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1  |  INTRODUC TION

Thyroid hormone (TH) production is a tightly regulated process 
controlled by a classic negative feedback loop involving the hy-
pothalamus, the pituitary, and the thyroid, which has led to the 
common name hypothalamus–pituitary–thyroid axis (Figure 1). 

The thyrotropin-releasing hormone (TRH) is produced in the 
hypothalamus. Once released, TRH reaches the pituitary gland 
and binds to the TRH receptor and stimulates the production 
and secretion of thyroid-stimulating hormone (TSH), also known 
as thyrotropin (Liu et al., 2019). In the thyroid, TSH binds to the 
TSH receptor (TSHR) and induces TH production. When needed, 
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Summary
Thyroid function is central in the control of physiological and pathophysiological pro-
cesses. Studies in animal models and human research have determined that thyroid 
hormones modulate cellular processes relevant for aging and for the majority of age-
related diseases. While several studies have associated mild reductions on thyroid 
hormone function with exceptional longevity in animals and humans, alterations in 
thyroid hormones are serious medical conditions associated with unhealthy aging and 
premature death. Moreover, both hyperthyroidism and hypothyroidism have been as-
sociated with the development of certain types of diabetes and cancers, indicating 
a great complexity of the molecular mechanisms controlled by thyroid hormones. In 
this review, we describe the latest findings in thyroid hormone research in the field of 
aging, diabetes, and cancer, with a special focus on hepatocellular carcinomas. While 
aging studies indicate that the direct modulation of thyroid hormones is not a viable 
strategy to promote healthy aging or longevity and the development of thyromimet-
ics is challenging due to inefficacy and potential toxicity, we argue that interventions 
based on the use of modulators of thyroid hormone function might provide therapeu-
tic benefit in certain types of diabetes and cancers.
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triiodothyronine (T3) and tetraiodothyronine (T4), also known as 
thyroxine, are released into the circulation. In the hypothalamus 
and the pituitary, THs act via the nuclear TH receptor β (THRβ) 
to inhibit TRH and TSH production and secretion, completing a 

negative feedback loop that maintains the physiological levels of 
TRH, TSH, and THs.

In target cells, deiodinases (DIO2 and DIO3) generate T3 from 
T4	 by	 removing	 the	 iodine	 located	 at	 the	 5′	 position	 of	 T4.	 The	

F I G U R E  1 Scheme	summarizing	TH	synthesis.	TRH	is	produced	by	a	specific	group	of	neurons	located	in	the	paraventricular	nucleus	
of the hypothalamus. When TRH reaches the pituitary gland, it binds to the TRH receptor expressed in the thyrotrophs, stimulating the 
expression and secretion of TSH into the circulation. TSH reaches the thyroid gland and binds to the TSHR located in the cell membrane of 
the	thyroid	follicles,	setting	in	motion	TH	production	in	a	process	that	includes	the	induction	of	iodine	uptake	by	the	NIS.	Iodide	is	mobilized	
to	the	colloid	via	Pendrin	action,	and	it	is	then	oxidized	by	the	thyroid	peroxidase	(TPO)	using	H2O2. Iodination of tyrosine residues forms 
monoiodotyrosines and diiodotyrosines that are coupled to form T3 and T4. T3 and T4 bound to TG are released in the colloid of the 
follicle.	When	needed,	iodinated	TG	is	catabolized	in	thyroid	follicular	epithelial	cells	to	produce	T3	and	T4,	which	are	then	released	into	the	
circulation. In the bloodstream, THs can be found either free or bound to serum TH-binding proteins (STHBP), such as thyroxine-binding 
protein, transthyretin, and albumin. Free THs are able to enter into target cells in target tissues via membrane transporters. In target cells, 
deiodinases generate T3 from T4 by removing the iodine located at the 5´ position of T4. Intracellular T3 acts via genomic actions binding 
to the THR, where modulate gene expression, or via non-genomic actions affecting signaling pathways such as integrin αvβ3 and PI3 K. THs 
also act via the nuclear THRβ in the hypothalamus and the pituitary to inhibit TRH and TSH production and secretion, completing a negative 
feedback loop that maintains physiological levels of THs. DIO: deiodinase. DUOX2: dual oxidase 2. DUOXA2: dual oxidase maturation 
factor 2. I−: iodide. STHBP: serum TH-binding proteins. Na+: sodium. NIS: sodium-iodide symporter. T3: triiodothyronine. T4: thyroxine. Tg: 
thyroglobulin. TH: thyroid hormone. THR: thyroid hormone receptors. TPO: thyroid peroxidase. TRH: thyrotropin-releasing hormone. TSH: 
thyrotropin. TSHR: thyrotropin receptor
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expression of the different deiodinases is cell-type and tissue-spe-
cific, which provides a mechanism to control TH actions irrespec-
tive	of	circulating	TH	levels	(Gereben	et	al.,	2008;	Schweizer	et	al.,	
2008). Intracellular T3 acts via binding to the TH receptor α (THRα) 
and THRβ, which display high affinity for DNA sequences called 
TH response elements (TREs). Upon ligand binding, THRs assemble 
into a co-activator complex with histone acetyltransferase activ-
ity	 that	 is	 recruited	 to	 stimulate	 transcription	 (Lonard	&	O'Malley,	
2007;	Perissi	et	al.,	2010).	Moreover,	THR	interacts	with	other	nu-
clear hormone receptors, such as peroxisome proliferator-activated 
receptors, retinoid X receptors, retinoic acid receptors, and liver X 
receptors that allow binding to a wide repertoire of nucleotide se-
quences that contribute to regulate different metabolic pathways, 
including cholesterol, glucose, and fatty acid metabolism in different 
tissues	(Brent,	2012;	Kouidhi	&	Clerget-Froidevaux,	2018).	In	addi-
tion, THs also modulate molecular pathways via protein–protein in-
teractions	such	as	PI3	K-AKT-FOXO1	and	mTOR-p70S6	K	signaling,	
which further modulate transcription (Cao et al., 2005; Davis et al., 
2016;	Flamant	et	al.,	2017;	Mullur	et	al.,	2014).	In	the	presence	or	ab-
sence of THs, THRs modulate the expression of more than 80 genes, 
mainly involved in mitochondrial biogenesis, oxidative phosphory-
lation, tricarboxylic acid cycle, de novo lipogenesis, and fatty acid 
catabolism	(Flores-Morales	et	al.,	2002;	Jackson-Hayes	et	al.,	2003;	
Singh et al., 2018). Overall, THs enhance oxygen consumption and 
ATP hydrolysis and reduce the coupled state of the mitochondria 
inducing	the	catabolism	of	all	 types	of	energy	sources	 (Johannsen	
et al., 2012; Weinstein et al., 1991). At the organismic level, THs in-
crease the basal metabolic rate, which is defined as rate of energy 
expenditure per time at rest.

THs are required for the development and maturation of several 
tissues	and	general	well-being	 (Ng	et	al.,	2013;	Nunez	et	al.,	2008).	
Hollowell et al. have defined the normal reference ranges of total T4 at 
57.9–169.9	nM	and	TSH	at	0.39–4.6	mIU/L	(Figure	2)	(Hollowell	et	al.,	
2002). It is estimated that in the general population the prevalence of 
TH alterations is ~0.5%–4% in areas with sufficient iodine exposure. 
There are different types of TH alterations (hyperthyroidism, subclini-
cal hyperthyroidism, subclinical hypothyroidism, and hypothyroidism) 
that lead to different clinical symptoms (Figure 2) (Hollowell et al., 
2002). Recent epidemiological meta-analyses have determined a clear 
association of TH alterations with mortality risk in the general pop-
ulation (Brandt et al., 2011; Kovar et al., 2015; Thvilum et al., 2012).

Clinical hypothyroidism, also known as overt hypothyroidism, is 
associated with metabolic deregulations, such as hypercholesterol-
emia, and increased low-density lipoprotein (LDL) levels, that increase 
the risk of developing diabetes mellitus (DM) and cardiovascular com-
plications	(Cappola	&	Ladenson,	2003;	Duntas,	2002;	Gao	et	al.,	2013;	
Sawin et al., 1985; Taylor et al., 2013; Wang et al., 2012). Subclinical 
hypothyroidism has also been associated with serious complications 
such as improper neurocognitive health, unbalanced bone metabo-
lism, propensity to develop type 2 DM (T2DM), cardiovascular-asso-
ciated risk factors, such as high LDL and very-low-density lipoprotein 
(VLDL) levels, hypertriglyceridemia, hypertension, atrial fibrillation, 
and obesity, as well as low levels of high-density lipoprotein (HDL) and 

premature	mortality	(Auer	et	al.,	2001;	Biondi	&	Cooper,	2008;	Biondi	
et al., 2002; Ceresini et al., 2013; Han et al., 2015; Pearce, 2012; Taylor 
et al., 2013). On the other side of the spectrum, hyperthyroid indi-
viduals also have increased risk of developing DM and cardiovascular 
complications that can cause premature death (Brandt et al., 2013; 
Franklyn et al., 2005). However, cardiovascular complications are 
not associated with hypercholesterolemia in hyperthyroid patients, 
and they normally exhibit reduced circulating cholesterol levels (Kim 
et al., 2020). In the case of subclinical hyperthyroidism with severely 
decreased TSH, clinical data indicate an increased incidence of de-
mentia	and	neurocognitive	dysfunction	(Aubert	et	al.,	2017;	Bensenor	
et al., 2010). Overt hyperthyroidism and even subclinical hyperthy-
roidism increase the risk of bone fractures (Blum et al., 2015; Nicholls 
et	al.,	2012;	Vestergaard	&	Mosekilde,	2003).	Altogether,	clinical	data	
clearly indicate that in the general population TH alterations are asso-
ciated with poor quality of life.

1.1  |  Thyroid hormones in aging

1.1.1  |  The regulation of thyroid hormones in 
aging and their role in longevity

Early observations have established that restricted thyroid func-
tion is associated with longer life span in small and large mammals, 

F I G U R E  2 Reference	ranges	and	medical	conditions	associated	
with thyroid dysfunction. This figure defines reference ranges 
for primary hypothyroidism, secondary hypothyroidism, tertiary 
hypothyroidism, subclinical hypothyroidism, euthyroidism, 
subclinical hyperthyroidism, primary hyperthyroidism/thyroxine 
intoxication, and TSH-producing adenoma/resistance to THs. TSH 
and T4 levels were defined as Hollowell et al. Total thyroxine can 
be	converted	from	nM	to	µg/dl,	dividing	by	12.87.	THs:	thyroid	
hormones. TSH: thyrotropin
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including	humans	 (Bowers	et	al.,	2013;	Buffenstein	&	Pinto,	2009;	
Jansen,	 et	 al.,	 2015).	Accordingly,	 higher	 serum	TSH	 levels	 and/or	
low serum free T4 levels have been associated with longer life expec-
tancy, indicating an important role of THs in aging (Beld et al., 2005; 
Gussekloo	et	al.,	2004,	2006;	Rozing,	et	al.,	2010).	Although	aging	
may not be considered a disease, it can be argued that the aging 
process is not a homogeneous physiological process. From an evo-
lutionary	point	of	view,	natural	selection	optimizes	mechanisms	and	
processes that allow functionality and survival until the end of the 
reproductive life. However, at post-reproductive age in the majority 
of species, there is little natural selection to fight against mecha-
nisms that produce unhealthy aging and death. Notwithstanding, in 
certain species such as humans, where familial and social interac-
tions can be relevant for the survival of young individuals, natural 
selection might still have a significant role to promote longevity 
(Tully	&	Lambert,	2011).	Given	these	interesting	facts,	it	is	difficult	
to define whether changes that occur in thyroid function in aged 
individuals are adaptive or maladaptive.

Although T4 secretion has been shown to be slightly reduced 
in	 aged	 individuals,	 the	 capacity	 to	metabolize	T4	by	deiodination	
mediated by DIO1 and DIO2 is decreased in certain tissues of aged 
individuals, and healthy aged individuals exhibit normal T4 levels 
(Duntas,	2018;	Mazzoccoli	et	al.,	2010;	Michalakis	et	al.,	2013).	In	this	
line, old rats exhibiting comparable TSH levels to young ones have 
lower DIO1 activity and separated studies in rodents have demon-
strated that hepatic levels of the TH transporter MCT8 are reduced 
in aged individuals, indicating that TH responsiveness changes with 
advancing	age	 (Chaker	et	al.,	2018;	Donda	&	Lemarchand-Beraud,	
1989). Moreover, there are evidences indicating that THs might have 
reduced capacity to activate certain post-receptor mechanisms of 
thyroid function in aged individuals (Morley, 2003).

The incidence of both hyperthyroidism and hypothyroidism 
in the older population has continuously risen in the past decades 
(Boelaert,	2013;	Duntas,	2018;	Surks	&	Hollowell,	2007).	The	diag-
nosis of hypothyroidism in elderlies is difficult since older people 
exhibit milder and fewer symptoms of TH deregulation. Moreover, 
symptoms experienced in these patients are readily interpreted as 
signs of the aging process, such as fatigue and neurological disorders, 
which	difficult	the	diagnosis	of	these	alterations	(Martinez-Iglesias,	
Garcia-Siva, Regadera, et al., 2009). Prevalence of subclinical hy-
pothyroidism	affects	~6%	of	the	population	aged	between	70	and	
79	years,	rising	up	to	10%	in	individuals	aged	over	80	years	(Boelaert,	
2013; Simonsick et al., 2009). Noteworthy, despite the association of 
subclinical hypothyroidism with several serious diseases and overall 
mortality in the general population, a study focused on older individ-
uals with subclinical hypothyroidism has refuted these associations 
(Simonsick et al., 2009). Actually, epidemiological studies in humans 
have even associated subclinical hypothyroidism with a reduced risk 
of all-cause mortality in individuals older than 65 years of age (Selmer 
et al., 2014). Furthermore, several reports have indicated that old in-
dividuals,	of	at	least	70	years	of	age	diagnosed	with	subclinical	hypo-
thyroidism (TSH levels in the range of 4.5–10.0 mIU/L), might even 
have certain physical function advantages and lower mortality when 

compared to individuals with normal thyroid function (Simonsick 
et al., 2009, 2016). Supporting the pro-longevity benefits of reduced 
thyroid function in the elderly, thyroxine replacement therapy was 
not efficient in improving cognitive function in old patients with sub-
clinical hypothyroidism (Park et al., 2010).

The prevalence of hyperthyroidism in individuals older than 
60	years	ranges	from	1%	to	15%	(Bannister	&	Barnes,	1989;	Chiovato	
et	al.,	1997;	Samuels	&	Feingold,	2000),	being	autoimmune	Graves’	
disease is the most common etiology of hyperthyroidism in aged indi-
viduals. The majority of prospective studies associate higher TH con-
centrations with increased frailty and decreased functional capacity 
in old patients (Ceresini et al., 2011; Chaker et al., 2018; Simonsick 
et al., 2009). In this line, low levels of TSH or elevated levels of free T4 
have been linked to compromised quality of life and increased mortal-
ity risk in the aged population (Gussekloo et al., 2004, 2006; Kramer 
et al., 2009; Parle et al., 2001; Singer, 2006; Waring, et al., 2012). The 
pro-aging effects of THs have been studied and active T3 binding to 
the THRβ isoform is known to produce DNA damage and premature 
senescence, making a causal connection with molecular processes of 
accelerated aging (Zambrano et al., 2014). Moreover, the detrimental 
effects of chronic hyperthyroidism in life expectancy have been ob-
served	in	mice	and	rats	(Lopez-Noriega	et	al.,	2019;	Ooka	&	Shinkai,	
1986). In this sense, wild-type mice exposed to T4 leading to a twofold 
increase in circulating T4 levels exhibit an ~50% reduction in mean and 
maximal	life	span	(Lopez-Noriega	et	al.,	2019).

Several studies have indicated that different TH levels within the 
normal range could also have physiological relevance. In this regard, 
high–normal free T4 levels are considered a risk factor for poor out-
comes for cardiovascular disease and mortality (Hogervorst et al., 
2008; Simonsick et al., 2016). Several reports have determined the 
effect of variations of TH levels within euthyroidism on gait speed 
in older people, indicating that higher TH levels are associated with 
slower gait speed (Bano, et al., 2016; Chaker et al., 2018; Simonsick 
et al., 2016). Remarkably, data in the literature indicate that subjects 
with low–normal free T4 levels or with high–normal TSH levels were 
expected	to	live	up	to	3.7	years	longer	than	individuals	with	high–
normal free T4 levels or low–normal TSH levels (Bano et al., 2019; 
Chaker et al., 2018). Moreover, lower free T4 levels have been asso-
ciated with better functional mobility and fitness in healthy euthy-
roid	individuals	with	ages	ranging	from	68	to	97	years,	which	has	led	
to propose low–normal free T4 levels as a marker for healthy aging 
(Rozing	et	al.,	2010;	Rozing	et	al.,	2010;	Simonsick	et	al.,	2016).	 In	
this line, lower metabolic cost of walking in adults is associated with 
greater gait speed and a slower decline (Schrack et al., 2012, 2016). 
Overall, these data are in agreement with the rate of living theory 
of aging, suggesting that a lower metabolic demand predisposes to 
longer health span and life span.

1.2  |  The special case of centenarians

There is strong evidence indicating that a genetic component pre-
disposes to longevity, which is supported by studies indicating that 
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long-lived parents have long-lived offspring (Gudmundsson et al., 
2000;	 Kerber	 et	 al.,	 2001;	 Rozing,	 et	 al.,	 2010).	 Individuals	 with	
exceptional	 long	longevity	 in	the	Ashkenazi	Jewish	population	and	
their families have been studied to determine factors that could be 
associated with this trait. Several reports have indicated that the off-
spring	of	Ashkenazi	Jewish	centenarians	have	higher	TSH	levels	than	
the offspring of non-centenarians and, even nonagenarians and their 
offspring, have increased TSH levels and/or decreased circulating 
T3/free	T4	levels	than	their	partners	(Atzmon	et	al.,	2009;	Jansen,	
et al., 2015). The Leiden longevity study has also supported the 
association between low thyroid function with lower risk of death 
from	cardiovascular	disease	and	longer	life	spans	(Rozing	et	al.,	2010;	
Rozing	et	al.,	2010;	Westendorp	et	al.,	2009).	In	this	line,	nonagenar-
ians with the lowest family mortality history score had the highest 
TSH	levels	and	slightly	 lower	 levels	of	free	T4	and	free	T3	(Rozing	
et al., 2010). Interestingly, TSH levels were found to be higher and 
free T3 levels were slightly lower when the offspring was compared 
to	 their	 partners	 (Rozing	et	 al.,	 2010).	 The	Leiden	 longevity	 study	
also	 analyzed	 nonagenarians	 with	 at	 least	 one	 nonagenarian	 sib-
ling, their offspring, and their partners (Westendorp et al., 2009). 
Remarkably, authors determined that offsprings of nonagenarian 
siblings had lower mortality rate, and lower propensity to develop 
cardiovascular disease and DM than their partners. These observa-
tions have led to the conclusion that increased TSH levels are associ-
ated with exceptional longevity, which has been further supported 
by studies in the oldest individuals of the general population dem-
onstrating the association of higher TSH levels with reduced old age 
mortality	(Atzmon	et	al.,	2009;	Gussekloo	et	al.,	2004).	An	elegant	
work	by	Jansen	et	al.	has	determined	TH	levels	and	TSH	secretion	
over 24 hours in the offspring from long-lived families and their part-
ners, since these hormones are known to have intra-day oscillations 
due to circadian rhythms. The objective was to evaluate alterations 
in energy metabolism. Results obtained led to the conclusion that 
familial	longevity	is	characterized	by	higher	TSH	secretion,	in	the	ab-
sence	of	alterations	on	TH	levels	or	energy	metabolism	(Jansen	et	al.,	
2015). The lack of differences in TH levels and energy metabolism 
is in sharp contrast with several theories of aging postulating that 
reduced energy metabolism promotes longer life expectancy.

Interestingly despite the fact that centenarians and their off-
spring tend to have lower TH function, the offspring of centenarians 
has a significantly lower body mass index when compared to the nor-
mal population and reduced risk of age-related diseases, further indi-
cating a genetic component of longevity (Terry et al., 2003). Further 
investigations	 in	the	Ashkenazi	Jewish	population	have	also	deter-
mined that a genetic background might be responsible for increased 
life span, since two specific single nucleotide polymorphisms in the 
TSHR	gene	(rs12050077	and	rs10149689)	were	linked	to	higher	TSH	
levels in centenarians and the offspring of centenarians of this pop-
ulation	(Atzmon	et	al.,	2009).	Based	on	the	Leiden	study	and	others,	
one can assume that in the general population of the oldest old, high 
levels of TSH usually are associated with healthy aging (Gussekloo 
et al., 2004). The fact that TSH levels and not only TH levels are 
associated with extended survival suggests that modulations in the 

negative feedback loop controlling TH production might contribute 
to	this	phenotype	(Atzmon	et	al.,	2009).

1.3  |  The molecular mechanisms of 
exceptional longevity

An intense area of research has been focused to identify the genetic 
predisposition to maximal longevity in animal models. Mutations in 
the DAF2 gene, homolog of the insulin-like growth factor 1 recep-
tor (IGF-1R) in Caenorhabditis elegans and in the IGF-1R in Drosophila 
melanogaster, are known to extend life span (Arantes-Oliveira et al., 
2003; Tatar et al., 2001). Remarkably, the longest living laboratory 
mice exhibit severely reduced thyroid function as observed in the 
Laron (growth hormone receptor knockout), Ames (Prop1-mutated), 
and Snell (Pit1-mutated)	 dwarf	 mice	 (Table	 1)	 (Brown-Borg	 2007,	
2009; Brown-Borg et al., 1996). These murine models show a 
healthy aging phenotype that includes, besides the restriction on 
thyroid function, the preservation of neurocognitive and muscular 
function, lower incidence of cancers, enhanced insulin responsive-
ness, and improved glucose tolerance (Brown-Borg, 2009; Brown-
Borg et al., 1996; Ikeno et al., 2003; Wiesenborn et al., 2014). At 
a molecular level, these mice exhibit reduced signaling through the 
insulin and IGF-1 pathways, which leads to restricted phosphoryla-
tion of downstream targets such as the serum/glucocorticoid-regu-
lated kinase and AKT. Restricted activity of these kinases promotes 
the translocation of FOXO transcription factors into the nucleus, 
where it modulates the transcription of genes that promote lon-
gevity	 (Brown-Borg	 et	 al.,	 1996;	Russell	&	Kahn,	 2007).	However,	
these beneficial effects on health span and/or life span might rely 
specifically on growth hormone production and/or sensitivity. In 
this context, we recently determined the direct effect of TH modu-
lation in health span and longevity using the PAX8 knockout murine 
model	 and	wild-type	mice	 treated	 or	 not	 with	 T4	 (Lopez-Noriega	
et al., 2019). PAX8 is the master transcriptional regulator of thyroid 
organogenesis required for TH production (Mansouri et al., 1998). 
Using these mice, we determined the effects in health status and 
life expectancy in mice suffering severe hypothyroidism, mild hy-
pothyroidism, and severe hyperthyroidism compared with control 
healthy mice. T4-treated hyperthyroid mice exhibited reduced body 
weight, increased food intake, and short life expectancy, indicating 
that elevated TH levels result in life-threatening toxicity. Not sur-
prisingly, the complete lack of TH production resulted in perinatal 
mortality	(Lopez-Noriega	et	al.,	2019).	The	direct	modulation	of	TH	
levels	using	PAX8	heterozygous	knockout	mice,	which	suffer	a	mild	
hypothyroidism due to a direct defect in the thyroid gland, while ex-
hibiting normal circulating levels of α-GSU of pituitary hormones in 
adulthood, did not result in improved health span or longer life span. 
As opposed to other experimental models of hypothyroidism (Hine 
et	al.,	2017;	Umezu	et	al.,	2020),	we	found	that	the	PAX8	heterozy-
gous mice faithfully recapitulate the phenotype of humans with hy-
pothyroidism, including insulin resistance, increased white adipose 
tissue (WAT) mass, and increased triglyceride content in skeletal 
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muscle	 and	 liver	 (Lopez-Noriega	 et	 al.,	 2019).	 Similar	 to	 humans,	
these mice also exhibit reduced basal metabolic rate and obesity 
while	maintaining	normal	energy	intake.	Moreover,	PAX8	heterozy-
gous mice exhibit poor performance in functional physical tests and 
accumulated oxidative damage, indicating that even mild alterations 
on TH levels (mild hypothyroidism) have profound effects in health 
span. These results indicate that low TH levels in exceptional long-
living dwarf mice are not responsible per se of longevity benefits. 
Our data support the notion that humans with exceptional longevity 
must have a specific genetic and/or epigenetic signature required to 
achieve longevity benefits (Bowers et al., 2013; Gesing et al., 2012; 
Jansen,	et	al.,	2015).	 In	addition,	our	data	also	 indicate	that	a	deli-
cate control of TH levels and function is required to sustain health 
and survival and that interventions based on the modulation of THs 
should not be targeted to improve the quality of life or life expec-
tancy in healthy individuals.

1.4  |  The effect of nutritional and pro-longevity 
interventions in thyroid function

Several animals, including humans under calorie restriction, a vari-
ety of nutritional interventions that extend health span and lifespan, 
have low T3 and/or high TSH levels in the blood (De Andrade et al., 
2015; Fontana et al., 2006; Muller et al., 2015; Ravussin et al., 2015). 
Remarkably, a recent report evaluating the effects of 4-week alter-
nate day fasting has clearly demonstrated a reduction in T3 levels 
in individuals adhered to the intervention, which is accompanied by 
improvements in markers of cardiovascular health (Stekovic et al., 
2020). In this line, a caloric restriction mimetic, resveratrol, rises 
TSH levels and has profound effects in the thyroid gland, decreas-
ing sodium-iodide symporter (NIS) and thyroglobulin (TG) expres-
sion	(Giuliani	et	al.,	2017).	Calorie	restriction	produces	effects	at	all	
compartments of the HPT axis, as well as in TH target tissues. In 
particular, reduced hypothalamic TRH expression, reduced pituitary 
TSHβ expression, reduced expression of TG and secretion of T3 and 
T4 in the thyroid gland, and reduced hepatic DIO1 expression have 
been described upon different forms of caloric restriction (Boelen 
et	 al.,	 2008;	 De	 Andrade	 et	 al.,	 2015;	 Palkowska-Gozdzik	 et	 al.,	
2017).	 Different	 nutritional	 interventions	 are	 also	 known	 to	 alter	
TH levels. In this regard, adult dogs consuming a low-carbohydrate 
high-protein high-fat diet exhibited greater circulating T4 levels than 
dogs fed with a high-carbohydrate low-protein low-fat diet (Chiofalo 
et al., 2019). Interestingly, Carew et al. evaluated the effect of indi-
vidual essential amino acid restriction on plasma TH concentrations 
in	chickens	(Carew	et	al.,	1997).	Results	indicated	that	changes	in	cir-
culating levels of T3 under protein deficiency may be a consequence 
of selected amino acid deficits, since only isoleucine deficiency re-
sulted in an elevation in plasma T3, while restrictions on other es-
sential amino acids did not alter T3 levels when compared to control 
fed chickens. However, the molecular mechanisms producing these 
changes remain unknown.

1.5  |  Thyroid hormones in diabetes mellitus

1.5.1  |  The implications of thyroid hormones in 
glucose and lipid metabolism

As previously mentioned, THs enhance oxygen consumption, induc-
ing	the	catabolism	of	all	types	of	energy	sources	(Johannsen	et	al.,	
2012; Weinstein et al., 1991). THs are efficient modulators of lipid 
and glucose metabolism. In particular, THs reduce circulating triglyc-
erides and cholesterol-containing lipoproteins. THs stimulate the 
expression of the Sterol response element-binding protein 2 (Srebp-
2) (Mullur et al., 2014). Increased levels of Srebp-2 contribute to 
enhance LDL receptor expression, which potentiates hepatic choles-
terol uptake. Moreover, THs are known to increase simultaneously 
lipolysis and liponeogenesis. Actually, THs are known to increase the 
expression of carnitine palmitoyltransferase Iα (mitochondrial fatty 
acid	 uptake)	 and	 the	 acetyl-coenzyme	 A	 carboxylase	 (lipogenic)	
(Mullur et al., 2014). A comprehensive analysis of these processes 
has indicated that liponeogenesis is enhanced to maintain lipid levels 
under conditions of high lipolysis (Oppenheimer et al., 1991). Under 
these circumstances, lipolysis is enhanced to provide substrates for 
thermogenesis. Carbohydrate metabolism is also influenced by TH. 
Gluconeogenesis and glycogenolysis are known to be enhanced by 
THs in a process that supports tissues with fuel to maintain their 
energy requirements. In this sense, hepatic insulin resistance in hy-
perthyroid individuals has been shown to increase gluconeogenesis 
and subsequent hepatic glucose output (Figure 3) (Klieverik et al., 
2008;	Potenza	et	al.,	2009).	Increased	rates	of	gluconeogenesis	are	
supported by increased Cory cycle activity, which implicates mus-
cle tissue in the provision of substrates for hepatic gluconeogenesis 
(lactate and certain amino acids such as alanine and glutamine). This 
process represents a dynamic buffer of glucose that allows its use 
by other tissues under glucose requirements when needed. Within 
the liver, THs are known to enhance the expression of the phos-
phoenolpyruvate carboxykinase, the rate-limiting step in gluconeo-
genesis, supporting a direct role of THs in the regulation of these 
processes (Park et al., 1999). Studies in mice exposed to T4 mim-
icking hyperthyroidism have also indicated that insulin signaling is 
active in insulin-target tissues even under fasting conditions, due to 
a deregulated function of the endocrine pancreas (e.g., increased in-
sulin	secretion	and	subsequent	levels	in	circulation)	(Lopez-Noriega	
et	al.,	2017).	Overall,	compelling	data	in	the	literature	indicate	that	
THs produce effects in several, if not all, tissues involved in glucose 
and lipid homeostasis (Figure 3).

1.5.2  |  Alterations of thyroid hormones in 
diabetes mellitus

The relationship between alterations on thyroid function and the de-
velopment of different types of DM has been the focus of intense re-
search. The prevalence of hyperthyroidism in subjects suffering DM 
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TA B L E  1 Genetic	alterations	causing	thyroid	dysfunction	associated	with	aging,	DM,	or	cancer	in	mice	and	humans.	ND:	not	determined

Gene Function Alteration

Phenotype

ReferencesAging DM Cancer

DIO2 TH activation/
inactivation

Homozygous	
knockout mouse

ND Several 
hallmarks of 
T2DM

ND Marsili et al. (2011)

SNPs in humans ND Several 
hallmarks of 
T2DM

ND Canani et al. (2005); 
Dora et al. (2010); 
Mentuccia et al. 
(2002)

DUOX2 TH production SNPs in humans ND ND Predisposes to 
thyroid cancer

Bann et al. (2019)

TG TH transport SNPs in humans ND ND Found in thyroid 
cancer

Hishinuma et al., 2005)

THRα TH signaling Homozygous	
knockout mouse

ND Protected from 
hallmarks of 
T2DM

ND Jornayvaz	et	al.	(2012)

Truncations and SNPs 
in cancer tissue in 
humans

ND ND Found in several 
types of 
cancer

Kim and Cheng 
(1830); Lin et al. 
(1999); Kamiya 
et al. (2002); 
Puzianowska-
Kuznicka	et	al.	
(2002); Chan and 
Privalsky 
(2006); Rosen 
and Privalsky 
(2011) McCabe 
et al. (1999); Cheng 
(2003)

THRβ TH signaling Truncations and SNPs 
in cancer tissue in 
humans

ND ND Found in several 
types of 
cancer

Kim and Cheng 
(1830); Lin et al. 
(1999); Kamiya 
et al. (2002); 
Puzianowska-
Kuznicka	et	al.	
(2002); Chan and 
Privalsky (2006); 
Rosen and 
Privalsky (2011); 
Cheng (2003)

TSHR TSH signaling Homozygous	
knockout mouse

Premature death Glucose 
intolerance

ND Abe et al. (2003); Yang 
et al. (2019)

Truncations and SNPs 
in cancer tissue in 
humans

ND ND Mutations found 
in HCC and 
thyroid cancer

Shih et al. (2018); 
Russo et al. (1995); 
Camacho et al. 
(2000)

PAX8 Thyroid 
development 
and function.

Homozygous	
knockout mouse

Premature death No No Lopez-Noriega	et	al.	
(2019); Mansouri 
et al. (1998)

Heterozygous	
knockout mouse

Unhealthy aging; 
normal life 
span

Several 
hallmarks of 
T2DM

Liver cancer Lopez-Noriega	et	al.	
(2019)

Human SNPs ND GDM Propensity to HCC Martin-Montalvo et al. 
(2019); Ma et al. 
(2017)

(Continues)
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is greater than in non-diabetic subjects (Biondi et al., 2019), and a 
nationwide Danish study has determined that patients suffering hy-
perthyroidism have greater risk to develop DM (Brandt et al., 2013). 
Among adult patients with T2DM, ~4.4% have overt hyperthyroid-
ism and 2%–4% have subclinical hyperthyroidism (Biondi et al., 
2019). Interestingly, improved diabetic control in T2DM patients 
normalizes	 TSH	 levels	 in	 patients	 with	 subclinical	 hyperthyroid-
ism, suggesting that treatments improving T2DM might contribute 
to	 normalize	 thyroid	 function	 (Celani	 et	 al.,	 1994).	However,	 a	 re-
cent report has indicated that non-diabetic patients diagnosed with 
hyperthyroidism have increased risk to develop T2DM later in life, 
suggesting that thyroid dysfunction might precede diabetogenic 
processes (Chen et al., 2019). In this line, while hyperthyroid pa-
tients exhibit increased basal hepatic glucose production and in-
creased fasting insulin levels when compared to healthy individuals, 
hyperthyroid	 patients	 treated	 with	 methimazole	 rendered	 euthy-
roid, exhibited significantly reduced levels on the same parameters, 
reaching the levels of the healthy control group (Cavallo-Perin et al., 
1988). An independent report has also indicated that patients with 
overt or subclinical hyperthyroidism exposed to a glucose tolerance 
test have higher circulating levels of glucose and insulin (Maratou 
et al., 2010). Glucose intolerance in these patients is due to potenti-
ated hepatic gluconeogenesis (Maratou et al., 2010). These effects 
might be related to the control that exerts THs in the expression of 
genes involved in glucose and lipid metabolism and suggests that 
several physiological aberrations are common to hyperthyroidism 
and T2DM, which contribute to the loss of metabolic homeostasis. 
Longitudinal studies have also investigated the association of altera-
tions in thyroid function and the prevalence of DM and metabolic 
syndrome in older adults (Heima et al., 2013; Waring, et al., 2012). 
At baseline, individuals in the metabolic syndrome group exhibited 
significantly higher TSH values than individuals not included in the 
metabolic syndrome group. The authors indicated that increased 
circulating levels of TSH were associated with greater prevalence 
of metabolic syndrome, even in participants within the normal 
range (Waring et al., 2012). Another longitudinal study performed 
in Amsterdam also associated higher prevalence of metabolic syn-
drome and obesity with individuals exhibiting higher circulating 
levels of TSH (Heima et al., 2013). Separated research as also indi-
cated that hypothyroidism is associated with insulin resistance and 

dyslipidemia	(Dimitriadis	et	al.,	2006;	Gierach	&	Junik,	2015;	Wang,	
2013). Further evidence also indicates an increased risk of DM in 
patients with hypothyroidism and a systematic review reported the 
increased prevalence of even subclinical hypothyroidism in patients 
with T2DM (Gronich et al., 2015; Han et al., 2015). As opposed to 
compelling research indicating the association of DM and thyroid 
dysfunction, which is supported by the well-described role of THs 
on glucose metabolism and insulin secretion, other studies have 
failed to link hypothyroidism to the development of T2DM (Ishay 
et al., 2009; Radaideh et al., 2004).

A growing evidence is associating alterations in thyroid function 
with other types of DM such as type 1 DM (T1DM) and gestational 
DM (GDM). Several studies have shown that patients with T1DM, 
an autoimmune disease, are prone to exhibit autoimmune thy-
roid	 diseases	 such	 as	Hashimoto's	 thyroiditis	 and	Graves’	 disease.	
Current data indicate that up to 30% of adults with T1DM have thy-
roid diseases of autoimmune origin (Araujo et al., 2008; Shun et al., 
2014). Genetic studies have revealed susceptibility genes for this 
syndrome, which include the human leukocyte antigen, cytotoxic 
T-lymphocyte-associated antigen 4, protein tyrosine phosphatase 
non-receptor type 22, forkhead box P3, and the interleukin-2 recep-
tor	alpha/CD25	gene	region	(Dittmar	&	Kahaly,	2010).	These	genes	
are involved in immunological synapse and T-cell activation, sug-
gesting that similar pathogenic processes occur in T1DM and thyroid 
diseases	of	autoimmune	origin	(Dittmar	&	Kahaly,	2010).

Gestational DM is a common complication that affects ~10% of 
all pregnancies associated with adverse pregnancy outcomes, such 
as preeclampsia, macrosomia, and caesarean delivery (International 
Association of Diabetes, 2010; Petra et al., 2019). Upon delivery, 
GDM disappears but in many cases different types of DM (GDM 
in a subsequent pregnancy or T2DM) can spur later in life (Martin 
et	al.,	1999;	Seely	&	Solomon,	2003).	Among	the	changes	that	occur	
during pregnancy, it is known that the placenta increases the secre-
tion of pro-inflammatory cytokines that induce insulin resistance to 
favor nutrient availability to the fetus (Kim et al., 2010). Under these 
circumstances (e.g., transient insulin resistance during pregnancy), 
GDM is the result of compromised capacity of pancreatic β-cells to 
increase insulin secretion to compensate insulin resistance in insu-
lin-target tissues (Kuhl, 1991). Several reports have determined that 
maternal hypothyroidism predisposes the offspring to exhibit limited 

Gene Function Alteration

Phenotype

ReferencesAging DM Cancer

PIT-1 TRH/TSH 
production

Homozygous	loss-
of-function point 
mutation in mouse

Delayed aging Increased 
insulin 
sensitivity

Reduced 
occurrence of 
spontaneous 
cancer

Brown-Borg	(2007);	
Flurkey et al. 
(2001); Alderman 
et al. (2009)

PROP-1 TRH/TSH 
production

Homozygous	loss-
of-function point 
mutation in mouse

Delayed aging Increased 
insulin 
sensitivity

Delayed 
spontaneous 
occurrence of 
cancer

Brown-Borg	(2007)	
Brown-Borg et al. 
(1996); Ikeno et al. 
(2003)

TABLE	1 (Continued)
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insulin secretion and to develop glucose intolerance, increasing the 
risk of T2DM in the offspring (Karbalaei et al., 2013). Moreover, sep-
arated reports have also determined that hypothyroidism is associ-
ated with GDM (Martin-Montalvo et al., 2019; Sell et al., 2008). In 
this regard, we found several mutations in PAX8 leading to hypothy-
roidism associated with the development of GDM, indicating that 
human GDM could have a genetic component (Martin-Montalvo 
et al., 2019). Remarkably, this work has revealed that PAX8 expres-
sion in pancreatic islets modulates cellular pathways involved in cel-
lular survival (Martin-Montalvo et al., 2019).

1.5.3  |  The physiological and pathophysiological 
role of thyroid hormones in the endocrine pancreas

One of the main organs involved in the control of circulating glucose 
levels is the endocrine pancreas. Extensive research has demon-
strated the role of THs in the differentiation, maturation, and func-
tionality	of	metabolic	tissues	(Figure	3)	(Mastracci	&	Evans-Molina,	
2014). In vivo research has determined that during postnatal devel-
opment circulating levels of T3 increase and induce the expression of 
the MAF bZIP transcription factor A (MAFA) and THRs in pancreatic 

F I G U R E  3 Scheme	summarizing	the	processes	regulated	by	THs	in	the	main	metabolic	tissues.	THs	exert	profound	effects	in	metabolic	
tissues. THs enhance GK and MAFA expression in the pancreas favoring a rapid maturation and turnover of β cells. THs also potentiate 
insulin expression and secretion in the endocrine pancreas. Insulin-target tissues respond increasing the activity of insulin signaling, which 
produces increased rates of lipolysis and gluconeogenesis in the liver and proteolysis and mitochondrial biogenesis in the skeletal muscle. 
Adipose	tissues	respond	to	THs	increasing	lipolysis	and	lipid	mobilization.	Browning/beiging	of	adipocytes	occurs	in	the	WAT	and	increasing	
thermogenesis via increased UCP expression and subsequent lipolysis occurs in the BAT. AKT, protein kinase B. FOXO: forkhead box O 1. 
GK: glucokinase. GLUT4: glucose transporter 4. MAFA: MAF bZIP transcription factor A
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β-cells	to	facilitate	their	maturation	(Aguayo-Mazzucato	et	al.,	2011,	
2013, 2015). Experiments performed in adult wild-type mice have 
also indicated severe effects of TH supplementation in β-cells, en-
hancing concomitantly β-cell	 proliferation	 and	 apoptosis	 (Lopez-
Noriega	 et	 al.,	 2017).	 Remarkably,	 β-cells of mice treated with T4 
exhibit increased glucokinase (GK) expression (Figure 3). Enhanced 
GK activity is associated with increased β-cell proliferation and ap-
optosis, which might facilitate a rapid β-cell turnover (Kassem et al., 
2000,	2010;	Lopez-Noriega	et	al.,	2017).	THs	are	involved	in	β-cell 
aging since they induce the expression of the senescence marker 
p16INK4A (also known as CDKN2A). The effects of THs via binding 
to the different THR produce the maturation (MAFA) and the senes-
cence (p16INK4A) of β-cells. THRβ1 binds to the TRE site 2 of MAFA 
promoter, and THRα binds to the TRE site 5 of the CDKN2A pro-
moter	(Aguayo-Mazzucato	et	al.,	2018).	At	the	organismic	level,	mice	
treated with T4 exhibit greater insulin expression and secretion in 
pancreatic islets under fasting conditions, indicating that the insulin 
secretion machinery is constitutively active to facilitate nutrient up-
take	by	insulin-target	tissues	(Figure	3)	(Lopez-Noriega	et	al.,	2017).

Separated	 research	 in	 mild	 hypothyroid	 PAX8	 heterozygous	
knockout mice, which exhibit several hallmarks of T2DM, has in-
dicated that pancreatic islets exhibit a transcriptional profile asso-
ciated with increased metabolic activity and impaired antioxidant 
capacity	 (Lopez-Noriega	et	al.,	2019).	Pancreatic	β-cells are partic-
ularly vulnerable to oxidative stress due to a very limited expression 
of antioxidant genes, such as catalase and glutathione peroxidase 
(e.g.	less	than	5%	of	hepatic	levels)	(Tiedge	et	al.,	1997).	More	impor-
tantly, under typical situations of cellular stress such as high glucose, 
high oxygen, or heat shock, pancreatic islets have a virtually absent 
capacity	to	increase	the	expression	of	antioxidant	enzymes	(Tiedge	
et	al.,	1997).	Situations	of	enhanced	metabolic	activity	concomitant	
with restricted antioxidant defenses can generate oxidative stress, 
which may lead to the accumulation of oxidative damage. Under 
these situations, if cellular stress is not resolved pancreatic endo-
crine function might be compromised and apoptotic processes might 
be	initiated	(Supale	et	al.,	2012;	Tiedge	et	al.,	1997).

1.5.4  |  Thyroid hormone-related alterations in 
insulin-target tissues

Alterations in TH function have tremendous effects in liver tissue 
(Figure 3). THs induce increases in intracellular glucose production 
and insulin resistance (Klieverik et al., 2008). TH-mediated insulin 
resistance might be produced by increased levels of cytokines gen-
erated in peripheral tissues, such as the adipose tissue (Gierach et al., 
2014; Mitrou et al., 2010). Compromised insulin sensitivity produced 
by THs can per se have important consequences for glucose homeo-
stasis given the central role of insulin action on the regulation of 
hepatic gluconeogenesis and glycogenolysis (Hatting et al., 2018). 
Interestingly, the effects on endogenous glucose production in the 
liver have been shown to be mediated, in some part, by the effects of 
THs in the paraventricular nucleus of the hypothalamus that mediate 

effects via sympathetic projections to the liver (Klieverik et al., 2008, 
2009). In this regard, elegant studies conducted by Klieverik et al. 
have shown that the increases in endogenous glucose production 
mediated by the paraventricular nucleus are independent of circulat-
ing levels of glucoregulatory hormones (Klieverik et al., 2009; Martin 
et al., 1999). Moreover, these studies have demonstrated that he-
patic sympathetic denervation entirely blunts the paraventricular 
TH-induced increase in endogenous glucose production.

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifes-
tation of metabolic syndrome. Several alterations have been found 
in the pathogenesis of NAFLD in hypothyroid patients, which include 
the development of insulin resistance, dyslipidemia, and increased 
adiposity (Dimitriadis et al., 2006; Pagadala et al., 2012; Pucci et al., 
2000; Waring, et al., 2012). Epidemiological studies have determined 
the existence of an inverse correlation between circulating TH levels 
and the incidence of NAFLD (Ludwig et al., 2015). Separated evi-
dence has also indicated that patients with NAFLD exhibit higher 
serum TSH levels and lower free T4 levels (Xu et al., 2011). In this 
line, hypothyroidism is more frequent in patients with NAFLD when 
compared to healthy individuals matched for ethnicity, age, sex, and 
body mass index. Hypothyroidism was also higher in patients with 
non-alcoholic steatohepatitis (NASH), a more serious form of fatty 
liver disease, when compared to patients suffering NAFLD without 
NASH. Individuals diagnosed with hypothyroidism were 2.1 (95% 
confidence interval: 1.1–3.9, p = 0.02) and 3.8 (95% confidence inter-
val: 2–6.9, p < 0.001) times more likely to suffer NAFLD and NASH, 
respectively (Pagadala et al., 2012). Moreover, NASH and advanced 
fibrosis are more prevalent in patients with overt and subclinical 
hypothyroidism (Kim et al., 2018). Interestingly, besides overt and 
subclinical hypothyroidism, even upper TSH levels within the eu-
thyroid range have also been associated with NAFLD, irrespective 
of well-established metabolic risk factors (Bano et al., 2016; Chung 
et al., 2012; Pagadala et al., 2012). Moreover, hypothyroid patients 
exhibit increased esterification of hepatic fatty acids with restricted 
lipoprotein lipase activity and decreased hepatic uptake of HDL, in-
dicating an improper cholesterol metabolism (Pearce, 2004; Pucci 
et	al.,	2000).	Mild	hypothyroid	PAX8	heterozygous	knockout	mice	
exhibit increased hepatic levels of CD36	expression	(Lopez-Noriega	
et al., 2019), a long-chain fatty acid translocase that participates in 
fatty acid uptake (Greco et al., 2008; Pepino et al., 2014). Increased 
fatty acid uptake mediated by CD36 might contribute to potentiate 
hepatic	lipid	accumulation	in	mild	hypothyroid	mice	(Lopez-Noriega	
et al., 2019).

THs play also a significant role in other insulin-target tissues 
such as the adipose tissue and the skeletal muscle (Figure 3). The 
association of hypothyroidism and compromised insulin-stimulated 
glucose uptake in muscle and adipose tissue has been documented 
on animals and humans (Dimitriadis et al., 2006; Pagadala et al., 
2012; Rochon et al., 2003). Nonetheless, conflicting results have 
been	obtained	when	hyperthyroid	patients	were	analyzed	for	posi-
tron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-d-glu-
cose integrated with computed tomography (18F-FDG PET/CT). 
One report indicated that hyperthyroid patients exhibit increased 
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radioactive glucose uptake in brown adipose tissue (BAT) when com-
pared to euthyroid patients (Lahesmaa et al., 2014). A second study 
obtained similar results (e.g., increased radioactive glucose uptake) 
in hypothyroid patients suffering thyroid carcinomas when these pa-
tients became mildly hyperthyroid upon TSH suppression (Broeders 
et al., 2016). However, other studies have shown no differences in 
glucose uptake in patients with hyperthyroidism (Zhang et al., 2014) 
and in hypothyroid patients with thyroid cancer rendered thyrotoxic 
(Gavrila	et	al.,	2017).

Interestingly, the effects of THs on WAT browning have been 
described, indicating that T4 supplementation for 14 days produces 
a marked increase in radioactive glucose uptake in suprascapular 
subcutaneous WAT regions (Figure 3). Transcriptional analyses in-
dicated a marked induction of UCP1 and DIO2 expression, which 
suggests increased energy expenditure via thermogenesis (Skarulis 
et al., 2010). Given the inconsistent results on BAT function in hy-
perthyroid subjects, it is plausible that the TH effects on WAT are 
more physiologically relevant than the effects on BAT. Supporting 
this hypothesis, research carried out in rats has indicated that 
triiodothyroacetic acid induces the expression of UCP1 in abdom-
inal	 WAT	 (Medina-Gomez	 et	 al.,	 2008)	 and	 long-term	 adminis-
tration of the THRβ analog sobetirome produced the browning of 
subcutaneous WAT in obese rodents (Lin et al., 2015; Villicev et al., 
2007).	 Remarkably,	 sobetirome	 administration	 to	 ob/ob	mice	 pro-
duced a decrease in BAT thermogenic function, further suggesting 
that metabolic effects of sobetirome are mediated by WAT brown-
ing. Interestingly, hypothyroidism is also associated with increased 
WAT browning (Weiner et al., 2016). Weiner et al. determined that 
WATs at different locations of hypothyroid mice exhibit markers of 
WAT browning, such as multilocular UCP1 expression and reduced 
BAT	activity	using	 (Nunez	et	al.,	2008)	F-FDG	PET/CT	determina-
tions (Weiner et al., 2016). These data indicate that under conditions 
of compromised BAT functionality compensatory WAT browning 
occurs.

THs exert important influences in energy metabolism, which 
predisposes tissues and organs with a high metabolic demand, such 
as skeletal muscle, to severe effects in patients suffering hypothy-
roidism and hyperthyroidism (Figure 3). In skeletal muscle, glucose 
uptake represents the limiting step in glucose metabolism and it is 
mediated by the plasma membrane glucose transporter 4 (Glut4). 
THs stimulate Glut4 expression through a positive TRE (DR+4) site 
in its promoter, which represents a direct link with carbohydrate 
metabolism	 (Torrance	 et	 al.,	 1997).	 Studies	 focused	 to	 determine	
the physiological and pathophysiological role of THs in skeletal mus-
cle	have	indicated	that	up	to	57%	of	patients	with	hypothyroidism	
exhibit muscle damage, revealed by high levels of creatine kinase 
(Hekimsoy	 &	 Oktem,	 2005).	 Remarkably,	 TH	 treatment	 on	 hypo-
thyroid patients reduced creatine kinase levels and improved mus-
cle	complications	(Hekimsoy	&	Oktem,	2005;	Rodolico	et	al.,	1998).	
Individuals suffering hyperthyroidism also display muscle weakness, 
and	 the	 normalization	 of	 TH	 function	 in	 these	 patients	 increases	
muscle strength and muscle cross-sectional area (Brennan et al., 
2006). Insulin responsiveness is improved upon TH administration 

in	 patients	 and	 experimental	 models	 of	 hypothyroidism	 (Lopez-
Noriega et al., 2019; Rochon et al., 2003). At the tissue level, THs 
promote insulin sensitivity in skeletal muscle, an effect that depends 
on the proper conversion of T4 to T3 by DIO2. Accordingly, cell cul-
tures of myotubes developed from DIO2 knockout mice and DIO2 
knockout	mice	exhibit	insulin	resistance	(Table	1)	(Grozovsky	et	al.,	
2009; Marsili et al., 2011). In vivo research mice treated with T4 ren-
dered hyperthyroid has shown that insulin signaling is chronically 
activated in skeletal muscle lysates, which might be detrimental at 
long	term	(Figure	3)	(Lopez-Noriega	et	al.,	2017).

1.5.5  |  Therapeutic approaches based on thyroid 
hormones or thyromimetics for diabetes mellitus

As previously mentioned hypothyroidism is associated with meta-
bolic deregulations that increase the propensity to develop T2DM. 
TH	 supplementation	 normalizes	 parameters	 associated	 with	 DM,	
such as lipid and lipoprotein levels, diminishing the risk of developing 
this	disease	(Tzotzas	et	al.,	2000).	Studies	in	mice	have	also	supported	
the potential of THs to improve metabolic health. TH supplementa-
tion has been shown to enhance glucose tolerance in wild-type mice 
(Lopez-Noriega	et	al.,	2017)	and	to	attenuate	hyperglycemia	in	leptin	
receptor-deficient	mice	 (Lin	&	Sun,	2011).	Remarkably,	 research	 in	
mice has also determined the potential of THs to improve metabolic 
health	and	survival	in	experimental	models	of	T1DM	(Lopez-Noriega	
et	 al.,	 2017;	 Verga	 Falzacappa	 et	 al.,	 2009).	Our	 results	 indicated	
that levothyroxine supplementation blunted the onset of experi-
mental	 T1DM	 using	 the	 RIP-B7.1	 model,	 which	 recapitulates	 the	
β-cell-specific autoimmune attack that suffer patients with T1DM 
(Lopez-Noriega	et	al.,	2017).	Interventional	studies	in	humans	using	
levothyroxine and the thyroxine enantiomer dextrothyroxine in-
dicated that serum levels of LDL cholesterol were improved upon 
treatment. However, treatments were discontinued because partici-
pants developed serious adverse effects, substantiating the narrow 
therapeutic window of interventions based on the use of THs (Ochs 
et	al.,	2008;	Sherman	et	al.,	1997).	Notwithstanding,	the	beneficial	
effects of interventions based on the use of THs in certain meta-
bolic parameters have prompted the development of thyromimetics 
as promising agents to improve metabolic health. Newly generated 
thyromimetics could in principle bestow therapeutic benefits in spe-
cific cell types or organs producing an improvement of metabolic ho-
meostasis, while avoiding side effects (Finan et al., 2016; Shoemaker 
et al., 2012). As such, fatty liver might be treated with thyromimet-
ics	designed	to	target	specifically	hepatic	tissue	(Taylor	et	al.,	1997).	
An elegant work from Finan et al. (2016) has determined that the 
liver could be directly targeted using a glucagon-T3 mixed agonist, 
which mediates the selective delivery of T3 to the liver. In principle, 
similar approaches could potentially be effective to target the WAT, 
BAT, or pancreatic islets, since THs are known to play an important 
role	in	these	tissues	(Gavrila	et	al.,	2017;	Lopez-Noriega	et	al.,	2017).	
Separated research has also investigated interventions targeting 
THRα1 or THRβ1 to obtain beneficial effects in target tissues while 
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avoiding undesirable effects on other target organs (Mishra et al., 
2010). The THRβ agonists sobetirome and eprotirome have proved 
effectiveness in several experimental models reducing circulating 
LDL levels without altering heart rate (Martagon et al., 2015; Perra 
et al., 2008; Sharma et al., 2014). Separated research has also shown 
beneficial effects in hepatic steatosis, cholesterol, and triglyceride 
levels	in	rodents	(Cable	et	al.,	2009;	Erion	et	al.,	2007;	Grover	et	al.,	
2003). However, in several cases, thyromimetics (e.g., eprotirome 
and DIPTA) have failed due to inefficacy or toxicity in human or pre-
clinical research (Ladenson et al., 2010; Sjouke et al., 2014; van der 
Valk. et al., 2014). Remarkably, the selective THRβ agonists MGL-
3196 and VK2809 have recently been investigated as lipid-lowering 
agents and in phase 2 clinical trials to treat NASH (Lonardo et al., 
2017;	Sinha	et	al.,	2019;	Taub	et	al.,	2013).	The	latest	results	using	
MGL-3196 in humans indicate a significant reduction in hepatostea-
tosis after 12 and 36 weeks of treatment (Harrison et al., 2019; Sinha 
et al., 2019). Moreover, VK2809 has been shown to reduce hepatic 
lipid content and circulating LDL levels (Sinha et al., 2019). However, 
given the potential side effects of thyromimetics, a better under-
standing of their selective metabolic actions and experimental and 
clinical studies evaluating the long-term effects of these interven-
tions is needed. Altogether, we believe that the proof of concept of 
the efficacy of thyromimetics has been established in several patho-
physiological contexts. Sufficient arguments are available to foster 
research to generate site-specific modulators of TH function for DM 
and other diseases.

1.6  |  Thyroid hormones in cancer

1.6.1  |  The alterations of thyroid hormone 
function and cancer

In the scientific literature, there are enough evidences to clearly 
state that TH dysfunction increases the risk to develop different 
types of cancers, as elegantly reviewed by Liu et al. (2019). Recent 
reports have indicated that hyperthyroidism is associated with 
higher risks to develop thyroid cancer, breast cancer, and prostate 
cancer, while hypothyroidism is associated with a higher risk to de-
velop thyroid cancer specifically within the first 10 years of follow-
up (Hellevik et al., 2009; Kim et al., 2019; Tran et al., 2020). Another 
report has indicated that subclinical hypothyroid women without a 
previous history of thyroid disease have higher risk of breast cancer, 
bone cancer, or skin cancer (Tseng et al., 2015), whereas a differ-
ent investigation indicates that breast cancer in hypothyroid women 
was associated with lower risk and better prognostic markers such 
as	smaller	tumor	size	or	fewer	metastases	(Cristofanilli	et	al.,	2005).	
Pertinent questions arise from epidemiological studies that in the 
majority of the cases have not been addressed. In this regard, in-
formation	related	to	treatments	used	to	normalize	thyroid	function,	
which might influence the risk, progression, and mortality of can-
cer, is not described (Hellevik et al., 2009; Kim et al., 2019; Pinter 
et	al.,	2017;	Tseng	et	al.,	2015).	Limitations	on	clinical	 studies	and	

conflicting results in the literature indicate that further studies are 
required to define the exact contribution of TH deregulations in car-
cinogenesis and cancer progression.

Of particular interest is the association of hepatocellular car-
cinoma (HCC) and hypothyroidism. Historically, the main known 
causes of HCC are viral hepatitis viruses, tobacco smoking, alcohol 
abuse, non-alcoholic steatohepatitis, T1DM, T2DM, autoimmune 
hepatitis, aflatoxin, and cirrhosis (Adami et al., 1996; Bosetti et al., 
2014; Dragani, 2010; Hassan et al., 2002). However, genetic predis-
position might play a role in the risk of HCC since it has been esti-
mated that ~1/5 of diagnosed HCCs in the United States of America 
are	not	associated	with	known	predisposing	risk	factors	(El-Serag	&	
Mason, 2000). Clinical findings have supported that hypothyroid-
ism predisposes to HCC development, suggesting that improper TH 
function might represent a risk factor for this type of cancer (Hassan 
et	al.,	2009;	Reddy	et	al.,	2007).	Reddy	et	al.	reported	a	significantly	
increased odds ratio of 6.8 (95% confidence interval, 1.1–42.1) of 
hypothyroidism in patients with HCC with unknown cancer etiology 
when compared to patients with HCC with alcoholic liver disease or 
hepatitis C after adjusting for confounding factors. In this report, a 
twofold higher risk of HCC was determined for subjects with hy-
pothyroidism when compared to patients without thyroid disorders. 
This association was specifically significant in female patients, even 
when analyses were adjusted to gender as a covariate. In this line, 
supportive	 research	 further	 analyzed	 the	 association	 of	 hypothy-
roidism and HCC risk in men and women (Hassan et al., 2009). In 
this work, authors determined that long-term (10 years or more) hy-
pothyroidism was associated with greater risk of HCC specifically in 
women. Remarkably, the association between hypothyroidism and 
HCC in women was independent of other established risk factors 
for HCC. Supporting the role of thyroid dysfunction in HCC progres-
sion,	TSH	levels	greater	than	3.77	mIU/L	have	been	associated	with	
larger HCCs and increased levels of free T4 at the time of diagno-
sis	have	been	associated	with	reduced	survival	(Pinter	et	al.,	2017).	
Separated research in mammals indicates that hypothyroidism can 
directly cause liver cell damage, representing a risk factor for spon-
taneous	 liver	 cancer.	 Indeed,	 PAX8	 heterozygous	 knockout	 mice,	
which have a direct disorder in thyroid tissue leading to a mild hypo-
thyroidism, have a ~ threefold increased incidence of liver cancers 
(Lopez-Noriega	et	al.,	2019).	In	principle,	since	hepatocarcinogenesis	
is a multistep process that originates from premalignant lesions, the 
severity of hypothyroidism and the effectiveness of treatments to 
normalize	TH	function	might	affect	the	risk	to	develop	HCC.

1.6.2  |  Molecular mechanisms of cancer in thyroid 
hormone dysfunction

The role of TH signaling in cancer has also been investigated, and 
growing evidences indicate that THRs play a significant role in in-
hibiting the proliferation, transformation, progression, invasion, and 
metastatic	processes	in	tumors	(Garcia-Silva	&	Aranda,	2004;	Garcia-
Silva et al., 2011; Liu et al., 2019). Supporting the role of THRs in 
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cancer, the lack of expression or mutations on THRs has been identi-
fied in several tumors, such as HCC, renal cell carcinomas, and papil-
lary	 thyroid	 carcinomas	 (Table	1)	 (Chan	&	Privalsky,	2006;	Kamiya	
et	 al.,	 2002;	 Kim	 &	 Cheng,	 1830;	 Lin	 et	 al.,	 1999;	 Puzianowska-
Kuznicka	et	al.,	2002).	Remarkably,	 several	 reports	have	described	
that	~70%	of	HCC	harbor	mutations	 in	THRα or THRβ and several 
tumors	exhibit	mutation	in	both	loci	(Chan	&	Privalsky,	2006;	Kim	&	
Cheng, 1830; Lin et al., 1999). However, despite compelling evidence 
linking THR gene mutations to several cancers, other reports have 
not identified THR mutations in deep sequencing analysis of HCCs 
(Ahn	et	al.,	2014;	Cleary	et	al.,	2013;	Guichard	et	al.,	2012;	Schulze	
et al., 2015; Totoki et al., 2014), indicating that further research 
must be performed to fully determine the role of THR mutations in 
HCC. Notwithstanding, researchers have proposed that THRs act as 
tumor suppressors via inhibition of WNT signaling, inhibition of the 
expression of CDK2 and cyclin E, and stimulation of TGFβ signaling. 
These alterations lead to cell cycle arrest at the G1 phase of cell cycle 
(Yen et al., 2006). Mutant variants of TRHs, such as THRα-V390A 
and THRα-E350 K/P398S, act as dominant negative of the wild-type 
THRs and might escape from these regulatory mechanisms, promot-
ing	cancer	progression	(Chan	&	Privalsky,	2006;	Lin	et	al.,	1997;	Sinha	
et al., 2018). The main effects of these mutations are the impairment 
of T3 binding and altered recognition of TRE, leading to deregulation 
of	the	expression	of	THR	targets	 (Rosen	&	Privalsky,	2011).	 In	this	
regard,	whereas	wild-type	THRs	modulate	c-Jun/AP-1	function	and	
suppress anchorage-independent growth, THR mutants are ineffec-
tive	(Chan	&	Privalsky,	2006).	Research	in	animals	has	indicated	that	
mice transgenic for v-erbA, an avian retroviral gag gene fused to a 
mutated THR that produces a dominant negative of the THRα, exhib-
ited hypothyroidism and increased incidence of HCCs in male mice 
(58% in transgenic mice vs. 8% in control mice) (Barlow et al., 1994). 
These data further indicate that inadequate TH signaling predisposes 
to liver cancer in male mice (Barlow et al., 1994). Reports have indi-
cated that early in the tumorigenic process, there is a restriction on 
THRα1 and THRβ1 expression, which favors the progression to HCC 
(Frau et al., 2015). Interference of THRβ1 expression promoted cell 
growth and migration in HCC cells. Moreover, down-regulation of 
THRβ1 induced the proliferative capacity, indicating that this recep-
tor is a negative regulator of cell replication and that hypothyroidism 
favors the progression of HCC (Frau et al., 2015). These data suggest 
that THR agonists could be studied as therapeutic targets to block 
HCC development and progression.

Additional research has also pointed that other components of TH 
signaling might affect different aspects of carcinogenesis and cancer 
progression. In particular, the interaction of T4 with integrin αvβ3 
has been shown to play a significant role in cancer progression and 
invasion. Integrin αvβ3 is a cell adhesion molecule that connects the 
cytoskeleton with the extracellular matrix or other cells. Interaction 
of T4 with integrin αvβ3 is a non-genomic action of THs that supports 
angiogenesis. This process facilitates the generation of new blood 
vessels during development and wound healing (Al Husseini et al., 
2013; Liu et al., 2014; Zhang et al., 2019). However, the same process 
favors cancer progression (Davis et al., 2016; Schmohl et al., 2019). 

At mechanistic level, T4-activated integrin αvβ3 enhances signaling 
non-genomic action of THs via activation of MAPK/ERK1/2 and/
or PI3 K signaling. Activation of these signaling pathways produces 
cellular proliferation, which might favor cancer progression, and 
blockade of apoptotic processes and metastasis (Davis et al., 2016; 
Mousa et al., 2012, 2018; Weingarten et al., 2018). Moreover, sep-
arated evidences indicate that differences in deiodinase expression 
and differential splicing have been found in several cancers (Meyer 
et al., 2008) and increased TSHR expression have been detected in 
liver, ovarian, lung, and breast cancers (Table 1) (Govindaraj et al., 
2012; Gyftaki et al., 2014; Kim et al., 2012; Shih et al., 2018; Tian 
et al., 2010). Moreover, it is known that TSHR is functional in the ma-
jority of human HCCs and that high TSHR expression is correlated 
with unfavorable postoperative outcome in patients with HCC re-
ceiving surgical treatment (Shih et al., 2018). These results suggest 
that high TSH levels might confer pathophysiological advantage to 
HCCs. Therefore, it is tempting to speculate that alterations in TH 
signaling due to changes in deiodinase or TSHR expression and/or 
activity could also play a role in tumor progression. Therefore, deio-
dinase or TSHR expression or activation could be studied as markers 
for cancer diagnosis (Piekielko-Witkowska et al., 2009).

Alterations in thyroid function have been associated with mi-
tochondrial dysfunction, leading to increased generation of mito-
chondrial reactive oxygen species (ROS) and altered antioxidant 
defenses such as superoxide dismutase, catalase, and glutathione 
(Grattagliano	et	al.,	2003;	Lopez-Noriega	et	al.,	2019;	Venditti	et	al.,	
2003; Videla et al., 2015; Zhao et al., 2020). In this regard, an elegant 
study has recently shown that mitochondria isolated from the liver 
of hyperthyroid rats display an increase on oxygen consumption, the 
generation of hydrogen peroxide production, and the accumulation 
of lipid peroxidation, while present a reduced efficiency of oxida-
tive phosphorylation (Venediktova et al., 2020). Remarkably, ex-
periments using a model of hypothyroidism in rats have also shown 
that, in liver mitochondrial isolations, mitochondrial respiration is 
decreased and the capacity of mitochondria to remove hydrogen 
peroxide is compromised (Venditti et al., 2003). If antioxidant re-
sponses are not capable of restoring cellular homeostasis, increased 
ROS generation results in the accumulation of oxidative damage to 
macromolecules including lipids, proteins, and DNA (Mancini et al., 
2016). ROS induce nicks in DNA that, if not repaired, contribute to 
premature senescence and carcinogenic processes on susceptible 
cells.	 T3	 is	 known	 to	 increase	 the	 levels	 of	 8-oxo-2'-deoxyguano-
sine (8-OH-dG), a biomarker of oxidative DNA damage. Moreover, a 
strong	cofocalization	of	8-OH-dG	with	TP53BP1	has	supported	the	
presence	of	oxidized	DNA	at	double-strand	break	sites.	Supporting	
the role of TH-induced oxidative stress leading to DNA damage, 
antioxidant treatment using N-acetyl-l-cysteine in TH-treated 
samples blunted formation of 8-OH-dG/TP53BP1 foci (Zambrano 
et al., 2014). Several studies have pinpointed that the accumulation 
of liver damage in hypothyroidism and the increased propensity to 
develop HCC could be mediated by the accumulation of oxidative 
damage	(Baskol	et	al.,	2007;	Lopez-Noriega	et	al.,	2019;	Nanda	et	al.,	
2007).	Mild	hypothyroid	PAX8	heterozygous	knockout	mice	exhibit	
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an ~threefold increase in the prevalence of liver cancers (Table 1). 
Analyses in liver tissues isolated before the initiation of cancer oc-
currence indicated the existence of increased ROS production and 
accumulation of oxidative damage, suggesting a causal link with car-
cinogenesis. Data generated in the murine model of PAX8 deficiency 
suggest that humans bearing PAX8 mutations might have greater 
propensity to develop metabolic complications and liver cancer. In 
this line, a study investigated the associations of two single nucleo-
tide polymorphisms (SNPs) on PAX8 with HCC survival (Table 1) (Ma 
et	al.,	2017).	In	this	report,	patients	harboring	the	rs1110839	GT/GG	
genotypes and rs4848320 CT/TT genotypes exhibited longer sur-
vival time than patients harboring the rs1110839 TT and rs4848320 
CC genotypes. Moreover, multivariable Cox regression analysis 
showed that these SNPs had a significant prognostic value for HCC, 
suggesting that PAX8 gene might be considered a biomarker to pre-
dict HCC survival.

Interestingly, the scientific literature indicates that, despite the 
known pro-proliferative actions of THs, potentiated cellular prolifer-
ation driven by THs is not sufficient per se to enhance HCC progres-
sion (Columbano et al., 2006, 2008; Ledda-Columbano et al., 2000; 
Perra et al., 2009). An elegant report investigating THR knockout 
mice has supported that TH function has a dual role in tumor de-
velopment	 (Martinez-Iglesias,	Garcia-Silva,	 Tenbaum,	 et	 al.,	 2009).	
Research performed in THRα-THRβ	 double	homozygous	knockout	
mice showed that the lack of THR results in the restriction of be-
nign tumor formation at early stages of skin carcinogenesis, but en-
hanced malignant transformation at the later stages of the disease. 
These mice developed fewer number of tumors than wild-type mice 
(Martinez-Iglesias,	Garcia-Silva,	Tenbaum,	et	al.,	2009).	Subsequent	
work on experimental models of cancer using nude mice indicated 
that systemic hypothyroidism slows tumor growth but potentiates 
metastatic processes in a process that is independent of THRβ1 
expression	 (Martinez-Iglesias,	 Garcia-Siva,	 Regadera,	 et	 al.,	 2009).	
Hypothyroid mice exhibited greater number of spontaneous metas-
tasis in tissues such as lung, liver, or bone, when compared to euthy-
roid hosts. These effects were determined in hepatoma and breast 
cancer cells that stably express THRβ1, indicating that systemic 
TH function is more relevant than direct effects of THRβ1 on tu-
morigenesis	(Martinez-Iglesias,	Garcia-Siva,	Regadera,	et	al.,	2009).	
These results support the notion that restricted thyroid function fa-
vors cancer metastasis.

1.6.3  |  Therapeutic approaches based on thyroid 
hormones or thyromimetics for cancer

In the late nineteenth century, Beatson proposed the use of thyroid 
extract in conjunction with oophorectomy as a therapy for breast 
cancer (Beatson, 1896). In this line, TH treatment has been shown to 
reduce HCC progression, development of lung metastases, and the 
risk of colorectal cancer (Frau et al., 2015; Kowalik et al., 2020; Ledda-
Columbano et al., 2000; Rennert et al., 2010). Despite the fact that 
THs are known to induce hepatocyte proliferation, TH administration 

or treatments with the THRβ agonist sobetirome induces regression 
of carcinogen-induced hepatic nodules in xenobiotic-based research 
models (Perra et al., 2009). These findings support the exploration 
of treatments based on the use of THs or thyromimetics for cancer 
treatment. However, it is unlikely that current thyromimetics, such 
as sobetirome, could be used in the clinical practice for cancer treat-
ment	given	their	potential	severe	side	effects	(Lammel	Lindemann	&	
Webb, 2016). Moreover, separated evidences indicate that TH treat-
ments for hypothyroidism are associated with increased risk of renal 
carcinomas	and	breast	cancer	(Kapdi	&	Wolfe,	1976;	Rosenberg	et	al.,	
1990), suggesting that TH supplementation might accelerate tumor 
growth or recurrence (Hercbergs, 1996, 1999). Notwithstanding, 
the use of tissue-specific thyromimetics devoid of toxicity might be 
realistic in the future for cancer treatment, but further studies are 
required to determine their safety and efficacy.

1.7  |  Concluding remarks

THs are essential hormones that orchestrate whole-body metabo-
lism acting on every single cell of the body. Alterations in TH func-
tion have been associated with both disease and health, ranging 
from exceptional long longevity in individuals with a low thyroid 
function to the lack of viability in individuals devoid of THs. Studies 
in humans have demonstrated that the oldest old exhibit restricted 
TH function. However, studies directly targeting TH production do 
not extend life span, indicating that a genetic or epigenetic signature 
is required to achieve the longest life expectancy. Alterations in THs 
leading to different forms of hyperthyroidism and hypothyroidism 
have been associated with several age-related diseases, such as DM 
and cancer. In this regard, different types of DM have been deter-
mined as risk factors to develop certain types of cancer. The associa-
tion of TH alterations with different aspects of the pathogenesis of 
DM and cancer and overall life expectancy suggests that aging, DM, 
and cancer share certain mechanisms of pathogenesis in which THs 
contribute. Therefore, it is tempting to speculate that treatments 
or interventions designed to treat DM might have positive effects 
on cancer and vice versa, which might also have beneficial conse-
quences on aging and life expectancy. Further research is required 
to increase knowledge on the alterations that occur in early stages of 
DM and cancer related to THs, which currently limits the identifica-
tion of potential biomarkers and targets to facilitate the diagnosis, 
the prognosis, and the development of novel therapies for DM and 
cancer. The pleiotropic effects of TH alterations in different tissues 
indicate	that	personalized	and	precision	medicine	must	be	applied	to	
provide the optimal treatment for each patient. The narrow thera-
peutic window of interventions based on the use of natural THs has 
prompted the development of thyromimetics. However, the major-
ity of thyromimetics tested to date have failed due to inefficacy or 
toxicity. Notwithstanding, the latest research indicates that there is 
hope in the development of safe and effective thyromimetics that 
might provide therapeutic benefit for different diseases including 
cancer and DM.
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