the Gur+ Model was at 0.06 with an

associated probability of the population value being under 0.05 that was low (Pclose > 0.05).

The baseline comparison statistic for this model was moderate; CFIs were 0.92. The residual

magnitude statistic evidenced adequate fit; the SRMR was 0.04. The competing models were

similar on this fit statistic (Table 2). In addition, the 8-Factor Model’s BIC was of similar mag-

nitude at 0.8 points higher, which is an equivocal difference based on a 5 point rule for com-

parison [67]. Further, the 8-Factor Model had a substantially superior AIC (21.6 points

lower).

The strongest loadings in the Gur+ Model were found with the General Ability, Motor

Speed, and Complex Cognition latent factors (|λ|’s > 0.50, Fig 1). Episodic memory indictors

were moderately loaded (λ’s of 0.52 to 0.58). Executive Function loadings were lower, espe-

cially for continuous performance (λ = 0.34). The only loading that was weaker was for the

emotion recognition on Social Cognition (λ = 0.24). There was substantial correlation among

the latent variables, with exception of postural stability (Balance) and the association between

Motor Speed and Episodic Memory (Fig 1). The highest correlations were observed among

Table 2. Confirmatory factor analysis model fit comparisons.

Test Suite Full NCANDA Penn CNB Tests Only

Statistic\Models 8-Factor Vulnerabilities Gur+ 8-Factor Vulnerabilities Gur Empirical

Model Number 1 2 3 4 5 6 7

N 806 806 806 827 827 827 827

Likelihood ratio tests

LR χ2 (saturated) 245.87 270.47 268.44 69.65 91.16 81.88 81.97

df (saturated) 79 77 84 27 25 29 30

P-value (saturated) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LR χ2 (baseline) 2372.10 2372.19 2372.16 829.65 829.69 830.10 831.87

df (baseline) 120 120 120 45 45 45 45

P-value (baseline) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Information criteria (lower is better)

AIC 27642.5 27671.9 27664.1 18220.0 18246.9 18231.0 18219.1

BIC 27969.4 28007.7 27968.6 18391.1 18426.9 18393.0 18376.6

Population error (lower is better)

RMSEA 0.057 0.062 0.058 0.049 0.063 0.052 0.051

90% CI L.L. 0.049 0.054 0.050 0.035 0.049 0.039 0.038

90% CI U.L. 0.065 0.07 0.066 0.063 0.077 0.066 0.064

P(RMSEA<0.05) 0.082 0.01 0.054 0.537 0.073 0.376 0.435

Baseline comparison (higher is better)

CFI 0.925 0.914 0.918 0.946 0.916 0.933 0.934

TLI 0.888 0.866 0.883 0.909 0.848 0.896 0.901

Residual magnitude (lower is better)

SRMR 0.038 0.042 0.040 0.033 0.040 0.037 0.037

n bootstrap samples converging (N = 1000) 1000 995 1000 1000 1000 1000 995

Note. Model fit statistics were obtained from 1000 bootstrap samples containing one randomly selected participant per family. Penn CNB Suite models excluded all

indicators that were obtained outside of Penn CNB. All models are configural models. The metric version of the Empirical Model failed to converge in any iterations.

TLI is the Tucker-Lewis Index.

https://doi.org/10.1371/journal.pone.0263174.t002
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Executive Functioning, Complex Cognition and Social Cognition (r’s > 0.88; Fig 1).

There were two Heywood cases among the correlations with Social Cognition; the associated

standard errors were much larger than the increment that the correlations exceeded one

(Fig 1).

Model fit improved when the models were fit only to the Penn CNB tests (Table 2).

Although the 8-Factor Model evidenced the lowest BIC among the conceptually motivated

models (Models 1–6, Table 2), the Gur+ Model’s BIC was of similar magnitude (1.9 points

higher). The 8-Factor Model demonstrated the best CFI, RMSEA, and SRMR for all the models

estimated in this study (Table 2). At 0.95 and 0.05, respectively, the CFI and RMSEA values for

the 8-Factor reached the borderline of good fit for factor models. Although the model fit statis-

tics of the empirically derived factor model were slightly inferior to the 8-Factor Model, it had

a superior BIC (14.5 points lower) and an equivalent AIC (0.9 points lower). Models estimated

with FIML have similar fit statistics, although the Vulnerabilities and Empirical Models failed

to converge (S1 Table).

Fig 1. Confirmatory factor analysis estimates of the Gur+ Model for the NCANDA suite of tests.

https://doi.org/10.1371/journal.pone.0263174.g001
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The 8-Factor Model had similar loading strengths as that observed in the Gur+ Model, for

freely estimated loadings (Fig 2). The single indicator loadings were constrained by the esti-

mated errors. The loading for the continuous exclusion test remained moderate in the 8-Factor

model with a λ of 0.39. Correlations among the latent variables in this model were generally

lower than observed in the Gur+ Model, with the notable exception of the correlations with

Social Cognition (Fig 2). The correlation for Social Cognition and Abstraction was structured

similarly to the Heywood cases observed in the Gur+ model (Fig 2).

In summary, when the CFA models were applied to the full NCANDA neuropsychological

battery the Gur+ Model was selected based on the objective selection criteria for the full suite;

however, it failed to demonstrate strong model fit, as did its competitors. Model fit for all the

models applied to only the Penn CNB suite of tests improved, however the constellation of fit

indices indicated they were at best at the borderline of being well fit. Overall, the best model fit

indices were observed for the 8-Factor Model when it was applied only to the conventional

Penn CNB tests. It also had favorable information criteria statistics. Only the Empirical Model

had a better BIC. The Empirical Model’s fit statistics were equivalent to that observed for the

8-Factor Model.

Invariance

Inspection of the salient loading patterns failed to identify substantial divergences in sex-, age-,

or time point-specific models. Having evaluated configural invariance, metric and strong

invariance by age, sex, and time point were evaluated in multiple-group CFA models. In the

Fig 2. Confirmatory factor analysis estimates of the 8-Factor model for the Penn CNB suite of tests.

https://doi.org/10.1371/journal.pone.0263174.g002
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multi-group models evaluating age and time point, adding invariance constraints (metric and

scalar) resulted in worsening of the models, based on likelihood ratio tests of nested models

(p’s� .05). Decrements in all the RMSEA values for the metric and scalar models were small

(ΔRMSEA < 0.01), however the values all exceeded 0.05 (Table 3). This was most pronounced

for the age models, which had point estimates near 0.10 (Table 3). In other words, RMSEA

changes did not indicate notable worsening model fit with the invariance constraints, however

the multi-group model fit was at best borderline based on this statistic. CFI patterns for age and

time point were similar; for these groupings the metric model did not demonstrate a substantial

worsening of the CFIs (ΔCFI� 0.007). However, the scalar models did results in notable CFI

decrements (ΔCFI� 0.02). In other words, constraining intercepts to equality in the year and

age group models resulted in worsening model fit as measured by CFI. In a partial scalar invari-

ance model (Model A) the four most variant intercepts were freed. These four were for continu-

ous performance, vocabulary, emotion recognition, and grooved pegboard tests. Intercepts for

continuous performance were highest at baseline (ν = 0.26) and remained steady at the follow-

ups (ν� 0.16). Vocabulary and grooved pegboard both decline over time. The intercept for

grooved pegboard consistently rose from 0.40 to -0.20 by year three. Alignment optimization

failed to eliminate this noninvariance of intercepts (S1 File). The joint parameter tests also iden-

tified noninvariance by year and age (Table 3). Freeing the parameters increased the BIC and

negligibly improved the CFI (Table 3). As with Model A, the partial scalar invariance model for

Table 3. Invariance tests for the Gur+ Model in the NCANDA suite.

Model χ2 (df) P-

value

RMSEA (90%

CI)

BIC CFI SRMR ΔBIC ΔCFI ΔSRMR Wald Tests

(df)

Wald P-

value

Score Tests

(df)

Score P-

value

Sex (girls, boys)

Configural 457.39

(175)

0.000 0.070 (0.063,

0.078)

28294.3 0.876 0.055 9.9 (9) 0.372

Metric 471.67

(184)

0.000 0.069 (0.062,

0.077)

28247.4 0.873 0.057 46.9 0.003 -0.002 13.6 (9) 0.157

Scalar 495.73

(193)

0.000 0.070 (0.062,

0.077)

28201.1 0.867 0.063 46.3 0.006 -0.006 7.57 (9) 0.588

Year (baseline, year 1,

year 2, year 3)

Configural 1142.29

(343)

0.000 0.065 (0.06,

0.069)

92792.1 0.906 0.049 51.01 (27) 0.008

Metric 1197.16

(370)

0.000 0.063 (0.059,

0.067)

92635.8 0.902 0.054 156.3 0.004 -0.005 50.71 (27) 0.008

Scalar 1470.72

(397)

0.000 0.070 (0.066,

0.073)

92676.7 0.873 0.062 -40.9 0.029 -0.008 65.2 (27) 0.000

Partial Scalar A 1691.96

(456)

0.000 0.070 (0.066,

0.073)

95486.7 0.900 0.079 -2851 0.002 -0.025 82.45 (30) 0.000

Age (<16.5, > = 16.5)

Configural 638.43

(175)

0.000 0.09 (0.083,

0.098)

28161.0 0.760 0.131 20.68 (9) 0.024

Metric 662.16

(184)

0.000 0.090 (0.082,

0.097)

28130.3 0.753 0.135 30.7 0.007 -0.004 21.11 (9) 0.021

Scalar 739.99

(193)

0.000 0.093 (0.086,

0.101)

28137.0 0.717 0.162 -6.7 0.036 -0.027 41.07 (9) 0.000

Partial Scalar B 667.8

(190)

0.000 0.088 (0.081,

0.095)

28077.6 0.753 0.143 52.7 0.00 -0.008 20.13 (9) 0.028

Note. Partial Scalar Model A = scalar + Continuous Performance, Emotion Recognition, Word Memory, and Grooved Pegboard intercepts were freed, Partial Scalar

Model B = scalar + N-Back, WRAT4: Reading, and Vocabulary intercepts were freed for baseline.

https://doi.org/10.1371/journal.pone.0263174.t003
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age (Model B) insufficiently improved CFI to meet invariance criteria (Table 3). The partial

invariance model for age also freed the most pronounced variant intercepts, which were for

vocabulary, WRAT4: reading, and the n-back task. The intercepts for vocabulary and reading

were lower by 0.39 and 0.33 for participants 17 or older as compared to younger participants,

respectively. N-back scores were higher for younger participants by 0.53. Alignment optimiza-

tion failed to substantially dampen these noninvariant intercepts (S1 File).

Although the model fit differences for the metric invariance models indicated adequate fit,

the strongest score test for metric invariance was notable. The score test for the time point

metric model was moderately significant (χ(27) = 50.1, p = 0.011). Inspection of MIs and load-

ings both identified the most substantial loading variance was for working memory and atten-

tion indicators. In summary, pattern (metric) invariance was adequate for the Gur+ Model.

Strong (scalar) invariance was not established for the Gur+ Model, but this noninvariance

could partially mitigated through the freeing of limited sets of intercept parameters; however,

in the case of the model for time point the SRMR and BIC worsened (Table 3).

The invariance patterns were similar for the 8-Factor model applied to the Penn CNB data

(Table 4). An additional scalar noninvariance pattern was indicated by a marginal ΔBIC

between the sex-grouped metric and scalar models (Table 4). However, none of the score tests

Table 4. Invariance tests for the 8-Factor Model applied to the Penn CNB test suite.

Model χ2 (df) P-

value

RMSEA (90%

CI)

BIC CFI SRMR ΔBIC ΔCFI ΔSRMR Wald Tests

(df)

Wald P-

value

Score Tests

(df)

Score P-

value

Sex (boys, girls)

Configural 150.26

(59)

0.000 0.068 (0.055,

0.082)

18563.1 0.885 0.042 5.11 (5) 0.415

Metric 157.31

(64)

0.000 0.066 (0.053,

0.079)

18534.0 0.883 0.045 29.1 0.002 -0.003 6.06 (5) 0.327

Scalar 174.6 (69) 0.000 0.068 (0.055,

0.08)

18526.8 0.867 0.046 7.2 0.016 -0.001 3.95 (5) 0.566

Partial Scalar C 173.31

(68)

0.000 0.068 (0.056,

0.081)

18530.1 0.867 0.046 3.9 0.016 -0.001 4.83 (5) 0.454

Year (baseline, year 1,

year 2, year 3)

Configural 295.99

(113)

0.000 0.053 (0.046,

0.061)

61218.3 0.945 0.033 24.84 (15) 0.079

Metric 319.84

(128)

0.000 0.051 (0.044,

0.058)

61124.8 0.942 0.04 93.5 0.003 -0.007 23.47 (15) 0.105

Scalar 640.88

(143)

0.000 0.078 (0.072,

0.084)

61331.2 0.850 0.053 -206.4 0.092 -0.013 33.15 (15) 0.01

Partial Scalar D 348.77

(134)

0.000 0.053 (0.046,

0.06)

61107.4 0.935 0.041 17.4 0.007 -0.001 23.25 (15) 0.11

Age (<16.5, > = 16.5)

Configural 217.85

(59)

0.000 0.09 (0.077,

0.103)

18476.0 0.776 0.068 5.33 (5) 0.401

Metric 222.85

(64)

0.000 0.086 (0.074,

0.099)

18444.0 0.775 0.071 32 0.001 -0.003 5.25 (5) 0.414

Scalar 239.71

(69)

0.000 0.086 (0.074,

0.098)

18424.0 0.759 0.072 20 0.016 -0.001 5.61 (5) 0.376

Partial Scalar E 227.9 (67) 0.000 0.085 (0.073,

0.097)

18436.5 0.773 0.074 7.5 0.002 -0.003 4.97 (5) 0.438

Note. Partial Scalar Model C = scalar + Matrix Reasoning intercepts were freed, Model D = scalar + Emotion Recognition, Facial Memory, and Continuous Exclusion

intercepts were freed, Model E = scalar + Continuous Exclusion and Visual Object Learning intercepts were freed.

https://doi.org/10.1371/journal.pone.0263174.t004
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indicated that the invariance patterns for sex and age could be distinguished from sampling

error (p’s> 0.37). The freeing of the intercepts for the measures that demonstrated the greatest

noninvariance in the partial invariance models rectified the ΔBIC’s in the scalar models

grouped by time and age (Table 4). This relaxation allowed the intercepts for continuous

exclusion to gradually rise 0.36 from baseline through to the 3rd follow-up. Freeing of the inter-

cepts for the continuous exclusion test in addition to facial memory and emotion recognition

limited the remaining scalar noninvariance to acceptable levels (Table 4). Alignment optimiza-

tion models failed to converge for the 8-factor model.

Discussion

Model comparisons

We found support for the Gur+ Model when applied to the neuropsychological accuracy

scores from NCANDA. It was the superior model for the full battery, based on the penalized-

likelihood criteria. However, this model’s fit should be considered modest because the fit sta-

tistics were at best at the margins of acceptable levels [32, 38, 43]. When the suite of test scores

entered into the factor model was restricted to the subset of tests obtained from NCANDA’s

Penn CNB tests, the model fit statistics slightly improved. This was expected, in part, because

the Gur Model was conceptually developed specifically for the Penn CNB [20]. The results

from this study provide some support for the use of factor model configurations consistent

with the conceptually motivated Gur Model.

The 8-Factor Model’s fit was similar to the Gur+ Model. The difference among these two

models is limited to their treatment of executive functioning (Table 1); these models had the

same factor structure except the 8-Factor Model separated out attention and working memory

constructs as factors rather than grouping them into an executive functioning factor. In addi-

tion, the conditional exclusion test is placed within the Complex Cognition factor. Differences

in models’ statistics reflect the relative merit of these configural distinctions.

Whereas the primary model selection statistic (BIC) identified the Gur+ Model for the full

suite of NCANDA tests, its superiority over the 8-Factor Model was equivocal based on the

small BIC difference. However, the 8-Factor Model’s fit statistics were slightly superior when

applied to the Penn CNB suite of tests. Based on the statistical evaluation conducted here,

researchers could justifiably interchange these models in order to optimally align the latent fac-

tors with the substantive targets of their investigations. This is a reasonable posture when the

alternative models are equally supported in the descriptive literature (i.e., phenomenological
models), and there is not a well-formed accepted hypothetico-deductive theory to derive a

focusing model [68, 69]. Where alternative models are available, selection should optimize the

trade-offs between realism, precision, and generality for the particular scientific question

under investigation [70, 71]; under the perspective that no factor model is correct, the selection

of an optimal approximating model should be based on context specific scientific consider-

ations [72].

The 8-Factor Model does have several advantages over the Gur Model for application in the

NCANDA study. The first is that it separates out neuropsychological constructs (working

memory and attention) that have each been identified as being vulnerable to alcohol’s biologi-

cal effects during adolescence [3, 73]. Second, this configuration is more aligned with the fac-

tor structure empirically identified for Penn CNB efficiency scores [20, 74]. This is because the

8-Factor model places the continuous exclusion test with verbal reasoning and matrix reason-

ing, which tap the Complex Cognition factor of the Gur Model. Finally, in some contexts the

lower correlations among the latent constructs in the 8-Factor Model will provide improved

discriminant capacity [75]. Although the findings presented in this study indicate that either
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of these two models can be reasonably be justified for use as a measurement model based on

its individual model fit and conceptual underpinnings, the 8-Factor Model may prove to be of

greatest utility for addressing the aims of the NCANDA study.

An empirically derived factor model was also evaluated in the current study. Moore et al.

[20] reported an exploratory factor analysis model based on accuracy scores that we evaluated

in a CFA framework. This model collapses the highly correlated Executive Functioning and

Complex Cognition factors found in the Gur Model. It also parses the episodic memory and

social cognition items differently (Table 1, Empirical Model). Providing some corroboration

for Moore et al.’s earlier finding, the Empirical Model was the best model for the NCANDA

Penn CNB suite based on BIC and was equivalent to the 8-Factor Model based on AIC

(Table 2). The metric version of this model never converged in any of the bootstrap iterations,

so only the configural structure is supported by the current study’s findings. NCANDA’s Penn

CNB was modified from the standard version, in that it included two supplemental delayed

recall tests and a modified nonverbal reasoning test and dropped a social cognition test. These

differences could partially explain the discrepancies between the original loadings and loadings

estimated in the current study that resulted in the lack of convergence.

Invariance

Moore et al. [20] and James et al. [74] provided the only other published factor analysis of the

standard Penn CNB. The findings presented here are consistent with the earlier reports.

Moore estimated a CFI of 0.95 for the Gur Model applied to efficiency scores. This was higher

(+0.032) than what was observed in this study. Support for the Gur model’s application is fur-

ther strengthened by a number of favorable invariance findings. Based on CFI differentials, the

Gur+ Model did not evidence substantial violations of metric invariance assumptions [48].

However, there was evidence of at least mild intercept noninvariance for time point and age,

which could not be entirely mitigated in the partial scalar models or through alignment opti-

mization. The scalar noninvariance indicates that some of the neuropsychology scores varied

between groups in a way that diverged from the patterns of variability in the mean of the latent

variable [76].

Two of the neuropsychology tests contributing to scalar invariance violations, were also

associated with a moderately significant joint (score) test indicating some metric invariance

violations are present across time points. These were the continuous performance test and the

short fractal n-back test, which were designed as assessments of attention and working mem-

ory, respectively. These patterns may be partially attributable to differential practice effects

that disrupt the correlation structure of the measurement battery. A prior report based on the

NCANDA sample found these tests to be most sensitive to practice effects [77]. Rather than

using raw test scores, application of test specific scores that are adjusted for test-specific prac-

tice effects could alleviate some temporal noninvariance. Additionally, neurocognitive

domains (e.g. executive functioning and memory) and their component processes develop at

different rates during childhood and adolescence, which could result in age related noninvar-

iance [78, 79]. It is possible that the moderate model fit indices resulted from the observed

deviations from noninvariance [58]. However, differential development of neuropsychological

functioning would not be expected to contribute to noninvariance where the structure within
factors is stationary as people age. Gur et al. did identify developmental patterns that were spe-

cific to individual Penn CNB tests [80]. For example, they found substantial and distinct

improvements between childhood to early adulthood on the continuous performance test.

This could necessitate the use of developmentally normed scores for longitudinal use of
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measurement models applied to Penn CNB scores, if the effects are found to be substantial in

particular research settings.

Sensitivity analyses could be used to assess the importance of the observed magnitudes of

scalar invariance and the benefit of applying mitigations such as multiple group factor analysis

alignment [64, 76]. More importantly, distinct divergence in the developmental trajectories of

individual indicators for putative factors should call into question the meaning of latent con-

structs created by factor analysis and our conceptualization of their connections to changes in

the brain. It is up for debate, but some alternative approaches, such as network models, appear,

at least on the surface, better able to address these complexities [81].

Limitations

One of the current study’s limitations is the absence of an evaluation of potential changes in

neuropsychological architecture as a result of alcohol exposure that would be represented as

metric noninvariance. This is an important consideration in the context of the NCANDA proj-

ect’s focus on effects of alcohol exposure, where such noninvariance might not be considered a

statistical nuisance but instead be of material interest. The study design favoured substance use

naïve participants at baseline [12], with few alcohol exposed participants recruited and only a

small number transitioning into heavy episodic binge drinking patterns over the period ana-

lysed in this report [82]. The current study is not yet powered to detect subtle noninvariance

associated with drinking exposure, but should be of substantial interest to future NCANDA

investigators as the sample matures.

An important consideration of the current work is the limited number of indicators for

some latent factors. Although, using single indicators can create psychometric [51] and

computational challenges [83], their use may be necessitated by the underlying neuropsycho-

logical architecture and its match with the available measurements. Indeed, the NCANDA

neuropsychological battery was designed to efficiently survey broad domains of neuropsycho-

logical functioning. This left some domains covered by a limited number of tests. In this study,

when factors with single indicators were included, we used independent estimates of the error

variance to determine the factor models in this study [32]. Irrespective of the quality of these

variance estimates, this mitigation does not address the potential for construct underrepresen-

tation [84], which cannot be mitigated without a study design change.

Alternative models

Over time substantial diversity has developed in the conceptualized organization of cognitive

abilities [85–91]. An important division of conceptualizations is found between researchers

looking to understand neurological mechanisms and those looking to describe interindividual

patterns of variation [81]. Concepts of intelligence have dominated the latter, and the other

has roots in neuropathology. The positive manifold of cognitive ability tests has resulted in the

frequent identification of a single common factor explaining a large portion of the variance

among tests of cognitive ability [86, 92, 93]. This study’s neuropsychological assessment

extends beyond neurological functioning addressed within the typical domains of intelligence

research because of the focus on identifying broad neurobiological effects of adolescent alcohol

use. For example, NCANDA measures postural stability in addition to domains commonly

included in research on general cognitive abilities and individual variability in intelligence.

Further, NCANDA’s test battery was not designed to optimize the measurement of latent con-

structs with multiple indicators but instead reflects the aspiration to maximize the breadth of

neurologic functioning potentially affected by alcohol consumption. From the standpoint of

measuring a general factor of intelligence, the test battery is biased [94].
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Leading explanations for the positive manifold in the assessment of cognitive ability were

founded on phenomenological models such as the g-factor, the sampling model, and the mutu-

alism model [92, 95–97] (see Cummins [69] for a discussion of phenomenological models),

which are incorporated into the integrated network model of van der Mass et al. [81]. This

model posits that neurocognitive architecture can best be structured as crystallized and fluid

cognitive abilities, as introduced by Cattell [87]. The biologically relevant distinction of this

classification is supported by emerging data, such as those indicating differential heritability of

crystalized and fluid cognitive abilities [98]. This architecture may be more consistent with

brain function and development than is present in the explicit conceptualizations behind the

sets of evaluated CFAs. Although no CFA models applied in this study were directly motivated

by the Integrated Network Model, the CFAs have features consistent with the Integrated Net-

work Model. For example, the results presented in this report point to a factor (general ability)

containing all the crystallized cognitive ability tests in the better fitting models (Table 1). This

suggests a possible benefit of future exploration of models influenced by Cattell for

application.

Conclusions

The study provides several contributions. It provides an independent corroboration of the Gur

model and supports the adequacy of the Empirical Model to capture the factor structure of a

computerized neuropsychological test battery that is easy to deploy and administer over the

internet. Further, this is the first publication that includes formal invariance testing of the

Penn CNB. The study also advances the approach of evaluating confirmatory factor models in

a comparative framework, rather than looking at individual models in isolation. The compari-

sons in this study provide evidence that the conceptually derived model targeting neuropsy-

chological processes posited to be most vulnerable to alcohol’s effects in adolescents

(Vulnerabilities Model) was the most inferior model evaluated. This finding demonstrates one

of the risks of employing ad hoc model configurations, without validation and comparison to

alternative structures supported by theory and a body of prior work. As noted above, the

8-Factor model was found to be sufficient and evidenced slight superiority in model fit to the

alternative models when applied to the Penn CNB Suite of neuropsychological tests. Although,

there were marginal Heywood cases observed in the leading models, which is possible if mod-

els are correctly specified and estimated via maximum likelihood [99, 100], a confidence inter-

val for these cases broadly covered admissible ranges. Thus, use of either of the leading models

should be conducted with the recognition that Social Cognition is highly correlated with Com-

plex Cognition and re-specification of the model to accommodate this aspect of the relation-

ship could potentially improve some characteristics of the models. The variance in Social

Cognition in the NCANDA sample is likely to be dampened by the exclusion of persons with

ASD. Application of these models in a sample that includes persons with ASD may improve

the discrimination between Social Cognition and other latent variables.

In the absence of an integrated theory of brain and neurocognitive functioning that func-

tions as a well-formed engrained hypothetico-deductive theory we will continue to work with

factor models that are influenced by research inertia and indeterminant competition among

alternatives models. Work by authors such Patt et al. [18] on the structure of neuropsychology

and others who are investigating the connections between alterations in brain and neuropsy-

chological functioning as a consequences of exposure to substance use, infectious disease, and

trauma [4, 9, 101–105] provides the empirical foundations necessary to achieve such theory.

Until a theory is fully developed, some exploratory efforts to aptly describe the variance pat-

terns within neuropsychological batteries should continue, even where a confirmatory factor
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model has been previously developed and found to fit in independent samples. These efforts

can operate in a Bayesian framework (e.g., [78] or in an exploratory framework where series of

exploratory factor models are compared (e.g., [18, 44]. The recommendations to continuously

interweave exploratory factor analysis and confirmatory factor analysis into model building

(see [51] would be most appropriate when conducting phenomenological modelling [68, 69],

including in research contexts like the NCANDA project where the statistical superiority of

alternative models is equivocal.
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