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We report draft genome sequences of Bacillus subterraneus MITOT1 and Bacillus cereus MIT0214 isolated through enrichment
of samples from geologic sequestration sites in pressurized bioreactors containing a supercritical (sc) CO2 headspace. Their ge-
nome sequences expand the phylogenetic range of sequenced bacilli and allow characterization of molecular mechanisms of
scCO2 tolerance.
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During geologic carbon sequestration (GCS), large quantities
of CO2 are captured, compressed to supercritical (sc) state,

and injected underground. Whether microbial activities trans-
form injected CO2 is not well understood due to toxic effects of
scCO2 (1–5). Samples from GCS sites at Otway Basin, Australia
and Frio-2, Texas, were used as inocula for serial enrichment cul-
tures in bioreactors containing scCO2, yielding strains Bacillus
subterraneus MITOT1 and Bacillus cereus MIT0214, respectively
(6). Tolerance of scCO2 was confirmed by growth of spores in
pure cultures and was time and inocula density dependent. To
investigate mechanisms of growth under scCO2, genomic DNA
was sequenced.

MITOT1 was sequenced on the Illumina HiSeq 2000 platform
(Beijing Genomics Institute). MIT0214 was sequenced on the Il-
lumina GAIIx platform (MIT Biomicrocenter). Paired-end
100 bp reads were quality trimmed (removing 10 starting and 20
trailing bases) and assembled de novo with CLC Genomic Work-
bench with automatic k-mer sizes of 23 and 21, yielding 185 and
238 contigs of �500 bp, respectively. The draft genome of
MITOT1 is 3.9 Mbp with 42.1% G�C content, while the
MIT0214 draft genome is 5.6 Mbp with 34.9% G�C content.
Annotation using the RAST server (7) predicted 4,021 (with
1,235 hypothetical) and 5,640 (with 1,399 hypothetical) coding
sequences in MITOT1 and MIT0214.

Phylogenetic analysis of the 16S rRNA gene placed MITOT1
within a clade of bacilli isolated from diverse environments in-
cluding deep subsurface, soil, manufacturing effluent, and fer-
mented seafood (8–12), some of which are capable of anaerobic
reduction of Fe(III), Mn(IV), Se(VI), and As(V) (8, 10). The clos-
est relative by BLASTn of the 16S rRNA gene was B. subterraneus
HWG-A11 (98.6% identity). The nearest genome sequenced
strain (98.1% 16S rRNA identity) was B. boroniphilus DSM17376,
isolated from boron-contaminated soil (13) and sharing 83.3%
average nucleotide identity (ANI) (14) with 2,600 sequence ho-
mologs (�60% identity). RAST functional comparison of the
MITOT1 and B. boroniphilus DSM17376 genomes with closely
related bacilli (strain 1NLA3E, B. infantis NRRL B-14911,

B. megaterium DSM319, and B. coagulans 36D1) predicted multi-
ple anaerobic respiratory reductases and terminal cytochrome C
oxidases unique to MITOT1 and B. boroniphilus, pointing to di-
verse catabolic potential for this group (15, 16).

Strain MIT0214 was most similar to B. cereus ATCC 14579 by
BLASTn of 16S rRNA (99.8% identity), sharing 98.5% ANI and
4,858 sequence homologs (�60% identity). B. cereus strains have
been isolated from diverse environments, including strain Q1
(92.5% ANI; 4,617 sequence homologs) from an oil reservoir (17).
Comparisons among genomes of MITOT1, MIT0214, and the
closely related sequenced genomes did not reveal clear signatures
associated with scCO2 tolerance, which is unsurprising in light of
recent observations that tolerance is widespread among bacilli
(6). Availability of draft genome sequences for B. subterraneus
MITOT1 and B. cereus MIT0214 from two GCS sites will facil-
itate future work targeting gene/protein expression to advance
mechanistic insights into scCO2 tolerance.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession numbers JXIQ00000000 and JXDH00000000.
The versions described in this paper are the first versions.
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